浅谈风力发电机中传感器的运用

合集下载

风速风向传感器原理

风速风向传感器原理

风速风向传感器原理
风速风向传感器是一种用于测量风速和风向的仪器。

其工作原理是基于流体动力学的原理。

风速传感器通常使用一个细长的杆状物体,称为杆状探头,在风中悬挂。

探头一端连接到一个敏感的传感器,该传感器可以测量由风速引起的细小位移或压力变化。

当风吹过探头时,它会施加一个力或压力,这个力或压力可以转化为电信号。

传感器中有一个敏感元件,例如应变计或压阻器。

当风压施加在探头上时,敏感元件发生形变或电阻变化。

这个变化会被传感器转化为电信号,然后通过电路进行放大和处理。

风速传感器可以根据风吹过探头引起的电信号的强度来测量风速。

在已知的环境条件下,可以通过校准来将电信号转化为实际的风速值。

在同一个风速风向传感器中,还包含一个用于测量风向的元件。

通常使用一个指向不同方向的风向标志,比如一个箭头或一个圆盘。

当风吹过探头时,风向标志会指向风的方向。

传感器会检测风向标志的位置,并将其转化为相应的电信号。

综上所述,风速风向传感器是利用风吹过探头引起的位移或压力变化来测量风速,并利用风向标志的位置来测量风向的仪器。

通过将被测量的物理量转化为电信号,并通过电路处理和放大,最终可以得到准确的风速和风向数值。

基于光纤传感技术的风力发电机叶片健康监测研究

基于光纤传感技术的风力发电机叶片健康监测研究

基于光纤传感技术的风力发电机叶片健康监测研究随着全球对环境和可再生能源的日益关注,风力发电成为了一种备受关注的清洁能源。

风力发电机是将风能转化为电能的设备,其中叶片是其最重要的组成部分。

然而,叶片随着使用时间的增加、气候变化等因素的影响,会产生疲劳损伤,这不仅影响了发电机的效率,也会导致安全隐患。

为了提高风力发电机的安全性和效率,研究基于光纤传感技术的风力发电机叶片健康监测变得越来越重要。

一、光纤传感技术在风力发电机叶片健康监测中的应用光纤传感技术是一种新型的传感技术,主要通过光的特性来进行测量和监测。

在风力发电机叶片健康监测中,光纤传感技术可以通过在叶片表面或内部嵌入光纤传感器来实现实时监测叶片的应变、振动和温度等指标,进而评估叶片的健康状态。

光纤传感技术具有高精度、抗干扰能力强、快速响应等优点,可以精确地测量叶片的变化,监测到较小的损伤,有利于及时采取维护措施。

二、光纤传感技术在风力发电机叶片健康监测中的应用现状目前,国内外学者对光纤传感技术在风电领域的应用进行了大量研究。

比如,荷兰代尔夫特理工大学开发了一种基于光纤传感技术的叶片应变监测系统,通过在叶片表面和内部嵌入光纤传感器来实现叶片的应变监测;美国通用电气公司和挪威的NARC公司也开发了类似的系统。

国内的应用研究也日益活跃。

比如,华南理工大学开发了一种基于光纤传感技术的叶片振动监测系统,利用光纤传感器实现对叶片振动的实时监测。

北京航空航天大学也开展了基于光纤传感技术的风电叶片应变监测研究,通过在叶片表面和内部嵌入光纤传感器进行应变监测。

三、未来光纤传感技术在风力发电机叶片健康监测中的发展趋势随着光电技术的不断发展和进步,光纤传感技术在风电领域的应用也将进一步拓展。

尤其是光纤传感器的制造工艺和技术已经有了很大的提升,在光纤传感器的灵敏度、分辨率和可靠性等方面均得到了大幅提高。

未来,基于光纤传感技术的风力发电机叶片健康监测将呈现以下发展趋势:1.集成化监测系统的设计将得到更为广泛的应用。

振动传感器的应用场景

振动传感器的应用场景

振动传感器的应用场景振动传感器是一种测量物体振动特性的传感器。

它可以将物体的振动信号转换成电信号,从而实现对物体振动特性的监测和分析。

振动传感器广泛应用于机械制造、航空航天、电力、交通运输等领域。

下面我们来详细了解振动传感器的应用场景。

一、机械制造领域1.机床:在机床上安装振动传感器可以实时监测机床的运行状态,包括转速、加速度、位移等参数,从而及时发现机床故障,保证生产效率和质量。

2.轴承:在轴承上安装振动传感器可以实时监测轴承的运行状态,包括转速、加速度、位移等参数,从而及时发现轴承故障,避免设备损坏和生产事故。

3.风力发电机:在风力发电机上安装振动传感器可以实时监测叶片的运行状态,包括转速、加速度、位移等参数,从而及时发现叶片故障,避免设备损坏和生产事故。

二、航空航天领域1.飞机:在飞机上安装振动传感器可以实时监测飞机的振动状态,包括飞行姿态、加速度、位移等参数,从而及时发现飞机故障,保证飞行安全。

2.火箭:在火箭上安装振动传感器可以实时监测火箭的振动状态,包括加速度、位移等参数,从而及时发现火箭故障,保证发射成功。

三、电力领域1.变压器:在变压器上安装振动传感器可以实时监测变压器的运行状态,包括转速、加速度、位移等参数,从而及时发现变压器故障,避免设备损坏和生产事故。

2.发电机:在发电机上安装振动传感器可以实时监测发电机的运行状态,包括转速、加速度、位移等参数,从而及时发现发电机故障,避免设备损坏和生产事故。

四、交通运输领域1.汽车:在汽车上安装振动传感器可以实时监测汽车的振动状态,包括车身姿态、加速度、位移等参数,从而及时发现汽车故障,保证行车安全。

2.火车:在火车上安装振动传感器可以实时监测火车的振动状态,包括车身姿态、加速度、位移等参数,从而及时发现火车故障,保证行车安全。

以上是振动传感器的应用场景。

由于振动传感器具有高精度、高灵敏度、高可靠性等特点,因此在各个领域都得到了广泛的应用。

风力发电机传感器介绍

风力发电机传感器介绍

• 风向标的N指向机尾
• 偏航取一分钟平均风向
办公地点:保定市风能街88号
21
风力发电机传感器介绍
震动传感器
• 原理 • 振动传感器在测试技术中是关键部件之一,它的作用主要 是将机械量接受下来,并转换为与之成比例的电量。由于 它也是一种机电转换装置,所以我们有时也称它为换能器 或拾振器。 • 振动传感器并不是直接将原始要测量的机械量转变为电量 ,而是将原始要测的机械量做为振动传感器的输入量,然 后有机械接收部分加以接受,形成另外一个适合于变换的 机械量,然后由机电变换部分再将其变换为电量。因此一 个传感器的工作性能是有机械接受部分和机电变换部分的 工作性能来决定的。
办公地点:保定市风能街88号
8
风力发电机传感器介绍
编码器基本原理
• 概述 • 将机械转动的模拟量(位移)转换成以数字代码形式表示 的电信号,这类传感器称为编码器又称数字编码器 。 • 编码器以其高精度、高分辨率和高可靠性而广泛用于各 种位移测量。 • 编码器的种类很多。按其结构形式有直线式编码器和旋 转式编码器。由于许多直线位移是通过转轴的运动产生的 ,因此旋转式编码器应用更为广泛。
办公地点:保定市风能街88号
9
风力发电机传感器介绍
• 旋转式编码器又分为增量式编码器 和绝对式编码器。 • 增量式编码器的输出是一系 列脉冲,需要一个计数系统对脉冲 进行累计计数,一般还需要基准数 据即零位基准才能完成角位移测量 。 • 绝对式编码器不需要基准数 据及计数系统,它在任意位置都可 给出与位置相对应的固定数字码输 出。
办公地点:保定市风能街88号
17
风力发电机传感器介绍
• 从增量式编码器到绝对式编码器
– 增量值旋转编码器,也叫圆光栅、 脉冲码盘,从这些名称可以知道, 它是圆形的光栅刻线码盘,旋转后 通过光通量的明暗变化,产生脉冲 ,通过外部设备的计数脉冲,来增 量地加(或减)脉冲数而测得旋转 的角度。例如,圆光栅每周刻有360 条刻线,每个刻线产生的一个脉冲 就相当于1度,测得脉冲累计增加30 个,就是正向选转了30度。

风力发电机的风速传感器说明书

风力发电机的风速传感器说明书

风力发电机的风速传感器说明书感谢您购买我们的风力发电机风速传感器。

此说明书将为您提供有关传感器原理、安装及使用的详细信息。

在使用前,请仔细阅读本说明书。

若有任何疑问,请随时联系我们的技术支持部门。

一、传感器原理本传感器采用了先进的超声波技术来测量风速。

传感器内部的超声波发射器将信号发送到空气中。

超声波信号会撞击空气中的颗粒,并被反射回传感器内部的接收器。

通过测量超声波信号发送和接收之间的时间差,我们可以计算出空气中的风速。

二、安装为了确保传感器的测量结果准确,我们需要在安装传感器时注意以下事项:1.传感器应该安装在风力发电机的传动轴上方,并且距离传动轴至少50公分的位置。

这样可以避免传感器被风力发电机直接影响,从而影响测量结果。

2.传感器应该安装在离地面50公分的高度处,这样可以避免地面风向等因素对传感器的影响。

3.在安装传感器之前,请确保传感器配件齐备。

如有任何配件缺失或者损坏,请联系我们的客服部门。

三、使用本传感器具有自动校准功能,不需要手动校准。

在每次使用之前,请先进行一次预热。

预热时间约为30秒钟。

在使用时,请注意以下事项:1.传感器应该朝向风向。

如果传感器朝向错误,测量结果将会产生误差。

2.请勿将传感器安装在垂直风速较大的区域。

在一些气象条件下,会有上下行程的风,导致该区域的风速波动较大,从而影响测量结果。

3.传感器不能直接暴露在太阳下,必须加装遮阳罩,以确保测量结果的准确性。

四、维护本传感器无需特别维护。

如出现故障,请联系我们的客服部门进行维修。

五、注意事项1.请勿将传感器强行拆卸或修理。

如需进行维修,请联系我们的技术支持部门。

2.如使用过程中出现异常,请停止使用传感器并联系我们的客服部门。

3.请勿将传感器暴露在极端条件下。

如极端温度或湿度环境下使用传感器,可能会导致传感器出现故障。

希望本说明书可以为您的使用提供帮助。

如果您需要更多的技术支持或者有其他疑问,请联系我们的客服部门。

再次感谢您对我们的产品的信任和支持。

智能化技术在风力发电自动化控制系统中的运用探讨

智能化技术在风力发电自动化控制系统中的运用探讨

智能化技术在风力发电自动化控制系统中的运用探讨摘要:传统的发电方式需要大量的煤炭、石油和天然气,这对电力工业的可持续发展是不利的。

将大数据与智能技术融入到风力发电自动化控制系统中,将成为一种新型的管理方式。

本文智能化技术融入风力发电自动化控制系统中的必要性和优势出发,而后对其具体运用策略进行探究。

关键词:风力发电;自动化控制技术;智能化技术引言目前,我国的电力系统还停留在传统的燃煤发电和水电发电上,但考虑到环境保护的问题,传统的燃煤发电模式正在逐步地减少。

然而,随着城市规模的扩大,风电产业面临着巨大的供电量不足的问题,尽管我国在风电领域投资大量的资金,但由于风能资源丰富、人口稀少等原因,在风电的控制系统中还存在着许多问题。

如果将其智能化技术运用到控制系统中,将能够更好地推动我国风电行业持续、稳步发展。

因此对智能技术融入风力发电自动化控制系统进行研究将具有必要性。

1分析智能技术的必要性和优点1.1 分析风力发电的智能化技术应用必要性风能是一种可再生能源,目前国内的风力发电正处于高速发展的时期,但由于其随机性、间歇性等因素,使得大规模的风电并网会给电网的安全造成一定的影响,同时也会造成电力品质不佳等问题出现。

由于风电场的输出功率是随机的,所以需要着重均衡风力发电装置的功率。

然而,随着电网规模的增大,设备的容量也随之增大,这将直接影响电网的发电效率。

由此,将智能技术融入到风力发电自动化控制系统中将成为提升整体发电效率的重要要素。

1.2 智能化技术应用的优点分析在风电行业迅速扩张、快速发展的背景下,如何合理运用图像资料和发电机组的实际操作数据,将成为提升风力发电自动化控制系统运行效果的重要因素。

在智能技术的辅助下,将能够对相关的数据进行更好的筛选和分析,并为以后的自动控制系统提供一种新的解决方案。

通过大数据技术,也可以将风力发电机的数据收集起来,然后将这些数据汇总起来,形成一个独立的风电场,进而为用户提供有针对性的服务。

风电传感器

风电传感器

传感器主控系统中主要用到以下传感器:编号传感器名称数量编号传感器名称数量1 发电机转速传感器 12 偏航极限开关 13 齿轮箱转速传感器 14 风速仪 25 叶轮转速传感器 26 风向标 17 偏航计数器 2 8 振动开关 19 振动传感器 2 10 温度传感器 2转速传感器风力发电机组转速的测量点有三个:即发电机输入端转速、齿轮箱输出端转速和风轮转速,发电机输入端转速一个,齿轮箱输出端转速一个,风轮转速两个,还有两个转速传感器安装在机舱与塔筒连接的齿轮上,用来识别偏航旋转方向。

偏航限位开关及偏航计数传感器从机舱到塔筒间布置的柔性电缆由于偏航控制会变得扭曲。

如果在扭曲达到两圈后正好由于风速原因导致风机停机,此时主控系统将会使机舱旋转,直到电缆不再扭曲。

如果一直在扭曲达到3圈前还是不能进行解缠绕,系统产生正常停机程序程序,使电缆解缠绕。

当电缆扭曲达到±4圈后安全回路将会中断,紧急停机。

风速风机配有两个装在相配支架上的加热风速计,支架有一个接地环对风速计提供避雷功能。

电缆铺设在穿线管中。

风向两个风向计也安装同一个支架上,能360°范围测量,为了防止结冰,风向计能根据环境温度采取适度的自动加热。

振动传感器安装在主机架下部,为重力型加速度传感器,它直接连接到紧急停机回路上。

如果测量值超限,立刻正常停机。

振动分析模块分别安装在发电机下部和齿轮箱侧面,分别测量机架振动和传动链振动。

当振动超过一定值后,风机将会停机。

超速模块转速监测模块用于风电机组转子的转速测量和超速保护,在转速超限时发出报警信号,实现风电机组的停机保护。

启动与停机控制当主控制系统监测到在一段时间(如2分钟)内风速仪测得的风速平均值达到风力发电机切入风速,且系统自检无故障时,控制系统发出启动指令,机组从等风状态进入启动运行。

此时,变桨和变频器等系统会根据主控制器发出的指令做出相应的动作。

当操作人员从现场或监控中心给出停机信号、风能量小于风机运行需要的能量或系统出现故障需要停机时,主控制系统会根据相应的条件控制变桨、变频和刹车等系统,最终达到停止风力发电机的目的。

传感器在能源领域的应用(2)

传感器在能源领域的应用(2)

传感器在能源领域的应用我了解到,传感器在能源领域的应用是多元化的,涵盖了从传统能源到新能源的各个方面。

以我最为熟悉的传统能源为例,传感器在石油和天然气行业的应用就已经非常成熟。

在油气勘探过程中,传感器技术被用于地质监测,通过收集地下的压力、温度等数据,帮助科学家和工程师更好地判断油气藏的分布和储量。

在开采过程中,传感器技术同样发挥着重要作用,例如监测井口压力、流量以及设备的运行状态等,以确保生产过程的安全和高效。

而在电力领域,传感器技术的应用也是至关重要的。

无论是火力发电、水力发电还是风力发电,传感器都被广泛应用于监测设备的运行状态、环境参数以及电力质量等方面。

例如,在火力发电厂中,传感器可以用于监测锅炉内的温度、压力以及烟道的污染物排放等,以确保锅炉的运行效率和环保要求。

在风力发电领域,传感器则可以用于监测风速、风向以及塔架的振动等,以优化风力发电机的运行和提高发电效率。

随着新能源技术的迅速发展,传感器在能源领域的应用也得到了进一步的拓展。

以太阳能和风能为代表的新能源,其特点是分布广泛、不稳定和不确定性强,因此对传感器的精度和可靠性提出了更高的要求。

在太阳能领域,传感器被用于监测太阳辐射强度、温度以及光照时间等,以优化太阳能发电系统的设计和运行。

而在风能领域,传感器则需要实时监测风速、风向以及风力等级等,以提高风力发电的效率和稳定性。

传感器在能源管理领域也发挥着重要作用。

随着能源需求的不断增长和能源价格的波动,能源管理变得越来越重要。

传感器可以实时监测能源消耗,帮助企业和个人更好地了解能源使用情况,从而采取措施降低能源消耗和成本。

例如,在智能家居中,传感器可以用于监测家庭的电力、水和天然气消耗,提供智能化的能源管理方案。

而在工业领域,传感器技术可以用于监测生产线上的能源消耗,帮助企业优化生产流程和降低成本。

作为一名传感器领域的专业人士,我深刻认识到传感器技术在能源领域的重要性。

我相信,随着科技的不断进步和能源需求的持续增长,传感器技术在能源领域的应用将会越来越广泛,对于推动能源领域的可持续发展将发挥越来越重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈风力发电机中传感器的运用摘要:风力发电机中传感器的运用现在越来越平凡,在风力发电机中的传感器像比是人类的感觉器官,人类如果没有感觉器官那还有什么意义呢!同样风力发电机中没有传感器也就像木头一样立在那,各种不正常状态很可能使风机瓦解、导致整个电网系统崩溃,所以在风力发电机中传感器是必不可少的。

在风力发电机中传感器运用非常之多。

例如温度传感器有很多个,他不仅要检测齿轮箱,发电机温度还要检测机舱环境,室外环境的温度,以保证风机正常运行;振动传感器,检测风机的振动的频率,保证风机在大风时的可靠并网发电;转速传感器时刻检测主轴的转速、发电机转子的转速等等,以保证风机在运行时不会发生飞车;液位传感器时刻检测齿轮箱液位同时和温度传感器配合形成冷却系统,保证齿轮箱不会发生温度过高减小齿轮的硬度,保证齿轮箱的正常转化的齿轮转速比,可靠的为发电机传递动力。

关键词:传感器风力发电机机温度齿轮箱目录绪论 (1)一、传感器的分类 (2)二、传感器的主要特性 (2)(一)传感器动态特性 (2)(二)传感器的分辨率 (3)(三)传感器的灵敏度 (3)三、传感器的特点 (4)第一章风力发电机中传感器的运用 (5)一、1.5MW风力发电中传感器的运用 (5)二、风力发电机中的传感器 (6)(一)温度传感器 (6)(二)转速、角度传感器(编码器) (8)第二章风力发电机中传感器中的检查 (15)一、温度传感器 PT100 检查 (15)二、风速仪与风向标检查 (15)三、转速传感器检查 (16)四、振动传感器检查 (16)五、压力传感器检查 (16)六、扭揽开关检查 (17)总结 (18)参考文献 (19)绪论传感器(英文名称:transducer/sensor)是一种检测装臵,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

传感器广泛应用于社会发展及人类生活的各个领域,在风力发电机中是一种必不可少的检测信号的感元件,因此可以说,传感器是人类五官的延长,又称之为风力发电机的电五官。

新技术革命的到来,世界开始进入信息时代和新能源开发时代。

在利用远程监控信息的过程中,首先要解决的就是要获取准确可靠风力发电机的状态信息,而传感器是获取风力发电机中各种信息的主要途径与手段的粒子世界。

传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。

可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。

由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。

世界各国都十分重视这一领域的发展。

相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。

一、传感器的分类(1)生物类,基于酶、抗体、和激素等传感器分子识别功能。

(2)化学类,基于化学反应的原理。

(3)物理类,基于力、热、光、电、磁和声等物理效应。

传感器的功能与人类5大感觉器官相比拟:(1)压敏、温敏、传感器流体传感器——触觉(2)气敏传感器——嗅觉(3)光敏传感器——视觉(4)声敏传感器——听觉(5)化学传感器——味觉通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类二、传感器的主要特性(一)传感器动态特性所谓动态特性,是指传感器在输入变化时,它的输出的特性。

在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。

这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。

最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。

(二)传感器的分辨率分辨率是指传感器可感受到的被测量的最小变化的能力。

也就是说,如果输入量从某一非零值缓慢地变化。

当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。

只有当输入量的变化超过分辨率时,其输出才会发生变化。

(三)传感器的灵敏度灵敏度是指传感器在稳态工作情况传感器下输出量变化△y对输入量变化△x的比值。

它是输出一输入特性曲线的斜率。

如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。

否则,它将随输入量的变化而变化。

当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。

提高灵敏度,可得到较高的测量精度。

但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。

三、传感器的特点统筹风力发电机中传感器特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。

微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。

第一章风力发电机中传感器的运用一、1.5MW风力发电中传感器的运用风力发电机中信号传送方式信号有电压信号、电流信号。

风力发电机上的机械限位开关,也都通过电压或者电流信号来传递的。

风机上面的传感器主要包括以下:转速传感器、温度传感器、压力传感器、红外传感器等等。

像这些传感器也是将一些物理现象,转化为电压电流信号,反馈给PLC的,图2.1是 1.5MW风力发电机测点清单图2.1 1.5MW风力发电机测点清单二、风力发电机中的传感器(一)温度传感器(一)热电阻的测温原理热电阻是基于电阻的热效应进行温度测量的,即电阻体的阻值随温度的变化而变化的特性。

因此,只要测量出感温热电阻的阻值变化,就可以测量出温度。

目前在风力发电机中主要有金属热电阻传感器图 2.2和半导体热敏电阻图2.3两类。

图2.2 金属热电阻图2.3 半导体热电阻(二)热电阻的信号连接方式热电阻是把温度变化转换为电阻值变化的一次元件,通常需要把电阻信号通过引线传递到计算机控制装臵或者其它一次仪表上。

工业用热电阻安装在生产现场,与控制室之间存在一定的距离,因此热电阻的引线对测量结果会有较大的影响。

目前热电阻的引线主要有三种方式1.二线制:在热电阻的两端各连接一根导线来引出电阻信号的方式叫二线制:这种引线方法很简单,但由于连接导线必然存在引线电阻r,r大小与导线的材质和长度的因素有关,因此这种引线方式只适用于测量精度较低的场合。

2.三线制:在热电阻的根部的一端连接一根引线,另一端连接两根引线的方式称为三线制,这种方式通常与电桥配套使用,可以较好的消除引线电阻的影响,是工业过程控制中的最常用的引线电阻。

3.四线制:在热电阻的根部两端各连接两根导线的方式称为四线制,其中两根引线为热电阻提供恒定电流I,把R转换成电压信号U,再通过另两根引线把U引至二次仪表。

可见这种引线方式可完全消除引线的电阻影响,主要用于高精度的温度检测。

(三)PT100 温度与电阻对应关系表2.1 PT100 温度与电阻对应关系(二)转速、角度传感器(编码器)作为转速、角度类传感器,最近几年旋转编码器的发展迅速,使用已经越来越广.国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装臵,通常由敏感元件和转换元件组成”。

传感器是一种检测装臵,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

它是实现自动检测和自动控制的首要环节。

(一)编码器的应用优点1.信息化:除了定位控制点,控制室还可知道其具体位臵;2.柔性化:定位可以在控制室柔性调整的;3.多功能化:除了定位,还可以远传当前位臵,换算运动速度,判断旋转方向,对于变频器,步进电机等的应用尤为重要。

4.经济化:对于多个控制工位,只需一个旋转编码器的成本,以及更主要的安装、维护、损耗成本降低,使用寿命增长,其经济化逐渐突显出来。

按照传感器的发展规律,传统传感器已向数字化、智能化、网络信息化发展,工业自动化已经不单单满足现场控制,而且向工厂管理信息化发展,而智能型绝对值编码器,正是符合这种发展的定位传感器的杰出代表。

(二)编码器基本原理将机械转动的模拟量(位移)转换成以数字代码形式表示的电信号,这类传感器称为编码器又称数字编码器。

编码器以其高精度、高分辨率和高可靠性而广泛用于各种位移测量。

编码器的种类很多。

按其结构形式有直线式编码器和旋转式编码器。

由于许多直线位移是通过转轴的运动产生的,因此旋转式编码器应用更为广泛。

旋转式编码器又分为增量式编码器和绝对式编码器。

增量式编码器的输出是一系列脉冲,需要一个计数系统对脉冲进行累计计数,一般还需要基准数据即零位基准才能完成角位移测量。

绝对式编码器不需要基准数据及计数系统,它在任意位臵都可给出与位臵相对应的固定数字码输出。

(1)增量型编码器(incremental encoder)增量型编码器每转一周可产生一系列的脉冲,脉冲的数量可表示角位移的测量。

编码器内有一圆盘——编码盘。

通常为一光学玻璃,码盘最外圈的码道上均布有相当数量的透光与不透光的扇形区域,用来产生记数脉冲的增量码道,扇形区的多少决定了编码器的分辨率,扇形区越多分辨率越高。

例如:一个每转5000的增量形编码器,其码盘上共有5000个透光和不透光的扇形区域。

这个码盘被安装到编码器的旋转轴上,增量式编码器的码盘刻线间距均等,对应每一个分辨率区间,可输出一个增量脉冲。

(2)绝对型编码器(旋转型)绝对编码器光码盘上有许多道光通道刻线,每道刻线依次以2线、4线、8线、16 线……编排,这样,在编码器的每一个位臵,通过读取每道刻线的通、暗,获得一组从2的零次方到2的n-1次方的唯一的2进制编码(格雷码),这就称为n位绝对编码器。

这样的编码器是由光电码盘的机械位臵决定的,它不受停电、干扰的影响。

绝对编码器由机械位臵决定的每个位臵是唯一的,它无需记忆,无需找参考点,而且不用一直计数,什么时候需要知道位臵,什么时候就去读取它的位臵。

这样,编码器的抗干扰特性、数据的可靠性大大提高了。

图2.4 偏航计数器图2.5 限位开关在风力绝对值编码器的主要功能是记录偏航位臵,他是通过记录偏航轴承齿数与编码器盘齿数之比来进行运算,并判断偏航位臵,式风机处于安全位臵。

左右限位开关,常开触点;左右安全链限位开关,常闭触点(三)偏航系统工作原理风向标作为感应元件将风向的变化用电信号传递到偏航电机的控制回路的处理器里,经过比较后处理器给偏航电机发出顺时针或逆时针的偏航命令,为了减少偏航时的力矩,电机转速将通过同轴联接的减速器减速后,将偏航力矩作用在偏航轴承上,带动风轮偏航对风,当对风完成后,风向标失去电信号,电机停止工作,偏航过程结束。

相关文档
最新文档