解一元二次方程(因式分解法) 习题精选(二)

合集下载

九年级数学上册第2章一元二次方程第7课时用因式分解法求解一元二次方程课堂导练习题课件新版北师大版

九年级数学上册第2章一元二次方程第7课时用因式分解法求解一元二次方程课堂导练习题课件新版北师大版

6.方程x(x﹣2)+x﹣2=0的解是( D ) A.2 B.﹣2,1 C.﹣1 D.2,﹣1
7.解方程2(x﹣3)2﹣3x(x﹣3)=0的最适当
的方法应是( D )
A.直接开平方法 B.配方法
C.公式法
D.因式分解法
巩固提高
8.选择合适的方法解下列方程: (1)2x2-5x+2=0;
x1=2,x2=
若围成一个正方形,则它的边长是10 cm,
故它的面积是100 cm2.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月24日星期四2022/3/242022/3/242022/3/24 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独立 思考的人,给那些具有锲而不舍的人。2022年3月2022/3/242022/3/242022/3/243/24/2022 •3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/242022/3/24March 24, 2022
谢谢观赏
You made my day!
我们,还在路上……
例2用因式分解法解方程: 7x(3-x)=4(x-3).
解:原方程化为7x(3-x)-4(x-3)=0,
因式分解,得(x-3)(-7x-4)=0,
于是得x-3=0或-7x-4=0,
x1=3,x2=-
4 7
.
变式练习
2.用因式分解法解方程: x(x2)2x0. x1=2,x2=-1
精典范例
例3 用因式分解法解方程: 9(x-2)2=4(x+1)2.
解:原方程化为9(x-2)2-4(x+1)2=0,

九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。

21.2.3 解一元二次方程-因式分解法同步练习(解析版)

21.2.3 解一元二次方程-因式分解法同步练习(解析版)

21.2.2因式分解法同步练习一、单选题1、一元二次方程()x x 22x -=-的根是( )A. -1B. 2C. 1和2D. -1和22、已知三角形的两边长为4和5,第三边的长是方程x 2-5x +6=0的一个根,则这个三角形的周长是( )A. 11B. 12C. 11或12D. 153、关于x 的一元二次方程x 2-4x +3=0的解为( )A. x 1=-1,x 2=3B. x 1=1,x 2=-3C. x 1=1,x 2=3D. x 1=-1,x 2=-34、已知2340x x --=,则代数式24x x x --的值是( ) A. 3 B. 2 C. 13 D. 125、一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( )A. 16B. 12C. 14D. 12或166、若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A. -1或4 B. -1或-4 C. 1或-4 D. 1或47、已知()222226x y y x +-=+,则22x y +的值是( ) A. -2 B. 3 C. -2或3 D. -2且38、已知x 、y 都是实数,且(x 2+y 2)(x 2+y 2+2)-3=0,那么x 2+y 2的值是( )A. -3B. 1C. -3或1D. -1或39、若方程()()2310x x -+=,则31x +的值为( )A. 7B. 2C. 0D. 7或010、若实数x 、y 满足(3)()20x y x y +-++=,则x +y 的值为( )A. -1或-2;B. -1或2;C. 1或-2;D. 1或2;11、我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( )A. x 1=1,x 2=3B. x 1=1,x 2=-3C. x 1=-1,x 2=3D. x 1=-1,x 2=-3二、填空题12、若关于x 的方程()(4)0x a x +-=和2340x x --=的解完全相同,则a 的值为______. 13、已知在△ABC 中,AB =3,AC =5,第三边BC 的长为一元二次方程x 2-6x +8=0的一个根,则该三角形为______三角形.14、若多项式x 2-mx +n (m 、n 是常数)分解因式后,有一个因式是x -2,则2m -n 的值为______. 15、我们知道方程x 2-2x +1=0的解是x 1=x 2=1,则给出的另一个方程(x -1)2-2(x -1)+1=0的解是______.16、如果(x 2+y 2)2+3(x 2+y 2)-4=0,那么x 2+y 2的值为______.17、方程34x x =的实数根是______.三、解答题18、解方程:(1)2450x x +-=(配方法);(2)x 2−5x +6=0(因式分解法);(3)22730x x -+=(公式法).19、选择适当方法解下列方程(1)(3x -1)2=(x -1)2(2)3x (x -1)=2-2x20、阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.1、答案:①x1=-1,x2=2;②x1=-1,x2=3;③x1=-1,x2=4;(2)①x1=-1,x2=10;②x1=-1,x2=10;(3)x2-nx-(n+1)=0分析:本题考查了用因式分解法和配方法解一元二次方程,数字类探索与规律,掌握因式分解法是解(1)的关键,掌握配方法是解(2)的关键,观察出二次项系数、一次项系数、常数项与两根之间的关系是解(3)的关键.解答:①∵x2-x-2=0,∴(x+1)(x−2)=0,∴x1=-1,x2=2;②∵x2-2x-3=0,∴(x+1)(x−3)=0,∴x1=-1,x2=3;③∵x2-3x-4=0,∴(x+1)(x−4)=0,∴x1=-1,x2=4;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x-10=0的解为x1=-1,x2=10;②x2-9x-10=0,移项,得x2-9x=10,配方,得x2-9x+814=10+814,即(x-92)2=1214,开方,得x-92=112.x1=-1,x2=10;(3)应用:关于x的方程x2-nx-(n+1)=0的解为x1=-1,x2=n+1.2、答案:D分析:本题考查了因式分解法解一元二次方程.解答:()x x 22x -=-⇒()()x x 2x 20-+-=⇒()()x 2x 10-+=⇒x 20x 10-=+=⇒或12x 2x 1,==-,选D .3、答案:C分析:本题考查了因式分解法解一元二次方程.解答:x 2-5x +6=0,解得x 1=2,x 2=3,∴三角形周长是4+5+2=11,4+5+3=12,选C .4、答案:C分析:本题考查了因式分解法解一元二次方程.解答:x 2-4x +3=0,分解因式得:(x -1)(x -3)=0,解得:x 1=1,x 2=3,选C .5、答案:D分析:本题考查了因式分解法解一元二次方程、代数式求值.解答:x 2-3x -4=0,(x -4)(x +1)=0,解得x 1=4,x 2=-1,∴当x =4时,24x x x --=12;当x =-1时,24x x x --=12. 选D .6、答案:A分析:本题考查了因式分解法解一元二次方程、三角形的三边关系.解答:解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形;若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16,选A .7、答案:C分析:本题考查了因式分解法解一元二次方程.解答:∵x =-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a ×(-2)-a 2=0,即a 2+3a -4=0, 整理,得(a +4)(a -1)=0,解得a 1=-4,a 2=1.即a 的值是1或-4.选C .8、答案:B分析:本题考查了因式分解法解一元二次方程.解答:根据题意,先移项得()2222260x y y x +---=, 即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-=,由此解得22x y +=-2(舍去)或223x y +=.选B .9、答案:B分析:本题考查了因式分解法解一元二次方程.解答:∵(x 2+y 2)(x 2+y 2+2)-3=0,∴(x 2+y 2)2+2(x 2+y 2)-3=0,解得:x 2+y 2=-3或x 2+y 2=1∵x 2+y 2>0∴x 2+y 2=1选B .10、答案:D分析:本题考查了解一元二次方程−因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:方程(2)(31)0x x -+=,可得20x -=或310x +=, 解得:12123x x ==-,,当2x =时,313217x +=⨯+=; 当13x =-时,1313103x +=⨯-+=(). 选D .11、答案:D分析:本题考查了因式分解法解一元二次方程.解答:t =x +y ,则由原方程,得t (t -3)+2=0,整理,得(t -1)(t -2)=0.解得t =1或t =2,∴x +y 的值为1或2.选D .12、答案:D分析:本题考查了因式分解法解一元二次方程.解答:将x 1=1,x 2=-3代入到x 2+2x -3=0得12+2×1-3=0,(-3)2+2×(-3)-3=0对比方程(2x +3)2+2(2x +3)-3=0,可得2x +3=1或-3解得:x 1=-1,x 2=-3选D .二、填空题13、答案:1分析:本题考查了因式分解法解一元二次方程.解答:解:2340x x --=,∴(4)(1)0x x -+=,∵关于x 的方程()(4)0x a x +-=和2340x x --=的解完全相同,∴a =1,故答案为:1.14、答案:直角分析:本题考查了因式分解法解一元二次方程、勾股定理的逆定理.解答:解一元二次方程x 2-6x +8=0,得,x =2或4,∵AB =3,AC =5,∴2<BC <8,∵第三边BC 的长为一元二次方程x 2-6x +8=0的一个根,∴BC =4,当BC =4时,AB 2+BC 2=AC 2,△ABC 是直角三角形.故答案为:直角.15、答案:4分析:本题考查了因式分解法解一元二次方程.解答:设另一个因式为x -a ,则x 2-mx +n =(x -2)(x -a )=x 2-ax -2x +2a =x 2-(a +2)x +2a ,得:22a m a n +=⎧⎨=⎩, ∴2m -n =2(a +2)-2a =4,故答案为4.16、答案:x 1=x 2=2分析:本题考查了换元法解一元二次方程.解答:∵方程x 2-2x +1=0的解是x 1=x 2=1,∴方程(x -1)2-2(x -1)+1=0的解满足:x −1=1,∴x 1=x 2=2.17、答案:1分析:先设22x y m +=,则原方程可变形为:2340m m +-=,解方程即可求得m 的值,从而求得22x y +的值.解答:设22x y m +=,则原方程可变形为:2340m m +-=,分解因式得,(1)(4)0m m -+=∴m =-4,m =1,∵22xy +≥0 ∴22x y +=1 故答案为:1.18、答案:10x =,22x =,32x =-分析:本题考查了因式分解法解方程.解答:34x x =340x x -=2(4)0x x -=x (x -2)(x +2)=0∴10x =,22x =,32x =-.故答案为:10x =,22x =,32x =-.三、解答题19、答案:(1)x 1=1,x 2=−5;(2)x 1=2,x 2=3;(3)x 1=3,x 2=12. 分析:本题考查的是一元二次方程的解法,掌握一元二次方程的解法:配方法,公式法,因式分解法的解答步骤是关键.解答:(1)2450x x +-=,245x x +=,24454x x ++=+,()229x +=,23x +=±,23x +=或23x +=-,∴121,5x x ==-.(2)x 2-5x +6=0,(x -2)(x -3)=0,x -2=0或x -3=0,∴x 1=2,x 2=3,(3)22730x x -+=,∵a =2,b =−7,c =3,2449423250b ac -=-⨯⨯=>,754x ±==, ∴1213,2x x ==. 20、答案:(1)x 1=0,x 2=12;(2)x 1=1,x 2=-23. 分析:本题考查了因式分解法解一元二次方程.解答:(1)3x -1=±(x -1),即3x -1=x -1或3x -1=-(x -1),∴x 1=0,x 2=12; (2)3x (x -1)+2(x -1)=0,(x -1)(3x +2)=0,x -1=0或3x +2=0,∴x 1=1,x 2=-23. 20、答案:(1)换元,降次;(2)x 1=-3,x 2=2.分析:本题考查了因式分解法解一元二次方程.解答:解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x 2+x =y ,原方程可化为y 2-4y -12=0,解得y 1=6,y 2=-2.由x 2+x =6,得x 1=-3,x 2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无实根.∴原方程的解为x1=-3,x2=2.【答题】根据要求,解答下列问题:(1)①方程x2-x-2=0的解为______;②方程x2-2x-3=0的解为______;③方程x2-3x-4=0的解为______;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x-10=0的解为______;②请用配方法解方程x2-9x-10=0,以验证猜想结论的正确性.(3)应用:关于x的方程______的解为x1=-1,x2=n+1.。

2.2 一元二次方程的解法(2)

2.2 一元二次方程的解法(2)
2.2一元二次方程的解法(2)
首页
上一页
下一页
末页

你能解决这 个问题吗? 3倍有可能相等吗?如果相 一个数的平方与这个数的
x 2 3x.
小亮是这样解的 :
小明是这样解的 :
等,这个数是几?你是怎样求出来的? 小明,小亮都设这个数为x,根据题意得
解 : 方程x 2 3x两 边都同时约去 x, 得. x 3.
(一次项系数为0)(容易x+5
2
25 2 x - 5
x-
2 用配方法解二次项系数是 1 的一元二次方程在时,添 4x+___=(______) 上的常数项与一次项系数之间存在的关系: 2 2 2
常数项是一次项系数的一半的平方 x +6x+___=(______) x-
6x+___=(_______)
2
首页 上一页 下一页 末页
探索发现二:
解方程: x 6 x 1 0
2
只要形成
x m
2
n(n 0)
x 6 x 9 10 0, ( x 3) 10, x 3 10
2 2
x1 3 10, x2 3 10
我们把一元二次方程通 过配方法转换成:
2
形 为
x -2x=8
首页
上一页
下一页
末页
练一练:添上一个适当的数,使下
1 x+1 2 2 x +2x+___=(______) 4 x+2 2 9 x+3
列的多项式成为一个完全平方式:
1 4 x-1 2 x -x - 2
2x+___=(______)

专题1.13解一元二次方程(精选100题)(全章专项练习)2「含答案」

专题1.13解一元二次方程(精选100题)(全章专项练习)2「含答案」

专题1.13 解一元二次方程(精选100题)(全章专项练习)21.解方程:(1)()()2232x x -=-;(2)22610x x ++=.2.(1)213102x x --=(2)228=0x x --.3.选用适当的方法解下列方程.(1)260x x --=;(2)230x x +=.4.解方程:(1)()()2232x x -=-(2)2240x x --=5.用适当方法解方程:(1)()44x x +=;(2)22310x x -+=.6.(1)解方程31144xx x ++=--;(2)232(2)x x +=+.7.解方程:(1)22x x=(2)22610x x -+=8.解方程(1)()4416x x x -=-;(2)22830x x -+=9.解方程:(1)()219x -=;(2)()211x x x -=-.10.解方程:(1)2(2)4(2)x x +=+;(2)22310x x --=.11.解方程:(1)()()2311x x x -=-;(2)2251x x -=-.12.解方程:(1)2215x x -=.(2)()()()1525x x x -+=-+;13.解下列方程:(1)()234x x x -=-.(2)()22239x x -=-.14.解下列方程:(1)23(1)27x -=;(2)241x =.15.解下列方程.(1)()()22321y y -=-.(2)213120x x -+=.16.解方程:(1)26925x x ++=(2)()25160x x +-=17.用适当的方法解下列方程:(1)2230x x --=;(2)()2(1)21x x x +=+;(3)220y -=;(4)2(2)120y --=.18.选择合适的方法解下列方程:(1)228=0x x --.(2)()()3121x x x -=-.19.解下列方程:(1)33222x x x-+=--;(2)230x x --=.20.解方程:(1)214210x x -+=.(2)()23642x x x -=-.21.用合适的方法解方程:(1)2961-=-x x ;(2)()()32510--=x x .22.解下列方程:(1)()22240x x -+-=;(2)1211x x x -=--.23.解方程:(1)217x x +=;(2)2450x x +-=.24.解方程:(1)用配方法:23410x x --=;(2)用公式法:()22541x x -=+.25.解方程:(1)()2263x x -=-(2)2470x x --=26.(1)解方程 2450x x --=.(2)方程 ()()220244202450x x ----=的解为 .27.解方程:(1)2560x x +-=(用配方法解);(2)223203x x +-=(用公式法解).28.解方程:(1)2480x x --=;(2)()3260y y y -+-=.29.按要求解一元二次方程:(1)22530x x --= (配方法)(2)()()()112313x x x +-++=(因式分解法)30.用适当的方法解方程(1)()281216x -=(2)2660y y --=(3)2481x x --=-(4)()()4131x x x -=-31.用适当的方法解下列方程:(1)21690x -=(2)2120x x --=32.解方程.(1)1221x x =-+(2)220x x --=33.解方程(1)2430x x -+=.(2)2810x x --=.34.解下列方程(1)()25160+-=x (2)22630x x --=35.解方程:(1)2270x x --=;(2)()()2565x x +=+.36.解方程(1)2420x x --=(2)2620x x -=37.解方程:(1)()()32332x x x -=-;(2)2142x x +=.38.(1)23610x x -+=(用配方法)(2)()1x x x-=39.用适当的方法解下列方程:(1)()2214x -=;(2)()()()23213x x x +=-+.40.求下列方程中x 的值:(1)210009x -=;(2)()2149x -=.41.解方程:(1)()()2454x x +=+(2)()()134x x +-=-42.解方程(1)()()4540x x x -+-=;(2)2410x x -=+.43.解方程:(1)()()21210x x ---=(2)22310x x +-=44.解方程:(1)2430x x -+=;(2)22310x x --=.45.(1)用配方法解方程:221x x =-;(2)用适当的方法解方程:()2142x x x -=-.46.解方程:(1)22310x x +-=;(配方法)(2)221(3)x x x -=+.47.解下列方程:(1)351122x x x -=---;(2)2430x x -+=.48.解下列方程:(1)22150x x +-=;(2)()()22121y y +=-.49.解下列一元二次方程:(1)2(1)4x +=;(2)22730x x -+=.50.解方程:(1)210x x --=(2)()22x x x +=+1.(1)1225x x ==,(2)12x x ==【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方法是解题关键.(1)利用因式分解法进行求解即可;(2)利用公式法求解方程即可.【详解】(1)解:()()2232x x -=-,()()22320x x ---=,()()2230x x ---=,()()250x x --=,1225x ,x \==;(2)22610x x ++=,261a b c ===,,,22\D >,x \==1x \2.(1)13x =,23x =(2)12x =-,24x =【分析】本题考查解一元二次方程,涉及公式法解一元二次方程、因式分解法解一元二次方程等知识,熟练掌握一元二次方程的解法是解决问题的关键(1)由公式法解一元二次方程即可得到答案;(2)由十字相乘法解一元二次方程即可得到答案.【详解】解:(1)213102x x --=,1312a b c ==-=-Q ,,21(3)4(1)112\=--´´-=V ,3x \==解得13x =+,23x =(2)228=0x x --,\()()240x x +-=,20x +=或40x -=,解得12x =-,24x =.3.(1)13x =,22x =-(2)10x =,23x =-【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法分解因式,得到30x +=或20x +=,再解一元一次方程即可;(2)提取公因式分解因式,得到0x =或30x +=,再解一元一次方程即可;【详解】(1)解:260x x --=,()()320x x -+=,30x \+=或20x +=,\13x =,22x =-;(2)解:230.x x +=,()30x x +=,0x \=或30x +=,\10x =,23x =-.4.(1)12x =,25x =(2)11x =21x =【分析】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法并灵活选择是解题的关键.(1)变形后利用因式分解法解方程即可;(2)利用配方法解方程即可.【详解】(1)()()2232x x -=-∴()()22320x x ---=因式分解为()()250x x --=∴20x -=或50x -=解得12x =,25x =(2)2240x x --=则224x x -=两边都加上一次项系数一般的平方得到()()2222141x x -+-=+-∴()215x -=,开平方得,1x -=∴11x =+21x =-5.(1)12x =,22x =--(2)11x =,212x =【分析】本题考查解一元二次方程.根据方程的特征选择恰当方法求解是解题的关键.(1)用配方法求解即可;(2)用因式分解法求解即可.【详解】(1)解:∵()44x x +=,∴244x x +=,即2448x x ++=,∴()228x +=,∴2x +=±∴12x =,22x =--.(2)解:∵22310x x -+=,∴()()1210x x --=,∴10x -=或210x -=,∴11x =,212x =.6.(1)0x =;(2)11x =+21x =【分析】本题考查解分式方程和一元二次方程:(1)将分式方程转化为整式方程,求解后,进行检验即可;(2)公式法解一元二次方程即可.【详解】解:(1)去分母得:()()341x x ++-=-整理得:211x -=-,移项合并得:0x =,经检验0x =是分式方程的解;(2)方程化为一般式为2210x x --=,2(2)41(1)80D =--´´-=>,1x ===±1211x x \==7.(1)10x =,22x =(2)1x =2x 【分析】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.(1)用因式分解法解方程即可;(2)利用求根公式法解方程即可.【详解】(1)解:原方程移项得220x x -=,()20x x -=,解得10x =,22x =.(2)2a =Q ,6b =-,1c =,x \==1x \8.(1)124x x == (2)1x =,2x =【分析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,(1)利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可;解题的关键是掌握一元二次方程的解法.【详解】解:(1)()4416x x x -=-()44(4)0x x x ---=()240x -=解得:124x x ==;(2)22830x x -+=283a b c ==-=,,,2464423400b ac -=-´´=>,∴∴x =,1x =9.(1)1242x x ==-,(2)12112x x ==-,【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方程是解题关键.(1)利用直接开方法求解一元二次方程即可;(2)利用因式分解方求一元二次方程.【详解】(1)解:()219x -=,13x -=±,1242x x \==-,;(2)()211x x x -=-,()()2110x x x -+-=,(1)(21)0x x -+=,12112x x ==-,.10.(1)122,2x x =-=;(2)1x =,2x =【分析】本题考查解一元二次方程,掌握解方程的步骤与方法,根据方程的特点,选择合适的方法解方程是解决问题的关键.(1)用因式分解法解方程即可;(2)利用公式法解方程即可.【详解】(1)解:2(2)4(2)x x +=+,2(2)4(2)0x x +-+=,(2)(24)0x x ++-=,∴122,2x x =-=;(2)22310x x --=,其中2,3,1a b c ==-=-,∴()942117D =-´´-=,∴x1x \2x =.11.(1)11x =,2x =(2)1x =,2x 【分析】本题考查解一元二次方程,(1)将方程移项,然后提取公因式()1x -,然后将方程转化为两个一元一次方程来求解即可;(2)将方程整理为一般形式,找出a 、b 、c 的值,计算出根的判别式,再代入求根公式即可求解;熟练掌握解一元二次方程的一般方法并灵活运用是解题的关键.【详解】(1)解:()()2311x x x -=-,∴()()23110x x x ---=,∴()()1310x x x --é-ùû=ë,即()()1210x x -+=,∴10x -=或210x +=,解得:11x =,212x =-;(2)整理得:22510x x -+=,此时2a =,=5b -,1c =,∵()25421258170D =--´´=-=>,∴x =∴1x 2x =.12.(1)5x =或3x =-(2)1x =-或5x =-【分析】本题考查了解一元二次方程,解题的关键是运用因式分解法来解答.(1)先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,即可求出结果.(2)先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,即可求出结果.【详解】(1)解:²215,x x -=()()530x x -+=,即:50x -=或30x +=,∴5x =或3x =-;(2)解:()()()1525x x x -+=-+,()()()15250x x x -+++=,()()1250x x -++=,即: 10x +=或50x +=,∴1x =-或13.(1)12x x ==(2)123,9x x ==【分析】本题主要考查解一元二次方程:(1)方程整理后运用公式法求解即可;(2)方程移项后运用因式分解法求解即可【详解】(1)解:()234x x x -=-2264x x x -=-22740x x -+=∵()274244932170,D =--´´=-=>∴x =∴12x x =(2)解:()22239x x -=-,()()222390,x x ---=()()()223330,x x x --+-=()()()32330x x x ---+=éùëû,()()390x x --=,30,90,x x -=-=解得,123,9x x ==14.(1)14x =,22x =-(2)1x 2x =【分析】本题考查了解一元二次方程-公式法及直接开平方法,利用公式法解方程时,首先将方程整理为一般形式,找出a 、,b 及c 的值,计算出根的判别式的值,当根的判别式的值大于等于0时,代入求根公式即可求出解.(1)方程两边除以3变形后,利用平方根的定义开方转化为两个一元一次方程来求解;(2)方程整理为一般形式,找出a ,b 及c 的值,计算出根的判别式的值大于0,代入求根公式即可求出解.【详解】(1)解:23(1)27x -=,变形得:2(1)9x -=,开方得:13x -=±,14x \=,22x =-;(2)解:241x =方程整理得:2410x -=,这里4a =,b =1c =-,Q 216180D +=>,x \则1x 2x =.15.(1)12y =-;243y =(2)11x =;212x =【分析】本题主要考查了解一元二次方程,熟知解一元二次方程的直接开平方法和因式分解法是解题的关键.(1)用直接开平方法解方程;(2)先把方程左边利用十字相乘法分解因式,然后解方程.【详解】(1)解:()()22321y y -=-321y y -=-或()321y y -=--解得12y =-;243y =(2)解:213120x x -+=因式分解,得()()1120x x --=10x -=或120-=x 解得11x =;212x =16.(1)12x =,28x =-(2)方程无解【分析】本题考查一元二次方程的解法,灵活选用直接开平方法、配方法、公式法和因式分解法解方程是解题的关键.(1)利用直接开平方法解一元二方程即可;(2)先把方程整理为一般式得到得5²650x x -+=,然后利用公式法解方程.【详解】(1)解:26925x x ++=()2325x +=35x +=或35x +=-解得:12x =,28x =-;(2)解:()25160x x +-=25650x x -+=565a b c ==-=,,,2436455640b ac -=-´´=-<,方程没有实数根,∴方程无解.17.(1)123,1x x ==-(2)121,1x x =-=(3)120,y y ==(4)1222y y =+=-【分析】本题考查了一元二次方程,选择合适的方法解一元二次方程是解题的关键.(1)利用因式分解法即可解答;(2)利用因式分解法即可解答;(3)利用因式分解法即可解答;(4)利用直接开平方法即可解答.【详解】(1)解:2230x x --=,()()310x x -+=,30,10x x \-=+=,解得123,1x x ==-;(2)解:()2(1)21x x x +=+,()2(1)210x x x +-+=,()(1)120x x x ++-=,10,120x x x \+=+-=解得121,1x x =-=;(3)解:220y -=,(20y y -=,解得120,y y ==;(4)解:2(2)120y --=,2(2)12y -=,2y -=解得1222y y =+=-.18.(1)14x =,22x =-(2)11x =,223x =【分析】本题考查解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.(1)用因式分解法求解即可;(2)用因式分解法求解即可.【详解】(1)解:228=0x x --,()()420x x -+=,40x -=或20x +=,∴14x =,22x =-;(2)解:()()3121x x x -=-,()()31210x x x ---=,()()1320x x --=,10x -=或320x -=,∴11x =,223x =.19.(2)1x =2x =【分析】本题考查了解分式方程、解一元二次方程,熟练掌握运算方法是解此题的关键.(1)先去分母,将分式方程化为整式方程,解整式方程并检验即可得出答案;(2)利用公式法解一元二次方程即可.【详解】(1)解:33222x x x-+=--,去分母得:()3223x x -+-=-,解得:43x =,检验:当43x =时,20x -¹,43x \=是原方程的解;(2)解:230x x --=Q 1a =,1b =-,3c =-,()()2241413130b ac \D =-=--´´-=>,x \=∴1x20.(1)17x =+17x =-;(2)12x =,243x =.【分析】(1)利用配方法解答即可求解;(2)移项提取公因式,利用因式分解法解答即可求解本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.【详解】(1)解:∵214210x x -+=,∴21421x x -=-,∴214492149x x -+=-+,即()2728x -=,∴7x -=±∴17x =+17x =-(2)解:移项提取公因式得,()()32420x x x ---=,因式分解得,()()2340x x --=,∴20x -=或340x -=,∴12x =,243x =.21.(1)1213x x ==(2)1215,2x x ==【分析】该题考查了解一元二次方程,解一元二次方程常用方法:配方法,公式法,因式分解法,直接开平方法.(1)整理后用配方法解答即可;(2)整理后用公式法解答即可;【详解】(1)解:2961-=-x x 移项得29610x x -+=,配方得2(31)0x -=,∴1213x x ==.(2)()()32510x x --=,整理得:221150x x -+=,∵2115,,==-=a b c ,∴()2241142581b ac -=--´´=,∴1194x ±===,∴15=x ,212x =.22.(1)12x =,20x =(2)3x =【分析】本题考查一元二次方程和分式方程的解法,正确掌握方程的解法是解题的关键.(1)利用因式分解法解一元二次方程即可;(2)先把方程两边乘以1x -,把分式方程转化为一元一次方程求解,然后进行验根即可.【详解】(1)解:()22240x x -+-=()()22220x x -+-=()()x 2x 220--+=20x -=或x 220-+=,解得:12x =,20x =;(2)1211x x x-=--两边同时乘以1x -得:()121x x +=-解方程得:3x =,经检验:3x =是原方程的解,∴.23.(1)1x =2x =(2)15x =-,21x =【分析】本题考查解一元二次方程,灵活选用解一元二次方程的方法是解题的关键.(1)运用公式法求解即可;(2)运用因式分解法求解即可.【详解】(1)解:原方程可化为2710x x -+=,()2247411450b ac -=--´´=>,x =1x (2)∵2450x x +-=,∴()()510x x +-=,∴50x +=或10x -=,∴15x =-,21x =.24.(1)123x =,223x =(2)1x =2x =【分析】本题考查解一元二次方程.关键是熟练掌握配方法和公式法解一元二次方程的一般步骤.(1)用配方法解一元二次方程时,先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式;(2)用公式法解方程时,先确定a ,b ,c 的值,再计算D ,若0D ³,即可代入求根公式,解得即可.【详解】(1)24133x x -=244143939x x +=+-;22739x æö-=ç÷èø\23x -;123x =+223=(2)整理得:22490x x ---=1672880D =+=>,\方程有两个不等的实数根x ==\1x =,2x =25.(1)13x =,25x =(2)12x =, 22x =【分析】本题考查了解一元二次方程,解题的关键是:(1)移项后利用因式分解法求解即可;(2)利用配方法求解即可.【详解】(1)解:()2263x x -=-,∴()()23260x x ---=,∴()()23230x x ---=,∴()()3320x x ---=,即()()350x x --=∴30x -=或50x -=,∴13x =,25x =;(2)解:2470x x --=,∴247x x -=,∴24474x x -+=+,∴()2211x -=,∴2x -=,∴12x =, 22x =.26.(1)11x =-,25x =;(2)12023x =,22029x =【分析】本题考查了解一元二次方程-因式分解法(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)设2024x a -=,则原方程可化为:2450a a --=,然后利用(1)的结论进行计算,即可解答.【详解】解:(1)2450x x --=,(5)(1)0x x -+=,50x -=或10x +=,1251x x ==-,;(2)设2024x a -=,则原方程可化为:2450a a --=,由(1)可得:5a =或1a =-,∴20245x -=或20241x -=-,解得:12029x =,22023x =,故答案为:12029x =,22023x =.27.(1)16x =-,21x =(2)12x x ==【分析】本题考查了一元二次方程的求解,熟练掌握一元二次方程的求解方法是解题关键.(1)利用配方法进行求解即可;(2)利用公式法进行求解即可.【详解】(1)解:2560x x +-=,256x x +=,225255624x x æö++=+ç÷èø,254924x æö+=ç÷èø,5722x +=±,16x \=-,21x =;(2)223203x x +-=,23a =Q ,3b =,2c =-,22Δ434b ac \=-=-x \==12x x \=28.(1)12x =+22x =-(2)13y =,22y =-.【分析】本题考查了解一元二次方程,解此题的关键是掌握解一元二次方程方法将一元二次方程转化成一元一次方程求解.(1)利用配方法解一元二次方程,即可解题;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:2480x x --=,24412x x -+=,()2212x -=,2x -=±2x =±12x =+22x =-(2)解:()3260y y y -+-=,()()3230y y y -+-=,()()320y y -+=,有30y -=或20y +=,解得13y =,22y =-.29.(1)13x =,212x =-(2)12x =,24x =-【分析】本题考查了配方法及因式分解法解一元二次方程,能够根据方程特点灵活选用不同的解法是解题的关键.(1)根据配方法解一元二次方程的步骤求解即可;(2)根据因式分解法解一元二次方程的步骤求解即可.【详解】(1)解:方程两边同除以2,移项得:25322x x -=即25254921616x x -+=.配方得,2549416x æö-=ç÷èø开方得,5744x -=±.13x \=,212x =-.(2)解:原方程可化为2280x x +-=,分解因式得,()()240x x -+=解得12x =,24x =-.30.(1)122214,99x x ==(2)123,3y y =+=(3)12x x ==(4)1231,4x x ==【分析】本题主要考查了解一元二次方程:(1)利用直接开平方的方法解方程即可;(2)利用配方法解方程即可;(3)利用公式法解方程即可;(4)先移项,然后利用因式分解法解方程即可.【详解】(1)解:∵()281216x -=,∴()281216x =-,∴429x -=±,解得122214,99x x ==;(2)解;∵2660y y --=,∴266y y -=,∴26915y y +=-,∴()2315y -=,∴3y -=解得123,3y y =+=;(3)解:2481x x --=-整理得24810x x -=+,∴481a b c ===-,,,∴()2844180D =-´´-=,∴x =解得2x =(4)解:∵()()4131x x x -=-,∴()()41310x x x ---=,∴()()4310x x --=,∴430x -=或10x -=,解得1231,4x x ==.31.(1)134x =,234x =-;(2)13x =-,24x =;【分析】本题考查了解一元二次方程的方法,掌握并熟练运用直接开平方法,因式分解法,配方法,公式法是解题关键.(1)移项得2916x =,利用直接开平方法即可求解;(2)分解因式得(3)(4)0x x +-=,利用因式分解法即可求解;【详解】(1)解:由 21690x -=得2916x =,\ 134x =,234x =-.(2)解:由2120x x --=,得(3)(4)0x x +-=,\ 13x =-,24x =.32.(1)5x =;(2)12x =,21x =-;【分析】本题考查了分式方程和一元二次方程.通过去分母将分式方程转化为整式方程后求解,再将整式方程的解代入最简公分母,如果最简公分母不为零,则整式方程的解是原分式方程的解,否则不是原分式方程的解;对于一元二次方程,可以通过因式分解法,配方法,公式法来求解,掌握分式方程和一元二次方程的解法是解题的关键.(1)方程两边同乘(2)(1)x x -+化为整式方程后求解,检验整式方程的根是否使得(2)(1)x x -+为零,即可得解;(2)利用因式分解法即可求解;【详解】(1)1221x x =-+两边同乘(2)(1)x x -+得:(1)2(2)x x +=-,即124x x +=-,解得:5x =,检验当5x =,(2)(1)0x x -+¹,故5x =是原方程的解.(2)220x x --=分解因式得(2)(1)0x x -+=,解得12x =,21x =-.33.(1)11x =,23x =(2)14x =24x =【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)利用因式分解法即可求解;(2)利用配方法求解即可.【详解】(1)解:2430x x -+=,()()130x x --=,10x -=或30x -=,11x =,23x =;(2)解:2810x x --=,281x x -=2228414x x -+=+()2417x -=4x -=14x =,24x =.34.(1)1219x x =-=-,(2)12x x ==【分析】本题主要考查解一元二次方程:(1)方程移项后运用直接开平方法求解即可;(2)方程运用公式法求解即可【详解】(1)解:()25160+-=x ()2516x +=()54+=±x 5454x x +=+=-,∴1219x x =-=-,(2)解:22630x x --=263a b c ==-=-,,()()2²46423600D =-=--´´-=>b ac=x ∴1x35.(1)11x =+,21x =-(2)15x =-,21x =【分析】本题考查了一元二次方程的求解,熟练掌握利用配方法、因式分解法解一元二次方程是解题的关键.(1)利用配方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【详解】(1)解:2270x x --=,移项得:227x x -=,配方得:22171x x -+=+,即()218x -=,开方得:1x -=±,解得:11x =+,21x =-;(2)解:()()2565x x +=+,移项得:()()20655x x -++=,分解因式得:()()5560x x ++-=,即()()510x x +-=,可得:50x +=或10x -=,解得:15x =-,21x =.36.(1)12x =22x =(2)10x =,213x =【分析】本题考查了解一元二次方程,解题的关键是∶(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解∶ 2420x x --=2x 4x 2-=24424x x -+=+()226x -=2x -=∴12x = , 22x =;(2)解∶2620x x -=()2310x x -=20x =或310x -=解得10x =, 213x =.37.(1)13x =,2x =(2)12x x =【分析】本题主要考查解一元二次方程的能力.(1)先移项,再利用因式分解法解方程即可;(2)先化为一般形式,再利用公式法解方程即可.【详解】(1)解:()()32332x x x -=-,移项得()()323320x x x ---=,因式分解得()()3230x x --=,∴30x -=或320x -=,解得13x =,223x =;(2)解:2142x x +=,2280x x \+-=,2a =Q ,1b =,8c =-,()2Δ142865\=-´´-=,x \=解得38.(2)1202x x ==,【分析】本题主要考查了解一元二次方程;(1)先把常数项移到方程右边,再把二次项系数化为1,接着把方程两边同时加上一次项系数一半的平方进行配方解方程即可;(2)先移项,然后利用因式分解法解方程即可.【详解】解:(1)∵23610x x -+=∴2361x x -=-,∴2123x x -=-,∴22213x x -+=,∴()2213x -=,∴1x -=解得12x x ==;(2)∵()1x x x -=,∴()10x x x --=,∴()20x x -=,∴0x =或20x -=,解得1202x x ==,.39.(1)132x =,212x =-(2)14x =,23x =-【分析】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.(1)利用直接开平方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:直接开平方得:212x -=±,∴212x -=或212x -=-,解得:132x =,212x =-;(2)解:移项得:()()()232130x x x +--+=,因式分解得:()()33210x x x ++-+=,即()()340x x +-=,∴40x -=或30x +=,解得:14x =,23x =-.40.(1)1103x =,2103x =-(2)18x =,26x =-【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)先移项,再开平方即可得到答案;(2)直接开平方即可得到答案.【详解】(1)解:210009x -=Q ,21009x \=,则1103x =,2103x =-;(2)解:()2149x -=Q ,17x -=或17x -=-,解得18x =,26x =-.41.(1)14x =-,21x =(2)121x x ==【分析】本题考查因式分解法解一元二次方程,熟练掌握因式分解法是解决问题的关键.(1)根据提公因式法因式分解解一元二次方程即可得到答案;(2)先由多项式乘以多项式展开,再由完全平方差公式因式分解解一元二次方程即可得到答案.【详解】(1)解:()()2454x x +=+,()()4450x x \++-=,即()()410x x +-=,40x \+=或10x -=,解得14x =-,21x =;(2)解:()()134x x +-=-,22340x x \--+=,即2210x x -+=,()210x \-=,即10x -=,解得121x x ==.42.(1)1254x x =-=,(2)1222x x =--=-+【分析】本题主要考查了解一元二次方程:(1)先把方程左边利用提公因式法分解因式,然后解方程即可;(2)利用配方法解方程即可.【详解】(1)解:∵()()4540x x x -+-=,∴()()540x x +-=,∴50x +=或40x -=,解得1254x x =-=,;(2)解:∵2410x x -=+,∴241x x +=,∴2445x x ++=,∴()225x +=,∴2x +=解得1222x x =--=-+43.(1)11x =,23x =(2)1x =,2x =【分析】本题考查了解一元二次方程-公式法,因式分解法.熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法,进行计算即可解答;(2)利用解一元二次方程-公式法,进行计算即可解答.【详解】(1)解: 2(1)2(1)0x x ---=,(1)(12)0x x ---=,10x -=,30x -=,11x =,23x =;(2)解:22310x x +-=,Q 2342(1)D =-´´-98=+170=>x \=1x \.44.(1)121,3x x ==(2)12x x =【分析】本题考查解一元二次方程,熟练掌握求解方法是解题关键;(1)利用因式分解法求解即可;(2)利用公式法求解即可.【详解】(1)∵2430x x -+=,∴()()130x x --=∴10x -=或30x -=,∴121,3x x ==(2)22310x x --=∴2,3,1a b c ==-=-∴()()22Δ43421170b ac =-=--´´-=>,∴方程有两不等实数根,∴1,2x∴12x ==.45.(1)121x x ==;(2)12122x x ==,【分析】本题主要考查了解一元二次方程:(1)先移项,然后利用完全平方公式配方,进而解方程即可得到答案;(2)先移项,然后利用因式分解法解方程即可得到答案.【详解】解:(1)221x x =-2210x x -+=()210x -=解得121x x ==;(2)()2142x x x -=-()()212210x x x ---=()()2210x x --=20x -=或210x -=解得12122x x ==,.46.,234x =-(2)1x =2x =【分析】(1)利用配方法求解即可;(2)先把方程化成一般式2310x x --=,然后利用公式法求解即可;本题考查了解一元二次方程,解题的关键在于灵活选取适当的方法解方程.【详解】(1)解:22310x x +-=23122x x +=,22331924216x x æö++=+ç÷èø,2317416x æö+=ç÷èø,34x +=134x =-,234x =-;(2)22213x x x -=+,2310x x --=,()()2Δ3411130=--´´-=>,∴∴x =∴1x 47.(1)原方程无解;(2)13x =,21x =【分析】本题考查了解分式方程,解一元二次方程,解题的关键是:(1)分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解;(2)利用配方法求解即可.【详解】解:(1)两边都乘以2x -,得:3521x x -=-+,解得2x =,经检验2x =是原方程的增根,所以原方程无解;(2)2430x x -+=,∴243x x -=-,∴24434x x -+=-+,即()221x -=,∴21x -=或21x -=-,解得13x =,21x =.48.(1)1253x x =-=,(2)1202y y ==,【分析】本题主要考查了解一元二次方程:(1)先把方程左边利用十字相乘法分解因式,然后解方程即可得到答案;(2)先移项,然后把方程左边利用平方差公式分解因式,进而解方程即可得到答案.【详解】(1)解:∵22150x x +-=,∴()()530x x +-=,∴50x +=或30x -=,解得1253x x =-=,;(2)解:∵()()22121y y +=-,∴()()221210y y +--=,∴()()1211210y y y y ++-+-+=,∴1210y y ++-=,1210y y +-+=,解得1202y y ==,.49.(1)1231x x =-=,(2)12132x x ==,【分析】本题考查了直接开平方法、因式分解法解一元二次方程.熟练掌握直接开平方法、因式分解法解一元二次方程是解题的关键.(1)利用直接开平方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【详解】(1)解:2(1)4x +=,∴12x +=±,解得,1231x x =-=,;(2)解:22730x x -+=,()()3210x x --=,∴30x -=或210x -=,解得,12132x x ==,.50.(1)1x =2x =;(2)12x =-,21x =.【分析】本题考查了解一元二次方程,熟练掌握因式分解法和配方法是解本题的关键.(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(1)解:210x x --=,21544x x -+=,x æçèx x1x =2x =;(2)解:()22x x x +=+,()()220x x x +-+=,()()210x x +-=,20x +=或10x -=,12x =-,21x =.。

专题02 解一元二次方程(四大类型)(题型专练)(解析版)

专题02  解一元二次方程(四大类型)(题型专练)(解析版)

专题02 解一元二次方程(四大类型)【题型1 解一元二次方程-直接开平方】【题型2 解一元二次方程-配方法】【题型3 解一元二次方程-公式法】【题型4 解一元二次方程-因式分解法】【题型1 解一元二次方程-直接开平方】1.(2022春•顺义区期末)方程2x2﹣8=0的根是( )A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x1=4,x2=﹣4【答案】C【解答】解:2x2﹣8=0则x2=4,解得:x1=2,x2=﹣2.故选:C.2.(2022秋•丰台区期末)一元二次方程x2﹣4=0的实数根为 .【答案】x1=2,x2=﹣2.【解答】解:x2﹣4=0,x2=4,解得x1=2,x2=﹣2.故答案为:x1=2,x2=﹣2.3.(2023春•抚顺月考)解方程:(1)x2﹣81=0;(2)4(x﹣1)2=9.【答案】(1)x1=9,x2=﹣9;(2)x1=,x2=﹣.x2=81,∴x=±9,∴x1=9,x2=﹣9;(2)4(x﹣1)2=9,(x﹣1)2=,∴x﹣1=±,∴x1=,x2=﹣.4.(2022秋•清新区期中)解方程:(x﹣5)2﹣36=0.【解答】解:∵(x﹣5)2﹣36=0,∴(x﹣5)2=36,∴x﹣5=±6,∴x1=11,x2=﹣1.5.(2023•龙川县校级开学)(x+1)2=25.【答案】x1=﹣11,x2=9.【解答】解:,∴(x+1)2=100,x+1=±10,∴x1=﹣11,x2=9.6.(2022秋•嘉定区月考)解方程:.【解答】解:,(2x﹣2)2=48,2x﹣2=±4,x=1±2,7.(2020秋•邗江区校级月考)求满足条件的x值:(1)3(x﹣1)2=12;(2)x2﹣3=5.(2)x1=2,x2=﹣2.【解答】解:(1)3(x﹣1)2=12,∴(x﹣1)2=4,∴x﹣1=±2,∴x1=3,x2=﹣1;(2)x2﹣3=5,∴x2=8,∴x=,∴x1=2,x2=﹣2.8.(2022春•莱州市期末)解方程:9(x+1)2﹣25=0.【答案】x1=﹣,x2=.【解答】解:9(x+1)2﹣25=0,(x+1)2=,x+1=,x=﹣1,∴x1=﹣,x2=.9.(2022•建华区二模)解方程:(x﹣2)2+=0.【答案】x1=,x2=.【解答】解:(x﹣2)2+=0,(x﹣2)2=﹣,(x﹣2)2=,x﹣2=±,所以x1=,x2=.10.(2022秋•莲湖区校级期中)解下列方程:(1)9x2=25;(2)6(x+2)2=48.【答案】(1)或;(2)或.【解答】解:(1)∵9x2=25,∴,解得:或.(2)∵6(x+2)2=48,∴(x+2)2=8,∴,解得:或.11.(2022秋•嘉定区校级月考)解方程:3(x﹣1)2+1=16.【答案】x1=1+,x2=1﹣.【解答】解:3(x﹣1)2+1=16,3(x﹣1)2=15,(x﹣1)2=5,x﹣1=±解得:x1=1+,x2=1﹣.12.(2022秋•南海区期中)用适当方法解方程:2(x﹣1)2﹣18=0.【答案】x1=4,x2=﹣2.【解答】解:2(x﹣1)2﹣18=0,(x﹣1)2=9,∴x﹣1=±3,∴x1=4,x2=﹣2.13.(2021秋•连平县校级期末)解方程:16(2﹣x)2﹣9=0.【答案】,.【解答】解:16(2﹣x)2﹣9=0移项得:16(2﹣x)2=9,去系数得:,直接开平方得:,即或,解得:,.14.(2022秋•东台市月考)解方程:4x2﹣121=0【答案】x1=﹣,x2=.【解答】解:4x2﹣121=0,x2=,x=±,所以x1=﹣,x2=.15.(2021秋•徐汇区校级月考)解方程:4(x+1)2﹣9(x﹣2)2=0(开平方法).【答案】x1=8,x2=.【解答】解:4(x+1)2=9(x﹣2)2,∴2(x+1)=±3(x﹣2),∴x1=8,x2=.16.(2021秋•浦东新区校级月考)解方程:9(x﹣1)2=16(x+2)2.【答案】x=﹣11或x=﹣.【解答】解:两边直接开平方,得:3(x﹣1)=±4(x+2),即3x﹣3=4x+8或3x﹣3=﹣4x﹣8,解得:x=﹣11或x=﹣.【题型2 解一元二次方程-配方法】17.(2022秋•滨城区校级期末)用配方法解方程x2﹣2x﹣5=0时,原方程变形为( )A.(x+1)2=6B.(x﹣1)2=6C.(x+2)2=9D.(x﹣1)2=9【答案】B【解答】解:x2﹣2x﹣5=0,x2﹣2x=5,x2﹣2x+1=5+1,∴(x﹣1)2=6.故选:B.18.(2022秋•陵水县期末)将一元二次方程x2﹣2x﹣3=0化成(x+h)2=k的形式,则k等于( )A.1B.2C.3D.4【答案】D【解答】解:x2﹣2x﹣3=0,x2﹣2x=3,x2﹣2x+1=3+1,(x﹣1)2=4,∴k=4,故选:D.19.(2022秋•平顶山期末)把一元二次方程x2﹣6x+6=0化成(x+a)2=b的形式,则a,b的值分别是( )A.﹣3,3B.﹣3,15C.3,3D.3,15【答案】A【解答】解:方程x2﹣6x+6=0,移项得:x2﹣6x=﹣6,配方得:x2﹣6x+9=3,即(x﹣3)2=3,∵一元二次方程x2﹣6x+6=0化成(x+a)2=b的形式,∴a=﹣3,b=3.故选:A.20.(2022秋•海口期末)用配方法解一元二次方程x2+8x﹣9=0,配方后所得的方程是( )A.(x+4)2=9B.(x﹣4)2=9C.(x+4)2=13D.(x+4)2=25【答案】D【解答】解:x2+8x﹣9=0,∴x2+8x+16=9+16,∴(x+4)2=25.故选:D21.(2022秋•辉县市期中)解方程:x2+12x+27=0(用配方法).【答案】x1=﹣9,x2=﹣3.【解答】解:x2+12x+27=0,x2+12x=﹣27,x2+12x+36=9,(x+6)2=9,x+6=±3,所以x1=﹣9,x2=﹣3.22.(2022秋•普宁市校级期中)解下列方程3x2+4x﹣1=0(用配方法)【答案】x1=﹣+,x2=﹣﹣.【解答】解:∵3x2+4x﹣1=0,∴3x2+4x=1,则x2+x=,∴x2+x+=+,即(x+)2=,∴x+=±,∴x1=﹣+,x2=﹣﹣23.用配方法解方程:x2+2x﹣2=0.【答案】x1=﹣1+,x2=﹣1﹣.【解答】解:x2+2x﹣2=0,原方程化为:x2+2x=2,配方,得x2+2x+1=3,即(x+1)2=3,开方,得x+1=±,解得:x1=﹣1+,x2=﹣1﹣.24.用配方法解方程:x2+10=8x﹣1.【答案】,.【解答】解:∵x2+10=8x﹣1,∴x2﹣8x+11=0,∴x2﹣8x+16﹣16+11=0,∴(x﹣4)2=5,∴x﹣4=,∴,.25.用配方法解方程:.【答案】x1=3+,x2=﹣3+.【解答】解:∵,∴x2﹣2x+5=4+5,即(x﹣)2=9,∴x﹣=3或x﹣=﹣3,∴x1=3+,x2=﹣3+.26.用配方法解方程:.【答案】.【解答】解:,移项得:x2+x=,配方得:,即,开方得:,解得:.27.用配方法解方程:x2﹣8x+13=0.【答案】x1=+4,x2=﹣+4.【解答】解:x2﹣8x+13=0,移项,得:x2﹣8x=﹣13,配方,得:x2﹣8x+16=﹣13+16,即(x﹣4)2=3,开方,得:x﹣4=±,∴x1=+4,x2=﹣+4.28.(2022秋•南关区校级期末)解方程:x2﹣4x+3=2.【答案】x1=2﹣,x2=2+.【解答】解:x2﹣4x+3=2,方程整理得:x2﹣4x=﹣1,配方得:x2﹣4x+4=3,即(x﹣2)2=3,开方得:x﹣2=±,解得:x1=2﹣,x2=2+.29.(2022秋•陈仓区期中)用配方法解方程:2x2+6x=3.【答案】,.【解答】解:2x2+6x=3,二次项系数化为1得,2(x2+3x)=3,配方得:,即:,∴,∴,.30.(2022秋•普宁市校级期中)解下列方程3x2+4x﹣1=0.(用配方法)【答案】x1=﹣+,x2=﹣﹣.【解答】解:∵3x2+4x﹣1=0,∴3x2+4x=1,则x2+x=,∴x2+x+=+,即(x+)2=,∴x+=±,∴x1=﹣+,x2=﹣﹣.31.(2022秋•城西区校级期中)x2﹣14x=8(配方法).【答案】x1=7+,x2=7﹣.【解答】解:x2﹣14x=8,x2﹣14x+72=8+72,(x﹣7)2=57,x﹣7=±,x1=7+,x2=7﹣.32.(2022秋•辉县市期中)解方程:x2+12x+27=0(用配方法).【答案】x1=﹣9,x2=﹣3.【解答】解:x2+12x+27=0,x2+12x=﹣27,x2+12x+36=9,(x+6)2=9,x+6=±3,所以x1=﹣9,x2=﹣3.【题型3 解一元二次方程-公式法】33.(2023•湘潭开学)用求根公式解一元二次方程3x2﹣2=4x时a,b,c的值是( )A.a=3,b=﹣2,c=4B.a=3,b=﹣4,c=2C.a=3,b=﹣4,c=﹣2D.a=3,b=4,c=﹣2【答案】C【解答】解:∵3x2﹣2=4x,∴3x2﹣4x﹣2=0,∴a=3,b=﹣4,c=﹣2,故选:C.34.(2022秋•泉州期末)用求根公式解一元二次方程5x2﹣1﹣4x=0时a,b,c的值是( )A.a=5,b=﹣1,c=﹣4B.a=5,b=﹣4,c=1C.a=5,b=﹣4,c=﹣1D.a=5,b=4,c=1【答案】C【解答】解:∵5x2﹣1﹣4x=0,∴5x2﹣4x﹣1=0,则a=5,b=﹣4,c=﹣1,故选:C.35.(2022秋•德化县期末)下面是小明同学解方程x2﹣5x=﹣4的过程:∵a=1,b=﹣5,c=﹣4(第一步),∴b2﹣4ac=(﹣5)2﹣4×1×(﹣4)=41(第二步).∴x=,(第三步).∴x1=,x2=(第四步).小明是从第 一 步开始出错.【答案】一.【解答】解:原方程化为:x2﹣5x+4=0,∴a=1,b=﹣5,c=4.故答案为:一.36.用公式法解方程:x2﹣2x﹣2=0.【答案】x1=+2,x2=﹣2.【解答】解:x2﹣2x﹣2=0,这里a=1,b=﹣2,c=﹣2,∴Δ=(﹣2)2﹣4×1×(﹣2)=16>0,∴x===±2,∴x1=+2,x2=﹣2.37.用公式法解方程:2x2+4=7x.【答案】x1=,x2=.【解答】解:2x2+4=7x整理为2x2﹣7x+4=0,这里:a=2,b=﹣7,c=4,∵Δ=b2﹣4ac=(﹣7)2﹣4×2×4=49﹣32=17>0,∴x==,解得:x1=,x2=.38.用公式法解方程:2x2+4x﹣3=0.【答案】x1=,x2=【解答】解:这里a=2,b=4,c=﹣3,∵Δ=42﹣4×2×(﹣3)=16+24=40>0,∴x==,解得:x1=,x2=.39.用公式法解方程:2x2﹣1=4x.【答案】.【解答】解:整理,得:2x2﹣4x﹣1=0,∵a=2,b=﹣4,c=﹣1,∴Δ=b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24>0,∴,∴.40.用公式法解方程:5x2﹣3x=x+1【答案】x1=﹣,x2=1.【解答】解:这里a=5,b=﹣4,c=﹣1,∵b2﹣4ac=(﹣4)2﹣4×5×(﹣1)=16+20=36>0,∴x==,解得:x1=﹣,x2=1.41.用公式法解方程:x2﹣x﹣6=0.【答案】1=3,x2=﹣2.【解答】解:∵a=1,b=﹣1,c=﹣6,∴Δ=b2﹣4ac=(﹣1)2﹣4×1×(﹣6)=25>0,∴,即x1=3,x2=﹣2.42.(2022秋•丰满区校级期末)用公式法解方程:x2+2x﹣6=0.【答案】x1=﹣1+,x2=﹣1﹣.【解答】解:这里a=1,b=2,c=﹣6,∵Δ=22﹣4×1×(﹣6)=28>0,∴x==﹣1±,解得:x1=﹣1+,x2=﹣1﹣.43.(2022秋•普宁市校级期中)用公式法解方程:2x(x﹣3)=(x﹣1)(x+1).【答案】,.【解答】解:2x(x﹣3)=(x﹣1)(x+1),化简为x2﹣6x+1=0,∵a=1,b=﹣6,c=1,∴Δ=b2﹣4ac=36﹣4=32>0,∴,∴,.44.用公式法解下列方程:(1)2x2+5x﹣1=0 (2)6x(x+1)=5x﹣1【答案】(1)x1=,x2=(2)没有实数解【解答】解:(1)2x2+5x﹣1=0,∵a=2,b=5,c=﹣1,∴Δ=52﹣4×2×(﹣1)=33>0,∴x==,所以x1=,x2=;(2)6x(x+1)=5x﹣1,整理得6x2+x+1=0,∵a=6,b=1,c=1,∴Δ=12﹣4×6×1=﹣23<0,方程没有实数解.45.(2022秋•潮安区期中)解方程:2x2﹣7x+3=0(公式法).【解答】解:2x2﹣7x+3=0,这里a=2,b=﹣7,c=3,∵Δ=(﹣7)2﹣4×2×3=25>0,∴x==,∴x1=3,x2=.46.(2021秋•新兴县期中)用公式法解方程:5x2=7﹣2x.【答案】x1=1,x2=﹣.【解答】解:5x2+2x﹣7=0,∵a=5,b=2,c=﹣7,∴Δ=b2﹣4ac=22﹣4×5×(﹣7)=144>0,∴x===,∴x1=1,x2=﹣.47.用公式法解下列方程:x2+4x+8=2x+10【答案】,;【解答】解:(1)x2+4x+8=2x+10,整理,得x2+2x﹣2=0,∵a=1,b=2,c=﹣2,∴,∴,;48.(2022秋•成县期中)公式法解方程:2x2﹣x﹣3=0.【答案】x1=,x2=﹣.【解答】解:∵Δ=(﹣)2+24=3+24=27>0,∴x=,∴x1=,x2==﹣.49.(2022秋•城西区校级期中)x2﹣7x﹣18=0(公式法).【答案】x1=9,x2=﹣2.【解答】解:x2﹣7x﹣18=0,∵a=1,b=﹣7,c=﹣18,Δ=b2﹣4ac=(﹣7)2﹣4×1×(﹣18)=121>0,∴x=,=,∴x1=9,x2=﹣2.50.(2022秋•前郭县期中)用公式法解方程:x2﹣x﹣7=0.【答案】x1=,x2=.【解答】解:这里a=1,b=﹣1,c=﹣7,∵Δ=(﹣1)2﹣4×1×(﹣7)=1+28=29>0,∴x=,解得:x1=,x2=.【题型4 解一元二次方程-因式分解法】51.(2023•临安区一模)方程(x﹣2)2=2x(x﹣2)的解是( )A.x1=2,x2=1B.x1=2,x2=﹣2C.x1=2,x2=0D.x1=2,x2=﹣1【答案】B【解答】解:(x﹣2)2﹣2x(x﹣2)=0,(x﹣2)(x﹣2﹣2x)=0,x﹣2=0或x﹣2﹣2x=0,所以x1=2,x2=﹣2.故选:B.52.(2022秋•文山市期末)方程(x+1)(x﹣3)=0的解是( )A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣3【答案】C【解答】解:∵(x+1)(x﹣3)=0,∴x+1=0或x﹣3=0,解得:x=﹣1或x=3,故选:C.53.(2023•泸县一模)方程x2=3x的解为( )A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3【答案】D【解答】解:∵x2﹣3x=0,∴x(x﹣3)=0,则x=0或x﹣3=0,解得:x=0或x=3,故选:D.54.(2023•武清区校级模拟)解一元二次方程x2﹣2x﹣15=0,结果正确的是( )A.x1=﹣5,x2=3B.x1=5,x2=3C.x1=﹣5,x2=﹣3D.x1=5,x2=﹣3【答案】D【解答】解:x2﹣2x﹣15=0,分解因式得:(x﹣5)(x+3)=0x﹣5=0,x+3=0,解得:x1=5,x2=﹣3,故选:D.55.(2023春•靖西市期中)解方程2(4x﹣3)2=3(4x﹣3)最适当的方法是( )A.直接开方法B.配方法C.公式法D.分解因式法【答案】D【解答】解:(此题用分解因式法最适当)移项得,2(4x﹣3)2﹣3(4x﹣3)=0,∴(4x﹣3)[2(4x﹣3)﹣3]=0,∴4x﹣3=0或[2(4x﹣3)﹣3]=0,∴x1=,x2=.故选:D.56.(2023春•萧山区期中)解下列方程:(1)x2﹣6x+1=0;(2)(2x﹣3)2=5(2x﹣3).【答案】(1)x1=3+2,x2=3﹣2;(2)x1=,x2=4.【解答】解:(1)x2﹣6x+1=0,x2﹣6x=﹣1,x2﹣6x+9=8,即(x﹣3)2=8,∴x﹣3=2或x﹣3=﹣2,∴x1=3+2,x2=3﹣2;(2)(2x﹣3)2=5(2x﹣3),(2x﹣3)2﹣5(2x﹣3)=0,(2x﹣3)(2x﹣3﹣5)=0,∴2x﹣3=0或2x﹣8=0,∴x1=,x2=4.57.用因式分解法解下列方程.(1)x2﹣x﹣56=0.(2)3x(x﹣2)=2(x﹣2).【解答】解:(1)x2﹣x﹣56=0,∴(x﹣8)(x+7)=0,∴x﹣8=0或x+7=0,∴x1=8;x2=﹣7;(2)3x(x﹣2)=2(x﹣2),移项,得3x(x﹣2)﹣2(x﹣2)=0,∴(x﹣2)(3x﹣2)=0,∴x﹣2=0或3x﹣2=0,∴x1=2;x2=.58.(2023春•海曙区期中)解下列方程:(1)x2﹣6x﹣7=0;(2)(x﹣3)2=2(x﹣3).【答案】(1)x1=7,x2=﹣1;(2)x1=3,x2=5.【解答】解:(1)∵x2﹣6x﹣7=0,∴(x﹣7)(x+1)=0,则x﹣7=0或x+1=0,解得x1=7,x2=﹣1;(2)∵(x﹣3)2=2(x﹣3),∴(x﹣3)2﹣2(x﹣3)=0,则(x﹣3)(x﹣5)=0,∴x﹣3=0或x﹣5=0,解得x1=3,x2=5.59.(2023•九龙坡区校级自主招生)解方程.(1)3x(x+1)=2(x+1);(2)2x2﹣3x﹣5=0.【答案】(1)x1=﹣1,x2=;(2)x1=﹣1,x2=.【解答】解:(1)∵3x(x+1)=2(x+1),∴3x(x+1)﹣2(x+1)=0,则(x+1)(3x﹣2)=0,∴x+1=0或3x﹣2=0,解得x1=﹣1,x2=;(2)∵2x2﹣3x﹣5=0,∴(x+1)(2x﹣5)=0,∴x+1=0或2x﹣5=0,解得x1=﹣1,x2=.60.(2023春•海曙区期中)解下列方程:(1)x2﹣6x﹣7=0;(2)(x﹣3)2=2(x﹣3).【答案】(1)x1=7,x2=﹣1;(2)x1=3,x2=5.【解答】解:(1)∵x2﹣6x﹣7=0,∴(x﹣7)(x+1)=0,则x﹣7=0或x+1=0,解得x1=7,x2=﹣1;(2)∵(x﹣3)2=2(x﹣3),∴(x﹣3)2﹣2(x﹣3)=0,则(x﹣3)(x﹣5)=0,∴x﹣3=0或x﹣5=0,解得x1=3,x2=5.61.(2022秋•江都区期末)解方程:(1)x2﹣4x﹣4=0;(2)x(x+4)=﹣3(x+4).【答案】(1),;(2)x1=﹣3,x2=﹣4.【解答】解:(1)由原方程得:x2﹣4x=4,得x2﹣4x+4=4+4,得(x﹣2)2=8,得,解得,,所以,原方程的解为,;(2)由原方程得:x(x+4)+3(x+4)=0,得(x+4)(x+3)=0,解得x1=﹣3,x2=﹣4,所以,原方程的解为x1=﹣3,x2=﹣4.62.(2022秋•盘龙区期末)解方程:(1)x2﹣4x﹣3=0;(2)3x(x﹣2)﹣(x﹣2)=0.【答案】(1)x1=2+,x2=2﹣;(2)x1=2,x2=.【解答】解:(1)x2﹣4x﹣3=0,x2﹣4x=3,x2﹣4x+4=7,(x﹣2)2=7,x﹣2=±,所以x1=2+,x2=2﹣;(2)3x(x﹣2)﹣(x﹣2)=0,(x﹣2)(3x﹣1)=0,x﹣2=0或3x﹣1=0,所以x1=2,x2=.63.(2022秋•兴平市期末)解方程:(x﹣4)2=2(x﹣4).【答案】x1=4,x2=6.【解答】解:(x﹣4)2=2(x﹣4),(x﹣4)2﹣2(x﹣4)=0,(x﹣4)(x﹣4﹣2)=0,(x﹣4)(x﹣6)=0,∴x﹣4=0或x﹣6=0,∴x1=4,x2=6.。

(完整版)初中数学用因式分解法解一元二次方程及答案

(完整版)初中数学用因式分解法解一元二次方程及答案

初中数学用因式分解法解一元二次方程一.选择题(共7小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是()A .(x+1 )(x+2) =0 B. (x+1 )(x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=02.(2012春?萧山区校级期中)解一元二次方程2x2+5x=0的最佳解法是()A.因式分解法B.开平方法C.配方法D.公式法3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是()A.直接开平方法B.因式分解法C.配方法D.公式法4.(2015?东西湖区校级模拟)一元二次方A. 0B. 25.(2014?平顶山二模)一元二次方程一A . 3 B. - 36.(2011春?招远市期中)一元二次方程A. c4B. cv0 W x2 - 2x=0 的解是()C. 0, - 2D. 0, 2x2=3x的解是()C. 3, 0 D, - 3, 0x2+c=0实数解的条件是()C. c> 0D. c用7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A . - 1 B. 1 C. 0 D. 土二.填空题(共3小题)8.(2012秋?开县校级月考)一元二次方程3x2 -4x-2=0的解是.9.(2012?铜仁地区)一元二次方程x2-2x-3=0的解是.10.(2014秋?禹州市期中)一元二次方程(4-2x) 2—36=0的解是三.解答题(共10小题)11.(2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1)2x2- 4x+1=0 (配方法);(2)3x (x-1) =2-2x (因式分解法);(3)x2-x-3=0 (公式法).12.用因式分解法解下列关于x的一元二次方程.11) x2+x - k2x=0(2) x2-2mx+m 2-n2=0 .13. (2008?温州)(1)计算:曲-(b-1)(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1) 2=3;③ x2— 3x=0;④ x2-2x=4.14.用因式分解法解下列一元二次方程:(1)5x2=\/2x(2) 4 (2x+3) - ( 2x+3) 2=0(3)(x-2) 2= (2x+3) 2(4)一(x+1 ) 2=A (x- 1) 2.4 g15.因式分解法解方程:3x2-12x=-12.16.用因式分解法解方程:x2-9x+18=0 .17.用因式分解法解方程:12x2+x-6=0.18. (2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5)2=2 (5-x)19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3)2=5 (x+3)(3t-1 ) 2t C21-3) 20.因式分解法解一元二次方程. +1 —初中数学用因式分解法解一元二次方程参考答案与试题解析一.选择题(共7 小题)1.(2013秋?广州校级期中)用因式分解法解一元二次方程x (x- 1) -2 (1-x) =0,正确的步骤是( )A. (x+1 ) (x+2) =0B. (x+1 ) (x-2) =0C. (x-1)(x- 2)=0D. (x-1)(x+2)=0考点:解一元二次方程-因式分解法.专题:计算题.分析:将方程左边第二项提取-1变形后,提取公因式化为积的形式,即可得到结果.解答:解:方程x (x — 1) — 2 (1 — x) =0,变形得:x (x-1) +2 (x- 1) =0,分解因式得:(x- 1) (x+2) =0, 故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握此解法是解本题的关键.2.( 2012 春?萧山区校级期中)解一元二次方程2x2+5x=0 的最佳解法是( )A.因式分解法B.开平方法C.配方法D.公式法考点:解一元二次方程-因式分解法.专题:计算题.分析:方程左边缺少常数项,右边为0,左边可以提公因式x,运用因式分解法解方程.解答:解:方程2x2+5x=0左边可提公因式x,分解为两个一次因式的积,而右边为0,运用因式分解法.故选A.点评:本题考查了解一元二次方程的解法的运用.解方程时,要根据方程左右两边的特点,合理地选择解法,可使运算简便.3,解一元二次方程(y+2) 2-2 (y+2) - 3=0时,最简单的方法是( )A.直接开平方法B.因式分解法C.配方法D.公式法考点:解一元二次方程-因式分解法.分析:此题考查了数学思想中白^整体思想,把( y+2)看做一个整体,设(y+2)为x,则原方程可变为x2-2x-3=0 ,可以发现采用因式分解法最简单.解答:解:设( y+2) =x原方程可变为x2 - 2x - 3=0,(x - 3) (x+1 ) =0 采用因式分解法最简单.故选B点评:此题考查了数学思想中的整体思想,也就是换元思想,解题的关键是要充分理解一元二次方程各种解法的应用条件.4.(2015?东西湖区校级模拟)一元二次方程x2-2x=0的解是()A . 0 B. 2 C. 0, - 2 D. 0, 2考点:解一元二次方程-因式分解法.分析:先提公因式x,然后根据两式相乘值为0,这两式中至少有一式值为0 .”进行求解. 解答:解:原方程化为:x(X-2) =0,解得x i=0, x2=2.故选D.点评:本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0 后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0 的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.5.(2014?平顶山二模)一元二次方程- x2=3x的解是()A. 3B. -3C. 3, 0 D, - 3, 0考点:解一元二次方程-因式分解法.专题:计算题.分析:方程移项后,右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0 转化为两个一元一次方程来求解.解答:解:方程变形得:x2+3x=0,即x (x+3) =0,解得:x=0或x= - 3,故选D点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.6.(2011 春?招远市期中)一元二次方程x2+c=0 实数解的条件是()A. c 码B. cv 0C. c> 0D. c 不考点:根的判别式.专题:计算题.分析:由一元二次方程有实数根,得到根的判别式大于等于0,列出关于c的不等式,求出不等式的解集即可得到 c 的范围.解答:解:: 一元二次方程x2+c=0有实数解,2△ =b - 4ac= - 4c刃,解得:c旬.故选A点评:此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的判别式小于0,方程没有实数根.7.(2011?北京模^若x= - 1是一元二次方程x2- ax=0的一个解,则a的值()A.TB. 1C. 0D. 土考点:一元二次方程的解.分析:由方程的解的定义,将 x=- 1代入方程,即可求得 a 的值解答:解:- 1是关于x 的方程:x 2-ax=0的一个解,,1+a=0,解得a= - 1,故选A.点评:本题主要考查了方程的解的定义,把求未知系数的问题转化为方程求解的问题. 二.填空题(共3小题)8. (2012秋?开县校级月考)一元二次方程考点:解一元二次方程-公式法.分析:利用公式法解此一元二次方程的知识,即可求得答案. 解答:解:--- a=3, b=—4, c= - 2,△ =b 2-4ac=(- 4) 2-4X3X ( -2) =40,.|4±y40j2±Vi0x=2a2X3 3故答案为:士屈. 3点评:此题考查了公式法解一元二次方程的知识.此题难度不大,注意熟记公式是关键.9. ( 2012?铜仁地区)一元二次方程 x2-2x - 3=0的解是 x 』=3. xg= - 1考点:解一元二次方程-因式分解法. 专题:计算题;压轴题.分析:根据方程的解x 1x 2=-3,x 1+x 2=2可将方程进行分解,得出两式相乘的形式,再根据 两 式相乘值为0,这两式中至少有一式值为 0”来解题.解答:解:原方程可化为:(x-3) (x+1) =0,x — 3=0 或 x+1=0 , x 1=3, x 2= — 1 .点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因 式分解法.10. (2014秋?禹州市期中)一元二次方程( 4-2x ) 2 — 36=0的解是 x j = — 1 : x 2=5 .考点:解一元二次方程-直接开平方法.分析:先移项,写成(x+a ) 2=b 的形式,然后利用数的开方解答. 解答:解:移项得,(4- 2x ) 2=36,开方得,4 - 2x= =6, 解得 x 1= - 1, x 2=5. 故答案为x 1= - 1, x 2=5.点评:本题考查了解一元二次方程-直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有: x 2=a (a 涮);ax 2=b (a, b 同号且a^0); (x+a ) 2=b (b 用);a (x+b ) 2=c (a, c 同号且a 加).法则:要把方程化为 左3x2 - 4x- 2=0 的解是 2 土 力°一3平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.三.解答题(共10小题)11. (2006秋?阜宁县校级月考)用指定的方法解下列一元二次方程:(1) 2x 2-4x+1=0 (配方法);(2) 3x (x-1) =2-2x (因式分解法);(3) x 2-x-3=0 (公式法).考点:解一元二次方程-配方法;解一元二次方程-公式法;解一元二次方程 -因式分解法. 专题:计算题.分析:(1)用配方法,用配方法解方程,首先二次项系数化为1,移项,把常数项移到等号的右边,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方 式,右边是常数,直接开方即可求解;(2)用因式分解法,用提公因式法解方程,方程左边可以提取公因式x-1,即可分解,转化为两个式子的积是0的形式,从而转化为两个一元一次方程求解;(3)利用公式法即可求解.解答:解:(1) 2x2 - 4x+1=0x2- 2x+—=0 2 (x T) 2=_!.…也■ - x1=1+——, x2=1 ---;2 2(2) 3x ( x T ) =2 - 2x 3x (x - 1) +2 (x- 1) =0 (x- 1) (3x+2) =0-2• - x 1=1 , x 2=—;J 本题考查了解一元二次方程的方法,因式分解法是解一元二次方程的一种简便方法, 要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任 何一元二次方程.12.用因式分解法解下列关于 x 的一元二次方程.(1) x 2+x - k 2x=0(2) x 2-2mx+m 2-n 2=0 .考点:解一元二次方程-因式分解法.专题:计算题.x=(3) x 2-x- 3=01 ±、氐 x 1 = 2----- ,x2= --- --2 2 点评:分析:两方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(1)分解因式得:x (x+1 - k2) =0,解得:X1=0, x2=k2_ 1;(2)分解因式得:(x-m+n)(x-m-n) =0,解得:x i=m-n, x2=m+n .点评:此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.13. (2008?温州)(1)计算:展-(例-1)口+|-1|;(2)我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.① x2—3x+1=0;②(x-1)2=3;③ x2— 3x=0 ;④ x2-2x=4.考点:实数的运算;解一元二次方程 -直接开平方法;解一元二次方程 -配方法;解一元二次方程-公式法;解一元二次方程-因式分解法.专题:计算题.分析:(1)本题涉及零指数哥还有绝对值,解答时要注意它们的性质.(2)①x2- 3x+1=0采用公式法;②(x-1) 2=3采用直接开平方法;③x2- 3x=0采用因式分解法;④x2- 2x=4采用配方法.解答:解:(1)场-[炳-1)(2)① x2- 3x+1=0 ,刎/日抖而Vs解得町二丁厂,¥.2二一^;②(xT) 2=3,x - 1=V^或x -1= - Vs解得x1 = 1 + \!, 3,x2=1 h/s③ x2-3x=0,x (x - 3) =0解得x1=0, x2=3;④ x2-2x=4,即x2 - 2x - 4=02- 2x=4x即x2- 2x+1=5(x T) 2=5解得x1=l-V^0二计听.点评:本题考查实数的综合运算能力,解决此类题目的关键熟记零指数哥和绝对值的运 算.解一元二次方程时要注意选择适宜的解题方法.14.用因式分解法解下列一元二次方程: (1) 5x 2=V2x(2) 4 (2x+3) - ( 2x+3) 2=0 (3) (x- 2) 2= (2x+3) 2(4)一(x+1 ) 2=1 (x- 1) 2.4 9考点:解一元二次方程-因式分解法. 分析:(1)移项后提公因式即可;(1) 移项后因式分解即可; (2) 移项后因式分解即可; (3) 直接开平方即可解答.解答:解:(1) 5x 2=/2x ,移项得 5x 2 - J^x=0 ,提公因式得x (5x-=0, 解得 x 1=0 x 2=Y2.5(4) 4 (2x+3) - ( 2x+3) 2=0,提公因式得,(2x+3) [4- (2x+3) ]=0, 解得,2x+3=0 , 1 - 2x=0 ,(5) (x — 2) 2= (2x+3) 2,移项得,(x-2) 2- ( 2x+3) 2=0,因式分解得,(x- 2 - 2x - 3) (x-2+2x+3) =0 , 则—x — 5=0, 3x+1=0 , 解得,x 1= - 5, x 2=- ';(6) — (x+1) 2」(x- 1) 2,4 9直接开平方得 J (x+1) =W(x-1), £ J解得x 1= - 5,点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方 法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.因式分解法解方程: 3x 2-12x=-12.则[(x+1) 2=4 (xT),(x+1)考点:解一元二次方程-因式分解法.分析:先移项,再两边都除以3,分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答:解:3x2- 12x= -12,移项得:3x2- 12x+12=0 ,2- 4x+4=0 ,x(x-2) (x-2) =0,x-2=0, x-2=0, x i=x2=2.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程,题目比较好,难度适中.16.用因式分解法解方程:x2-9x+18=0 .考点:解一元二次方程-因式分解法.分析:分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:x2 - 9x+18=0 ,(x - 3) (x - 6) =0,x — 3=0 , x — 6=0, x1=3, x2=6.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元- 次方程.17.用因式分解法解方程:12x2+x-6=0.考点:解一元二次方程-因式分解法.分析:分解因式,即得出两个一元一次方程,求出方程的解即可.解答:解:分解因式得:(3x-2) (4x+3) =0,3x - 2=0, 4x+3=0 ,点评:本题考查了解一元二次方程的应用, 解此题的关键是能把一元二次方程转化成一元次方程.18.(2013秋?黄陂区校级月考)用因式分解法解方程: 3 (x-5) 2=2 (5-x)考点:解一元二次方程-因式分解法.专题:因式分解.分析:先移项,然后提公因式,这样转化为两个一元一次方程,解一元一次方程即可.解答:解:移项,得3 (x-5) 2+2 (x-5) =0,(x-5) (3x-13) =0,•• x - 5=0 或3x - 13=0 ,所以x1=5, x2=-^y.第11页(共11页)点评:本题考查了利用因式分解法把一元二次方程转化为两个一元一次方程求解的能力.要熟练掌握因式分解的方法. 19. (2013秋?富顺县校级期中)用因式分解法解方程(x+3) 2=5 (x+3)考点:实数范围内分解因式.分析:利用因式分解法进行解方程得出即可.解答:解:(x+3) 2-5 (x+3) =0, (x+3) [ (x+3) — 5]=0,(x+3) =0 或(x+3) - 5=0,解得:x i = - 3, x 2=2.点评:此题主要考查了因式分解法解一元二次方程,正确分解因式是解题关键.考点:解一元二次方程-因式分解法.分析:首先移项,然后利用平方差公式使方程的左边进行因式分解,再进行去分母,最后解 两个一元一次方程即可."解:「『—况”、t (2L3) 5 52 .(t+3)2 (3fl ) 2 2?-3t-2 .. ------- = , 5 5 2(t+3- (t+3+3t-l) (2t+lJ (t-2)-4 (t-2) C2t11)(2t+D (t-2? - 8 (t-2) (2t+1) =5 (t —2) (2t+1), 13 (t —2) (2t+1) =0,. . t — 2=0 或 2t+1=0,t 1=2 , t 2=一点评:本题主要考查了因式分解法解一元二次方程的知识,解答本题的关键是熟练掌握平方差公式的应用,此题难度不大. 20.因式分解法解一元二次方程.32+1—(孕-1)二9” 5 52。

中考总复习精练精析10一元二次方程(2)含答案解析

中考总复习精练精析10一元二次方程(2)含答案解析

方程与不等式——一元二次方程2一.选择题(共8小题)1.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=62.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=153.用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.20 B.40 C.100 D.1204.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=285.已知关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.6.一元二次方程x2﹣1=0的根为()A.x=1 B.x=﹣1 C.x1=1,x2=﹣1 D.x1=0,x2=17.三角形的两边分别为3和5,第三边是方程x2﹣5x+6=0的解,则第三边的长为()A.2 B.3 C.2或3 D.无法确定8.方程x(x+1)=x+1的解是()A.1 B.0 C.﹣1或0 D.1或﹣1二.填空题(共8小题)9.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程_________.10.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得_________.11.某小区绿化面积为2000平方米,计划绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是_________.12.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为_________.13.一块矩形菜地的面积是120m2,如果它的长减少2m,那么菜地就变成正方形,则原菜地的长是_________ m.14.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于_________.15.已知关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,则a﹣b的值是_________.16.已知x=2是关于x的方程x2+4x﹣p=0的一个根,则p=_________,该方程的另一个根是_________.三.解答题(共8小题)17.解方程:x(x﹣2)=2x+1.18.解方程:x2﹣6=﹣2(x+1)19.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.20.已知a,b是方程x2﹣5x+=0的两根,(1)求a+b和ab的值.(2)求﹣的值.21.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?22.据媒体报道,我国公民出境旅游总人数约5 000万人次,公民出境旅游总人数约7 200万人次.若、公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果仍保持相同的年平均增长率,请你预测我国公民出境旅游总人数约多少万人次?23.贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?24.为建设美丽泉城,喜迎十艺节,某企业逐年增加对环境保护的经费投入,投入了400万元,预计到将投入576万元.(1)求至该单位环保经费投入的年平均增长率;(2)该单位预计投入环保经费不低于680万元,若继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.方程与不等式——一元二次方程2参考答案与试题解析一.选择题(共8小题)1.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=6考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:一边长为x米,则另外一边长为:5﹣x,根据它的面积为6平方米,即可列出方程式.解答:解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故选:B.点评:本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.2.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15C.(x+4)(3﹣0.5x)=15 D.(x+1)(4﹣0.5x)=15考点:由实际问题抽象出一元二次方程.专题:销售问题.分析:根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=15即可.解答:解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=15,故选:A.点评:此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.3.用一条长为40cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.20 B.40 C.100 D.120考点:一元二次方程的应用.专题:判别式法.分析:设围成面积为acm2的长方形的长为xcm,由长方形的周长公式得出宽为(40÷2﹣x)cm,根据长方形的面积公式列出方程x(40÷2﹣x)=a,整理得x2﹣20x+a=0,由△=400﹣4a≥0,求出a≤100,即可求解.解答:解:设围成面积为acm2的长方形的长为xcm,则宽为(40÷2﹣x)cm,依题意,得x(40÷2﹣x)=a,整理,得x2﹣20x+a=0,∵△=400﹣4a≥0,解得a≤100,故选:D.点评:本题考查了一元二次方程的应用及根的判别式,找到等量关系并列出方程是解题的关键.4.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28 B.x(x﹣1)=28 C.x(x+1)=28 D.x(x﹣1)=28考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选:B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.5.已知关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A. 1 B.﹣1 C.1或﹣1 D.考点:一元二次方程的解.专题:计算题.分析:由一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,将x=0代入方程得到关于a的方程,求出方程的解得到a的值,将a的值代入方程进行检验,即可得到满足题意a的值.解答:解:∵一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,∴将x=0代入方程得:a2﹣1=0,解得:a=1或a=﹣1,将a=1代入方程得二次项系数为0,不合题意,舍去,则a的值为﹣1.故选:B.点评:此题考查了一元二次方程的解,以及一元二次方程的解法,方程的解即为能使方程左右两边相等的未知数的值.6.一元二次方程x2﹣1=0的根为()A.x=1 B.x=﹣1 C.x1=1,x2=﹣1 D.x1=0,x2=1考点:解一元二次方程-直接开平方法.专题:压轴题.分析:首先把﹣1移到方程的右边,再两边直接开平方即可.解答:解:x2﹣1=0,移项得:x2=1,两边直接开平方得:x=±1,故选:C.点评:此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.7.三角形的两边分别为3和5,第三边是方程x2﹣5x+6=0的解,则第三边的长为()A. 2 B.3 C.2或3 D.无法确定考点:解一元二次方程-因式分解法;三角形三边关系.专题:计算题.分析:求出方程的解得到x的值,即可确定出第三边长.解答:解:方程x2﹣5x+6=0,变形得:(x﹣2)(x﹣3)=0,解得:x=2或x=3,当x=2时,三角形三边分别为2,3,5,不成立,舍去,则第三边为3.故选B点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.8.方程x(x+1)=x+1的解是()A. 1 B.0 C.﹣1或0 D.1或﹣1考点:解一元二次方程-因式分解法.专题:计算题.分析:方程变形后,利用因式分解法求出解即可.解答:解:方程移项得:x(x+1)﹣(x+1)=0,分解因式得:(x﹣1)(x+1)=0,解得:x=1或x=﹣1,故选D.点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.二.填空题(共8小题)9.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程(30﹣2x)(20﹣x)=6×78.考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:设道路的宽为xm,将6块草地平移为一个长方形,长为(30﹣2x)m,宽为(20﹣x)m.根据长方形面积公式即可列方程(30﹣2x)(20﹣x)=6×78.解答:解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,故答案为:(30﹣2x)(20﹣x)=6×78.点评:此题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键.10.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0.考点:由实际问题抽象出一元二次方程.专题:方程思想.分析:本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.解答:解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.点评:本题考查了由实际问题抽象出一元二次方程的知识,对于面积问题应熟记各种图形的面积公式.另外,要学会通过图形求出面积.11.某小区绿化面积为2000平方米,计划绿化面积要达到2880平方米.如果每年绿化面积的增长率相同,那么这个增长率是20%.考点:一元二次方程的应用.专题:增长率问题.分析:本题需先设出这个增长率是x,再根据已知条件找出等量关系列出方程,求出x的值,即可得出答案.解答:解:设这个增长率是x,根据题意得:2000×(1+x)2=2880解得:x1=20%,x2=﹣220%(舍去)故答案为:20%.点评:本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键.12.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为20%.考点:一元二次方程的应用.专题:增长率问题.分析:解答此题利用的数量关系是:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.解答:解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为:20%点评:本题考查了一元二次方程的应用,此题列方程得依据是:商品原来价格×(1﹣每次降价的百分率)2=现在价格.13.一块矩形菜地的面积是120m2,如果它的长减少2m,那么菜地就变成正方形,则原菜地的长是12m.考点:一元二次方程的应用.专题:几何图形问题.分析:根据“如果它的长减少2m,那么菜地就变成正方形”可以得到长方形的长比宽多2米,利用矩形的面积公式列出方程即可.解答:解:∵长减少2m,菜地就变成正方形,∴设原菜地的长为x米,则宽为(x﹣2)米,根据题意得:x(x﹣2)=120,解得:x=12或x=﹣10(舍去),故答案为:12.点评:本题考查了一元二次方程的应用,解题的关键是弄清题意,并找到等量关系.14.已知实数m,n满足m﹣n2=1,则代数式m2+2n2+4m﹣1的最小值等于4.考点:配方法的应用;非负数的性质:偶次方.专题:压轴题;整体思想.分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.解答:解:∵m﹣n2=1,即n2=m﹣1≥0,m≥1,∴原式=m2+2m﹣2+4m﹣1=m2+6m+9﹣12=(m+3)2﹣12,则代数式m2+2n2+4m﹣1的最小值等于(1+3)2﹣12=4.故答案为:4.点评:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.15.已知关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,则a﹣b的值是1.考点:一元二次方程的解.分析:将x=﹣1代入已知一元二次方程,通过移项即可求得(a﹣b)的值.解答:解:∵关于x的一元二次方程ax2+x﹣b=0的一根为﹣1,∴x=﹣1满足该方程,∴a﹣1﹣b=0,解得,1.故答案是:1.点评:本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.16.已知x=2是关于x的方程x2+4x﹣p=0的一个根,则p=12,该方程的另一个根是x=﹣6..考点:一元二次方程的解;根与系数的关系.分析:根据一元二次方程的步骤把x=2代入原方程求得p值,然后利用因式分解法解方程即可求得方程的另一根.解答:解:∵x=2是关于x的方程x2+4x﹣p=0的一个根,∴22+4×2﹣p=0,解得p=12;∵x2+4x﹣p=0,∴x2+4x﹣12=0,(x+6)(x﹣2)=0,∴x+6=0或x﹣2=0,解得,x=﹣6或x=2,∴方程的另一个根是x=﹣6;故答案是:12,x=﹣6.点评:本题考查了一元二次方程的解,解题的关键是求出p的值,再利用因式分解法求另一根.三.解答题(共8小题)17.解方程:x(x﹣2)=2x+1.考点:解一元二次方程-配方法.分析:先去括号,再化为一般形式,移项,配方,用直接开平方法解即可.解答:解:x(x﹣2)=2x+1,x2﹣2x=2x+1,x2﹣4x+4=5,(x﹣2)2=5.∴x﹣2=,即x1=2+,x2=2﹣.点评:本题考查了用配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.解方程:x2﹣6=﹣2(x+1)考点:解一元二次方程-配方法.专题:计算题.分析:方程变形后,配方为完全平方式,开方即可求出解.解答:解:方程整理得:x2+2x=4,配方得:x2+2x+1=5,即(x+1)2=5,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.点评:此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.19.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC边的长.考点:一元二次方程的应用.专题:几何图形问题.分析:可设矩形草坪BC边的长为x米,则AB的长是,根据长方形的面积公式列出一元二次方程求解.解答:解:设BC边的长为x米,则AB=CD=米,根据题意得:×x=120,解得:x1=12,x2=20,∵20>16,∴x2=20不合题意,舍去,答:矩形草坪BC边的长为12米.点评:本题考查了一元二次方程的应用,注意得出结果后要判断所求的解是否符合题意,舍去不合题意的解.注意本题表示出矩形草坪的长和宽是解题的关键.20.已知a,b是方程x2﹣5x+=0的两根,(1)求a+b和ab的值.(2)求﹣的值.考点:根与系数的关系;分式的化简求值.分析:(1)直接根据根与系数的关系得出答案即可;(2)把原式整理化简,再代入(1)中的数值得出答案即可.解答:解:(1)∵a,b是方程x2﹣5x+=0的两根,∴a+b=5,ab=;(2)原式=====.点评:本题考查的是一元二次方程根与系数的关系和分式的化简求值,注意先化简,再求值.21.某服装厂生产一批西服,原来每件的成本价是500元,销售价为625元,经市场预测,该产品销售价第一个月将降低20%,第二个月比第一个月提高6%,为了使两个月后的销售利润达到原来水平,该产品的成本价平均每月应降低百分之几?考点:一元二次方程的应用.专题:销售问题.分析:设该产品的成本价平均每月降低率为x,那么两个月后的销售价格为625(1﹣20%)(1+6%),两个月后的成本价为500(1﹣x)2,然后根据已知条件即可列出方程,解方程即可求出结果.解答:解:设该产品的成本价平均每月降低率为x,依题意得625(1﹣20%)(1+6%)﹣500(1﹣x)2=625﹣500,整理得500(1﹣x)2=405,(1﹣x)2=0.81,∴1﹣x=±0.9,∴x=1±0.9,x1=1.9(舍去),x2=0.1=10%.答:该产品的成本价平均每月应降低10%.点评:题目中该产品的成本价在不断变化,销售价也在不断变化,要求变化后的销售利润不变,即利润仍要达到125元,关键在于计算和表达变动后的销售价和成本价.22.据媒体报道,我国公民出境旅游总人数约5 000万人次,公民出境旅游总人数约7 200万人次.若、公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果仍保持相同的年平均增长率,请你预测我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设年平均增长率为x.根据题意公民出境旅游总人数为 5000(1+x)万人次,公民出境旅游总人数 5000(1+x)2 万人次.根据题意得方程求解;(2)我国公民出境旅游总人数约7200(1+x)万人次.解答:解:(1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得:5000(1+x)2 =7200,解得 x1 =0.2=20%,x2 =﹣2.2 (不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.(2)如果仍保持相同的年平均增长率,则我国公民出境旅游总人数为 7200(1+x)=7200×(1+20%)=8640(万人次).答:预测我国公民出境旅游总人数约8640万人次.点评:此题考查一元二次方程的应用,根据题意寻找相等关系列方程是关键,难度不大.23.贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?考点:一元二次方程的应用.专题:增长率问题.分析:(1)设求平均每次下调的百分率为x,由降低率问题的数量关系建立方程求出其解即可;(2)分别求出两种优惠方法的费用,比较大小就可以得出结论.解答:(1)解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去)答:平均每次下调的百分率为10%;(2)由题意,得方案①优惠:4860×100×(1﹣0.98)=9720元,方案②优惠:80×100=8000元.∵9720>8000∴方案①更优惠.点评:本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,降低率问题的数量关系的运用,解答时列一元二次方程解实际问题是难点.24.为建设美丽泉城,喜迎十艺节,某企业逐年增加对环境保护的经费投入,投入了400万元,预计到将投入576万元.(1)求至该单位环保经费投入的年平均增长率;(2)该单位预计投入环保经费不低于680万元,若继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.考点:一元二次方程的应用.专题:增长率问题.分析:(1)等量关系为:环保经费的投入×(1+增长率)2=环保经费的投入,把相关数值代入求解即可;(2)该区环保经费=教育经费的投入×(1+增长率).解答:解:(1)设至该单位投入环保经费的年平均增长率为x,根据题意,得400(1+x)2=576,解得x1=0.2,x2=﹣2.2(不合题意,舍去).答:至该单位投入环保经费的年平均增长率为20%.(2)∵576(1+20%)=691.2>680∴该目标能实现.点评:考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元二次方程(因式分解法)习题精选(二)直接开平方法1.如果(x-2)2=9,则x=.2.方程(2y-1)2-4=0的根是.3.方程(x+m)2=72有解的条件是.4.方程3(4x-1)2=48的解是.配方法5.化下列各式为(x+m)2+n的形式.(1)x2-2x-3=0 .(2)210x=.6.下列各式是完全平方式的是()A.x2+7n=7B.n2-4n-4C.211216 x x++D.y2-2y+27.用配方法解方程时,下面配方错误的是()A.x2+2x-99=0化为(x+1)2=0B.t2-7t-4=0化为2765 ()24 t-=C.x2+8x+9=0化为(x+4)2=25D.3x2-4x-2=0化为2210 ()39 x-=8.配方法解方程.(1)x2+4x=-3 (2)2x2+x=0因式分解法9.方程(x+1)2=x+1的正确解法是()A.化为x+1=0B.x+1=1C.化为(x+1)(x+l-1)=0D.化为x2+3x+2=010.方程9(x+1)2-4(x-1)2=0正确解法是()A .直接开方得3(x +1)=2(x -1)B .化为一般形式13x 2+5=0C .分解因式得[3(x +1)+2(x -1)][3(x +1)-2(x —1)]=0D .直接得x +1=0或x -l =011.(1)方程x (x +2)=2(z +2)的根是 .(2)方程x 2-2x -3=0的根是 .12.如果a 2-5ab -14b 2=0,则235a bb += .公式法13.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是 ,其中b 2—4ac .14.方程(2x +1)(x +2)=6化为一般形式是 ,b 2—4ac ,用求根公式求得x 1= ,x 2= ,x 1+x 2= ,12x x = ,15.用公式法解下列方程.(1)(x +1)(x +3)=6x +4.(2)21)0x x ++=.(3) x 2-(2m +1)x +m =0.16.已知x 2-7xy +12y 2=0(y≠0)求x :y 的值.综合题17.三角形两边的长是3,8,第三边是方程x 2—17x +66=0的根,求此三角形的周长.18.关于x 的二次三项式:x 2+2rnx +4-m 2是一个完全平方式,求m 的值.19.利用配方求2x 2-x +2的最小值.20.x 2+ax +6分解因式的结果是(x -1)(x +2),则方程x 2+ax +b =0的二根分别是什么?21.a 是方程x 2-3x +1=0的根,试求的值.22.m 是非负整数,方程m 2x 2-(3m 2—8m )x+2m 2-13m+15=0至少有一个整数根,求m的值.23.利用配方法证明代数式-10x 2+7x -4的值恒小于0.由上述结论,你能否写出三个二次三项式,其值恒大于0,且二次项系数分别是l 、2、3.24.解方程(1)(x 2+x )·(x 2+x -2)=24;(2)260x x --= 25.方程x 2-6x -k =1与x 2-kx -7=0有相同的根,求k 值及相同的根.26.张先生将进价为40元的商品以50元出售时,能卖500个,若每涨价1元,就少卖10个,为了赚8 000元利润,售价应为多少?这时,应进货多少?27.两个不同的一元二次方程x 2+ax +b =0与x 2+ax +a =0只有一个公共根,则( )A .a =bB .a -b =lC .a +b =-1D .非上述答案28.在一个50米长30米宽的矩形荒地上设计改造为花园,使花园面积恰为原荒地面积的寺,试给出你的设计.29.海洲市出租车收费标准如下(规定:四舍五入,精确到元,N≤15)N 是走步价,李先生乘坐出租车打出的电子收费单是:里程11公里,应收29.1元,你能依据以上信息,推算出起步价N 的值吗?30.(2004·浙江)方程(x -1)(x +2)(x -3)=0的根是 .31.(2004·河南)一元二次方程x 2—2x =0的解是( )A .0B .2C .0,-2D .0,232.(2004·南京)方程x 2+kx —6=0的一根是2,试求另一个根及k 的值.33.(2003·甘肃)方程(2)310m m x mx +++=是一元二次方程,则这方程的根是什么?34.(2003·深圳)x 1、x 2是方程2x 2—3x —6=0的二根,求过A (x 1+x 2,0)B (0,x l ·x 2)两点的直线解析式.35.a 、b 、c 都是实数,满足2(2)80a c c -++=,ax 2+bx +c =0,求代数式x 2+2x +1的值.36.a 、b 、c 满足方程组求方程2848a b ab c +=⎧⎪⎨=+-⎪⎩的解。

37.三个8相加得24,你能用另外三个相同的数字也得同样结果吗?能用8个相同的数字得到1 000吗?能用3个相同的数字得到30吗?参考答案:1.x 1=5,x 2=—l2.1231,22y y ==- 3.n ≥0 4.1253,44x x ==- 5.(1)(x —1)2—4(2)2122x ⎛++ ⎝⎭ 6.C 7.C8.(1)方程化为(x +2)2=l ,∴x 1=—l ,x 2=—3. (2)方程化为2102x x +=配方得211416x ⎛⎫+= ⎪⎝⎭.∴1210,2x x ==- 9.C 10.C11.(1)x 1=2,x 2=—2.(2)x 1=3,x 2=—1.12.∵a 2—5ab —14b 2=0,∴(a —7b )(a +2b )=0,∴ a =76或a =—26. ∴23172315555a b a b bb ++==-或 13.02b x a -±=≥14.2x 2+5x —4=0,57,1x =,2x =,1252x x +=-,x 1x 2=—2. 15.(1)1211x x ==.(2)1213x x ==-(3)1x =,2x =16.∵x 2—7xy +12y 2=0,∴(x —3y )(x —4y )=0,∴ x =3y 或x =4y ,∴x :y =3或x :y =4.,17.由x 2—17x+66=0得x 1=11,x 2=6.但x =11不合题意,故取x =6.∴三角形周长是17.18.∵x 2+2mx +4—m 2是完全平方式,∴4m 2—4(4—m 2)=0.解之,m m ==19.222111522222248x x x x x ⎛⎫⎛⎫-+=-+=-+ ⎪ ⎪⎝⎭⎝⎭, ∴2x 2—x +2的最小值是158。

20.x 1=l ,x 2=—221.由题意得a 2—3a +l =0,∴a 2—3a =—l ,a 2+l =30. ∴原式=2222(3)5161(3)311333a a a a a a a a a a a a a -+-+-+--+===-.22.原方程可变为[mx —(2m —3)][mx — (m —5)]=0,∴12352,1x x m m =-=-若x 1为整数,则3m 为整数,∴m =l 或m =3.若x 2为整数,则5m为整数.∴m =l 或m =5.因而m 的值是l 或3或5.23. 2271111074102040x x x ⎛⎫-+-=--- ⎪⎝⎭. ∴271110,02040x ⎛⎫--≤-< ⎪⎝⎭. ∴271111002040x ⎛⎫---< ⎪⎝⎭∴原式<0.举例略.24.(1)(x + x )( x 2+ x —2)=24,整理得 (x 2+ x )2—2(x 2 + x )—24=0,∴(x 2+ x —6)( x 2+ x +4).∴x 2+ x —6=0.x 2+ x +4=0由x 2+ x —6=0得x 1=—3,x 2=2.方程x 2+ x +4=0无解. ∴原方程的根是x =—3或x =2.(2)260x x --=,即60x x --=,解得x =3或x =2(舍去),x 1=3,x 2=—3.∴原方程的根是x =3或x =—3.25.(1)设方程只有一个根相同,设相同的根是m .∴有m —6m —k —1=0,①m 2—mk —7=0,②①—②得(k —6) m =k —6,k≠6时,∴m =1将,m =l 代人①得k =—6.(2)设方程有两个相同的根,则有—k =—6且—k —l =—7.∴k =6.∴k =—6时,方程有一个相同的根是x =1;k =6时,方程有两个相同的根是x 1=7,x 2=—1.26.设涨价x 元,则售价定为(50+x )元.依题意列方程得(500—10x )[(50+x )—40]=8 000.解之,x 1=30,x 2=10.x =30时,50+x =80,售量为500—300=200.x =10时50+x =60,售量为500—100=400.因而,售价定为80元时,进货200个,售价定为60元时,进货400个.27.D28.可给出如图所示的设计,求出x 即可.由题意,可列出方程5030(503)(302)2x x ⨯--=.化简得3x 2—95x +375=0,解之x 1=4.62,x 2=27.04.经检验x =27.04不合题意,舍去,故取x =4.62.28题图29.由题意,可列出方程2225(63)(116)29.1N N N +-+-=.解之,N 2—29.1N+191=0.∴N 1=10,N 2=19.1(不合题意舍去)∴起步价是10元.30.x 1=l ,x 2=—2,x 3=331.D32.k =l ,另根—3.33.先确定m =2,∴方程是4x 2+6x +l=0.123344x x -+--==34.通过解方程可知A (32,0),B (0,—3),∴过AB 的直线是y =2x —3.35.由题意得2—a =0,a 2+b +c =0,c +8=0,∴a =2,b =4,c =—8.∴x 满足2x 2+4x —8=0,即x 2+2x —4=0. ∴x 2+2x +l =4+1=5.36.a 、b 是方程=0的根.∴222(8)4(48)4(0c c =---+=--≥.∴c = ∴8,16.a b a b +=⎧⎨=⎩∴a =b =4.∴原方程为2440x +-=.方程的根是。

相关文档
最新文档