李庆扬数值分析第五版习题答案清华大学出版社
李庆扬 数值分析第五版 习题答案

第2章 复习与思考题01ii i ii kx x x x 的基函数称为主要性质有 0,()1,k i kx i k()1n l x、什么是牛顿基函数?它与单项式基答:牛顿差值基函数为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n 牛顿差值基函数中带有常数项01,,...n x x x ,这有单项式基不同。
阶均差?它有何重要性质 01n 2n 01n 2n -11[,,...,,][,,...,,]n n f x x x f x x x x x xk j 0j 0j-1j j+1j -k x x x x x x x ()...()()...()和k 阶均差的性质0101k-10[,,...,][,,...,]k kf x x x f x x x x x (分子前项多xk )[a,b]上存在阶导数,且节点2n ,[a,b]x ,则1()!f n0()nn n ik k kk k i i ki kx x y l x y x x ,(j 1,2,....,n)个点的牛顿插值多项式01[,,...,]k f x x x ,(k 1,2,....,n)两者的主要差异是未知数不一致。
拉格朗日插值多项式是系数知道,但基函数不知道。
牛顿插值多项式是函数知道,但系数不知道。
与一般多项式基本相同。
y ,其中系数矩阵用下列基底作多项式插值时,120001211112222121...1...1 (1)...n n n n n nnx x x x x x x x x x x x ,无非零元素。
)拉格朗日基底为01{(),(),...,()}n l x l x l x ,已知数为未知数为01{(),(),...,()}n l x l x l x ,则系数矩阵为00101x ),(x x )(x x ),...,(x x )(x x )...(x x )}n ,已,未知数为012{,,,...,}n a a a a ,则系数矩阵为102020211010100...010...01()()...0...............1()()...()n nnnnj j x x x x x x x x x x x x x x x x ,为下三角矩阵,矩阵的上三角元0。
数值分析上机(四)

Ps :题目均来自数值分析第五版作者:李庆扬,王能超,易大义 编 出 版 社:清华大学出版社误差分析问题:求下列方程的实根 (1)2x 320xx e -+-=(2)322+10x 200xx +-=要求:(1)设计一种不动点迭代法,要使迭代序列收敛,然后再用斯特芬森加速迭代,计算到81|x x |10k k ---<为止。
(2)用牛顿迭代,同样计算到81|x x |10k k ---<,输出迭代初值及各次迭代值和迭代次数k ,比较方法的优劣。
代码部分: /**函数**/function y = fun(x) y=x^3+2*x^2+10*x-20; endfunction y = fun1( x) y=x^2-3*x+2-exp(x); % y=2*log(x)+log(3); endfunction [y,k]= niudun(x0)%NUIDUN Summary of this function goes here % Detailed explanation goes here x(1)=x0; k=1; des=1;while des>1.0e-8x(k+1)=x(k)-fun1(x(k))/dfun1(x(k)); des=abs(x(k+1)-x(k)); k=k+1; end y=x(k); k=k; endfunction [y,k]= sitefensen(x0,f)%SITEFENSEN Summary of this function goes here % Detailed explanation goes here%x0为初值,n 为迭代次数,f 为迭代函数 x(1)=x0;des=1;k=1;while des>1.0e-8y(k)=f(x(k));z(k)=f(y(k));x(k+1)=x(k)-(y(k)-x(k))^2/(z(k)-2*y(k)+x(k));des=abs(x(k+1)-x(k));k=k+1;endy=x(k);k=k;end%fun的导数function y= dfun(x)%DFUN Summary of this function goes here % Detailed explanation goes herey=3*x^2+ 4*x+10;end%fun1的导数function y = dfun1( x )%DFUN1 Summary of this function goes here % Detailed explanation goes herey=2*x-exp(x)-3;endclearclc%不动点迭代法n=100;x0=0.5;%初值k=0;des=1;while des>1.0e-8x=(x0^2+2-exp(x0))/3;% 2*log(x)+log(3)% x=(-x0^3-10*x0+20)/2*(x0+eps);des=abs(x-x0);k=k+1;x0=x;enddisp('不动点迭代解->')fprintf('%f\n',x)disp('迭代次数->')fprintf('%d\n',k)disp('误差->')fprintf('%f\n',abs(0-fun1(x))) %斯蒂芬森加速f='(x^2+2-exp(x))/3';f=inline(f);[yy,kk]=sitefensen(0.5,f);disp('斯蒂芬森加速解->') fprintf('%f\n',yy)disp('迭代次数->')fprintf('%d\n',kk)disp('误差->')fprintf('%f\n',abs(0-fun1(yy))) %牛顿迭代法[yy1,kk1]=niudun(0.5);disp('牛顿迭代法解->')fprintf('%f\n',yy1)disp('迭代次数->')fprintf('%d\n',kk1)disp('误差->')fprintf('%f\n',abs(0-fun1(yy1)))第一个方程的运行结果如下:不动点迭代解->0.257530迭代次数->14误差->0.000000斯蒂芬森加速解->0.257530迭代次数->5误差->0.000000牛顿迭代法解->0.257530迭代次数->5误差->0.000000结论:由上述三个表格可以看出去在迭代初值相同的情况下,斯蒂芬森加速和牛顿加速迭代次数都明显少于不动点迭代。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳引擎创编

第一章 绪论(12)欧阳引擎(2021.01.01)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e nk k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e nk k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。
它包括了从数学理论到计算实现的一系列技术。
数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。
2. 解答:数值分析在实际应用中起着重要的作用。
它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。
数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。
3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。
与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。
数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。
4. 解答:计算误差是指数值计算结果与精确解之间的差异。
在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。
计算误差可以分为截断误差和舍入误差两种。
第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。
例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。
绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。
2. 解答:相对误差是指绝对误差与精确解之间的比值。
对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。
相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。
3. 解答:舍入误差是由于计算机的有限精度而引起的误差。
计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。
舍入误差会导致计算结果与精确结果之间存在差异。
4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。
李庆扬-数值分析第五版第5章与第7章习题答案

(3)一个单位下三角矩阵的逆仍为单位下三角矩阵。
答:正确。
(4)如果A非奇异,则Ax = b的解的个数是由右端向量b的决定的。
答:正确。解释:若A|b与A的秩相同,则A有唯一解。若不同,则A无解。
(5)如果三对角矩阵的主对角元素上有零元素,则矩阵必奇异。
(6)范数为零的矩阵一定是零矩阵。
答:正确。
17、大熊座的明显标志就是我们熟悉的由七颗亮星组成的北斗七星,
11.判断下列命题是否正确:
8、铁生锈的原因是什么?人们怎样防止铁生锈?(1)非线性方程(或方程组)的解通常不唯一(正确)
(2)牛顿法是不动点迭代的一个特例(正确)
11、月食:当地球转到月球和太阳的中间,太阳、地球、月球大致排成一条直线时,地球就会挡住太阳射向月球的光,这时在地球上的人就只能看到月球的一部分或全部看不到,于是就发生了月食。(3)不动点迭代法总是线性收敛的(错误)
4从以上可以看出,每次运算后,区间长度减少一半,是线形收敛。
3.什么是函数 的不动点?如何确定 使它的不动点等价于 的零点
P215.
将方程 改写成等价的形式 ,若要求 满足 ,则 ;反之亦然,称 为函数 的一个不动点。
4.什么是不动点迭代法? 满足什么条件才能保证不动点存在和不动点迭代序列收敛于 的不动点
齐次性
三角不等式
设 为向量,则三种常用的向量范数为:(第3章p53,第5章p165)
7、何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A =(ai j)的三种范数||A||1,||A||2,||A||∞,||A||1与||A||2哪个更容易计算?为什么?
向量范数定义见p162,需要满足四个条件。
正定条件
均是对称正定矩阵的性质。应予以记住。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳美创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x ,相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值分析课程第五版课后习题答案(李庆扬等)1之欧阳与创编

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x ,相对误差为****ln ln )(ln )(ln xxx x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x n x n x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫⎝⎛∂∂=++∑x x x x x f x x x e n k k kεεεε;(2)*3*2*1x x x ; [解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e nk k kεεεε;(3)*4*2/x x 。
李庆扬-数值分析第五版第5章与第7章习题答案

3)设 ,则 ,从而 ,所以迭代方法发散。
4)设 ,则 ,从而
,所以迭代方法发散。
第5章
复习与思考题
1、用高斯消去法为什么要选主元?哪些方程组可以不选主元?
答:使用高斯消去法时,在消元过程中可能出现 的情况,这时消去法无法进行;即时主元素 ,但相对很小时,用其做除数,会导致其它元素数量级的严重增长和舍入误差的扩散,最后也使得计算不准确。因此高斯消去法需要选主元,以保证计算的进行和计算的准确性。
4从以上可以看出,每次运算后,区间长度减少一半,是线形收敛。
3.什么是函数 的不动点?如何确定 使它的不动点等价于 的零点
P215.
将方程 改写成等价的形式 ,若要求 满足 ,则 ;反之亦然,称 为函数 的一个不动点。
4.什么是不动点迭代法? 满足什么条件才能保证不动点存在和不动点迭代序列收敛于 的不动点
因为C的一、二、三阶顺序主子式分别为1,5,1,所以C能够分解为三角阵的乘积,并且分解是唯一的。
12、设
,
计算A的行范数,列范数,2-范数及F-范数。
本题考查的是矩阵范数的定义及求法
行范数0.6+0.5=1.1
列范数0.5+0.3=0.8
2-范数的计算需要用到特征值,特征值的计算可以使用幂法进行计算,也可以直接求。
(1)计算 的递推公式
(2)解Ly=f
(3)解UX=y
10、用改进的平方根法解方程组
。
本题明确要求使用平方根法进行求解。实际考查的LDU分解。见P157
。
11、下列矩阵能否分解为 (其中L为单位下三角阵,U为上三角阵)?若能分解,那么分解是否唯一。
, , 。
LU分解存在的条件