离散数学习题集十五套 答案

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 在集合论中,下列哪个选项表示两个集合A和B的并集?A. A ∩ BB. A ∪ BC. A - BD. A × B答案:B2. 命题逻辑中,下列哪个符号表示逻辑非?A. ∧B. ∨C. ¬D. →答案:C3. 在有向图中,如果存在一条从顶点u到顶点v的路径,那么称顶点v为顶点u的:A. 祖先B. 后代C. 邻居D. 连接点答案:B二、填空题1. 一个命题函数P(x)表示为“x是偶数”,那么其否定形式为________。

答案:x是奇数2. 在关系R上,如果对于所有的a和b,如果(a, b)∈R且(b, a)∈R,则称R为________。

答案:自反的三、简答题1. 简述什么是等价关系,并给出其三个基本性质。

答案:等价关系是一种特殊的二元关系,它满足自反性、对称性和传递性。

自反性指每个元素都与自身相关;对称性指如果a与b相关,则b也与a相关;传递性指如果a与b相关,b与c相关,则a与c也相关。

2. 解释什么是图的连通分量,并给出如何判断一个图是否是连通图。

答案:连通分量是指图中最大的连通子图,即图中任意两个顶点之间都存在路径。

判断一个图是否是连通图,可以通过深度优先搜索或广度优先搜索算法遍历整个图,如果所有顶点都被访问,则图是连通的。

四、计算题1. 给定命题公式P:((p → q) ∧ (r → ¬p)) → (q ∨ ¬r),证明P是一个重言式。

答案:通过使用命题逻辑的等价规则和真值表,可以证明P在所有可能的p, q, r的真值组合下都为真,因此P是一个重言式。

2. 给定一个有向图G,顶点集合V(G)={1, 2, 3, 4},边集合E(G)={(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}。

找出所有强连通分量。

答案:通过Kosaraju算法或Tarjan算法,可以找到图G的强连通分量,结果为{1, 4}和{2, 3}。

《离散数学》试题及答案

《离散数学》试题及答案

《离散数学》试题及答案一、选择题(每题5分,共25分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},则A∩B的结果是()A. {1,2,3,4,5}B. {2,4}C. {1,3,5}D. {1,2,3,4,5,6,8,10}答案:B2. 下列关系中,哪个是等价关系?()A. ≤B. ≠C. |D. ≠答案:A3. 设图G有5个顶点,每两个顶点之间都有一条边相连,则图G的边数是()A. 5B. 10C. 15D. 20答案:C4. 下列哪一个图是欧拉图?()A. 无向图B. 有向图C. 树D. 环答案:D5. 下列哪一个命题是正确的?()A. 若p→q为真,则p为真B. 若p∧q为假,则p为假C. 若p∨q为真,则q为真D. 若p→q为假,则p为假答案:B二、填空题(每题5分,共25分)1. 设集合A={a,b,c,d},B={c,d,e},则A-B=________。

答案:{a,b}2. 设p是命题“今天是晴天”,q是命题“我去公园玩”,则命题“如果今天不是晴天,那么我不去公园玩”可以表示为________。

答案:¬p→¬q3. 设图G有n个顶点,e条边,则图G的度数之和为________。

答案:2e4. 一个连通图至少有________个顶点。

答案:25. 设图G的邻接矩阵为A,则A的转置矩阵表示________。

答案:图G的转置图三、判断题(每题5分,共25分)1. 离散数学是研究离散结构的数学分支。

()答案:正确2. 两个集合的笛卡尔积是这两个集合的直积。

()答案:正确3. 有向图中,顶点u和顶点v之间的长度为2的路径是指路径上有3条边。

()答案:错误4. 树是一种无向图。

()答案:正确5. 哈夫曼编码是一种贪心算法。

()答案:正确四、应用题(每题25分,共50分)1. 设集合A={1,2,3,4,5},B={2,4,6,8,10},C={3,6,9,12,15},求A∪(B∩C)。

离散数学课后习题答案(最新)

离散数学课后习题答案(最新)

习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5)P:他今天乘火车去了北京Q:他随旅行团去了九寨沟PQ(7)P:不识庐山真面目Q:身在此山中Q→P,或~P→~Q(9)P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3))()()()()()(R P Q P R P Q P R Q P R Q P →∨→⇔∨⌝∨∨⌝⇔∨∨⌝⇔∨→(4)()()()(())()(()())(())()()()()P Q Q R R P P R Q R P P R R P Q R P P R P R Q R Q P ∧∨∧∨∧=∨∧∨∧=∨∨∧∧∨∧=∨∧∨∧∨∧∨=右2、不, 不, 能习题 1.41(3) (())~((~))(~)()~(~(~))(~~)(~)P R Q P P R Q P P R T P R P R Q Q P R Q P R Q →∧→=∨∧∨=∨∧=∨=∨∨∧=∨∨∧∨∨、主合取范式)()()()()()()()()()()()()()())(())(()()(())()())(()((Q P R P Q R P Q R R Q P R Q P R Q P Q P R Q P R P Q R P Q R R Q P R Q P R Q P R Q P Q Q P R P P Q R R R Q Q P P R Q R P P Q R P P Q R P ∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∧∧∨⌝∧∧∨∧⌝∧∨⌝∧⌝∧∨∧⌝∧⌝∨∧⌝∧⌝∨⌝∧∧⌝∨⌝∧⌝∧⌝=∨⌝∧∧∨∨⌝∧⌝∧∨∨⌝∧∨⌝∧⌝=∧∨⌝∧∨⌝=∨⌝∧∨⌝=→∧→ ————主析取范式(2) ()()(~)(~)(~(~))(~(~))(~~)(~)(~~)P Q P R P Q P R P Q R R P R Q Q P Q R P Q R P R Q →∧→=∨∧∨=∨∨∧∧∨∨∧=∨∨∧∨∨∧∨∨ 2、()~()(~)(~)(~~)(~)(~~)P Q R P Q R P Q P R P Q R P Q R P R Q →∧=∨∧=∨∧∧=∨∨∧∨∨∧∨∨∴等价3、解:根据给定的条件有下述命题公式:(A →(C ∇D ))∧~(B ∧C )∧~(C ∧D )⇔(~A ∨(C ∧~D )∨(~C ∧D ))∧(~B ∨~C )∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(C ∧~D ∧~C )∨(~C ∧D ∧~C ))∧(~C ∨~D )⇔((~A ∧~B )∨(C ∧~D ∧~B )∨(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D ∧~C )) ∧(~C ∨~D )⇔(~A ∧~B ∧~C )∨(C ∧~D ∧~B ∧~C )∨(~C ∧D ∧~B ∧~C )∨ (~A ∧~C ∧~C )∨(~C ∧D ∧~C ∧~C )∨(~A ∧~B ∧~D )∨(C ∧~D ∧~B ∧~D )∨(~C ∧D ∧~B ∧~D )∨(~A ∧~C ∧~D )∨ (~C ∧D ∧~C ∧~D )(由题意和矛盾律)⇔(~C ∧D ∧~B )∨(~A ∧~C )∨(~C ∧D )∨(C ∧~D ∧~B )⇔(~C ∧D ∧~B ∧A )∨ (~C ∧D ∧~B ∧~A )∨ (~A ∧~C ∧B )∨ (~A ∧~C ∧~B )∨ (~C ∧D ∧A )∨ (~C ∧D ∧~A )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~A ∧~C ∧B ∧~D )∨(~A ∧~C ∧~B ∧D )∨ (~A ∧~C ∧~B ∧~D )∨(~C ∧D ∧A ∧B )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B )∨ (~C ∧D ∧~A ∧~B )∨(C ∧~D ∧~B ∧A )∨(C ∧~D ∧~B ∧~A ) ⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨ (~C ∧D ∧A ∧~B )∨ (~C ∧D ∧~A ∧B ) ∨(C ∧~D ∧~B ∧A )⇔(~C ∧D ∧~B ∧A )∨ (~A ∧~C ∧B ∧D )∨(C ∧~D ∧~B ∧A ) 三种方案:A 和D 、 B 和D 、 A 和C习题 1.51、 (1)需证()(())P Q P P Q →→→∧为永真式()(())~(~)(~())~~(~)(()(~))~(~)(~)()P Q P P Q P Q P P Q P P P Q P Q TP Q P Q T P Q P P Q →→→∧=∨∨∨∧∨=∨∨∧∨=∨∨∨=∴→⇒→∧(3)需证S R P P →∧⌝∧为永真式SR P P T S F S R F S R P P ⇒∧⌝∧∴⇔→⇔→∧⇔→∧⌝∧3A B A B ⇒∴→ 、为永真式。

离散数学课后习题+答案

离散数学课后习题+答案

离散数学习题答案习题一1. 判断下列句子是否为命题?若是命题说明是真命题还是假命题。

(1)3是正数吗?(2)x+1=0。

(3)请穿上外衣。

(4)2+1=0。

(5)任一个实数的平方都是正实数。

(6)不存在最大素数。

(7)明天我去看电影。

(8)9+5≤12。

(9)实践出真知。

(10)如果我掌握了英语、法语,那么学习其他欧洲语言就容易多了。

解:(1)、(2)、(3)不是命题。

(4)、(8)是假命题。

(5)、(6)、(9)、(10)是真命题。

(7)是命题,只是现在无法确定真值。

2. 设P表示命题“天下雪”,Q表示命题“我将去书店”,R表示命题“我有时间”,以符号形式写出下列命题。

(1)如果天不下雪并且我有时间,那么我将去书店。

(2)我将去书店,仅当我有时间。

(3)天不下雪。

(4)天下雪,我将不去书店。

解:(1)(┐P∧R)→Q。

(2)Q→R。

(3)┐P。

(4)P→┐Q。

3. 将下列命题符号化。

(1)王皓球打得好,歌也唱得好。

(2)我一边看书,一边听音乐。

(3)老张和老李都是球迷。

(4)只要努力学习,成绩会好的。

(5)只有休息好,才能工作好。

(6)如果a和b是偶数,那么a+b也是偶数。

(7)我们不能既游泳又跑步。

(8)我反悔,仅当太阳从西边出来。

(9)如果f(x)在点x0处可导,则f(x)在点x0处可微。

反之亦然。

(10)如果张老师和李老师都不讲这门课,那么王老师就讲这门课。

(11)四边形ABCD是平行四边形,当且仅当ABCD的对边平行。

(12)或者你没有给我写信,或者信在途中丢失了。

解:(1)P:王皓球打得好,Q:王皓歌唱得好。

原命题可符号化:P∧Q。

(2)P:我看书,Q:我听音乐。

原命题可符号化:P∧Q。

(3)P:老张是球迷,Q:老李是球迷。

原命题可符号化:P∧Q。

(4)P:努力学习,Q:成绩会好。

原命题可符号化:P→Q。

(5)P:休息好,Q:工作好。

原命题可符号化:Q→P。

(6)P:a是偶数,Q:b是偶数,R:a+b是偶数。

离散数学习题答案.docx

离散数学习题答案.docx

精品文档离散数学习题答案习题一及答案:( P14-15 )14、将下列命题符号化:( 5)李辛与李末是兄弟解:设 p:李辛与李末是兄弟,则命题符号化的结果是p( 6)王强与刘威都学过法语解:设 p:王强学过法语; q:刘威学过法语;则命题符号化的结果是p q ( 9)只有天下大雨,他才乘班车上班解:设 p:天下大雨; q:他乘班车上班;则命题符号化的结果是q p( 11)下雪路滑,他迟到了解:设 p:下雪; q:路滑; r :他迟到了;则命题符号化的结果是( p q)r15、设 p: 2+3=5.q:大熊猫产在中国 .r:太阳从西方升起 .求下列复合命题的真值:( 4)(p q r )(( p q)r )解: p=1, q=1,r=0 ,(p q r )(110)1,((p q)r )((11)0)(00)1(p q r )(( p q)r ) 1 1119、用真值表判断下列公式的类型:( 2)( p p)q解:列出公式的真值表,如下所示:p q p qp) ( p p)q( p001111011010100101110001由真值表可以看出公式有 3 个成真赋值,故公式是非重言式的可满足式。

20、求下列公式的成真赋值:精品文档( 4)( p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:( p q)1p0q0q0所以公式的成真赋值有: 01,10, 11。

习题二及答案:( P38)5、求下列公式的主析取范式,并求成真赋值:( 2)(p q) (q r )解:原式( p q) q r q r( p p) q r( p q r ) ( p q r )m3m7,此即公式的主析取范式,所以成真赋值为011, 111。

6、求下列公式的主合取范式,并求成假赋值:( 2)( p q) ( p r )解:原式( pp r ) ( p q r )( p q r )M 4,此即公式的主合取范式,所以成假赋值为 100。

离散数学习题解答(祝清顺版)

离散数学习题解答(祝清顺版)
2
(1) 错误; (2) 正确; (3) 正确; (4) 错误; (5) 错误; (6) 错误; (7) 正确; (8) 正确; (9) 错误; (10) 错误. 10. (1) {d}; (2) {a, c, e}; (3) {a, b, c, e}; (4) {b, d, e}. 11. 各集合的文氏图如图所示(阴影部分).
5
195 = 1 ∙ 154 + 41 154 = 3 ∙ 41 + 31 41 = 1 ∙ 31 +10 31 = 3 ∙ 10 +1 10=10 ∙ 1 +0 所以, gcd(934, 195) = 1. 代回去, 有 gcd(540, 168) = 1 = 31 3 ∙ 10 = 31 3 ∙ (41 1∙31) = 4 ∙ 31 3 ∙ 41 = 4 ∙ (154 3 ∙ 41) 3 ∙ 41 = 4 ∙ 154 15 ∙ 41 = 4 ∙ 154 15 ∙ (1951 ∙ 154) = 19 ∙ 154 15 ∙ 195 = 19 ∙ (934 4 ∙ 195) 15 ∙ 195 = 19 ∙ 934 91 ∙ 195 故 gcd(540, 168) = 19 ∙ 934 91 ∙ 195, 其中 m=19, n = 91. (2) 方法同(1). 计算可得: gcd(369, 25) = 1, gcd(369, 25)= 4 ∙ 369 59 ∙ 25, 其中 m=4, n = 59. (3) 方法同(1). 计算可得: gcd(369, 25) = 33, gcd(369, 25)= 8 ∙ 165 1 ∙ 1287, 其中 n=8, m = 1. (4) 方法同(1). 计算可得: gcd(369, 25) = 2, gcd(369, 25)= 17 ∙ 42 2 ∙ 256, 其中 n=8, m = 1. 32. 由定理 1.3.8, 可得 ab=lcm(a, b)gcd(a, b)=24 ∙ 144. 由已知条件 a+b=120, 根据根与 系数的关系可构造一个一元二次方程 x2120x+24 ∙ 144=0 解之得, x1=72, x2=48. 由此可得 a=72, b=48 或 a=48, b=72. 33. (1) 运用辗转相除法可得 10920 = 1 ∙ 8316 + 2604 8316 = 3 ∙ 2604 + 504 2604 = 5 ∙ 504 + 84 504 = 6 ∙ 84 +0 所以, gcd(934, 195) = 84. (2) 对于(1)中各式回代过去, 有 gcd(10920, 8316) = 84 = 2604 5 ∙ 504 = 2604 5 ∙ (8316 3 ∙ 2604) = 16 ∙ 2604 5 ∙ 8316 = 16 ∙ (10920 1 ∙ 8316) 5 ∙ 8316 = 16 ∙ 10920 21 ∙ 8316 故 gcd(10920, 8316) = 21 ∙ 8316+16 ∙ 10920, 其中 m = 21, n=16. (3) 由最大公因子与最小公倍数的关系, 有 ab 8316 10920 =1081080. lcm(a, b) gcd(a, b) 84

全版离散数学 练习题及答案.ppt

全版离散数学 练习题及答案.ppt

课件
例3 对任意两个集合A, B,试证 A (A B) A B
证明 对于任意的x
x A (A B)
x {x x A x ( A B)} x {x x A (x A B)} x {x x A (x A x B)} x {x x A (x A x B)} x {x x A x B}
课件
例10 求图的最小生成树
A 1B34 Nhomakorabea5
2 E
6
1A 2
B
E
4
6
C7 D
C
D
课件
例11
• 无向树T有7片树叶, 3个3度顶点,其余的 都是4度顶点,则T有几个4度顶点?
• 解:设T有x个4度顶点 顶点度数之和: 7+3*3+4x 由树的性质可得总边数: 7+3+x-1 由握手原理可得: 7+3*3+4x=2(7+3+x-1)
求g f
g f { 1,b , 2,b , 3,b }
课件
例12 求复合函数
X {1,2,3}, Y {p, q}, Z {a,b} f { 1, p , 2, p , 3, q } g { p,b , q,b }
求g f
g f { 1,b , 2,b , 3,b }
课件
例: 求幺元、零元、逆元
x A B 因为 x 是任意的,所以有
x ((x A (A B)) (x A B)) 的真值为T,
因此 A ( A B)课件 A B
例4 判断关系的性质
R1 { a, a , a,b , b,b , c,c }
a
1 1 0
M R 1 0 1 0
0 0 1

离散考试题与答案

离散考试题与答案

离散考试题与答案一、选择题1. 下列哪个不是离散数学的基本概念?A. 集合B. 二进制C. 图论D. 函数答案:C2. 设A = {1, 2, 3, 4},B = {3, 4, 5, 6},则A ∩ B = ?A. {1, 2}B. {3, 4}C. {5, 6}D. {3, 4, 5, 6}答案:B3. 在一个完全图中,有多少条边?A. nB. n(n-1)/2C. n(n+1)/2D. 2n答案:B4. 若f(x) = x^2 + 3x,则f(-2)的值为?A. -4B. -2C. 0D. 2答案:C5. 若A = {a, b, c},B = {b, c, d},则A - B = ?A. {a, b, c}B. {b, c, d}C. {a, d}D. {}答案:A二、填空题1. 设f(x) = x^2 + 5,求f(-3)的值。

答案:162. 设A = {1, 2, 3},B = {3, 4, 5},则A ∪ B = ?答案:{1, 2, 3, 4, 5}3. 在一个有向图中,若存在一条从顶点A到顶点B的路径,并且从B到A也存在一条路径,则该图称为_____图。

答案:强连通图4. 二进制数11111111转换为十进制的结果为______。

答案:2555. 若给定集合A = {1, 2, 3, 4},则集合A的所有子集的个数为______。

答案:16三、简答题1. 解释集合的并、交和差的运算。

答案:集合的并运算指的是将两个集合中的所有元素合并成一个新的集合,新集合中的元素包括原来两个集合中的所有元素,但不重复。

集合的交运算指的是求出两个集合中共有的元素,构成一个新的集合。

集合的差运算指的是在一个集合中去除另一个集合中的元素,得到一个新的集合。

2. 什么是图论?答案:图论是研究图及其在各个领域中的应用问题的一门学科。

图由若干个顶点及连接这些顶点的边构成,图论主要研究图的性质、结构和算法问题。

3. 什么是函数?答案:函数是一种将每个输入值唯一对应到输出值的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B,C表示三个集合,文图中阴影部分的集合表达式为。

3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I下真值为。

6.设A={1,2,3,4},A 上关系图为则 R 2= 。

7.设A={a,b,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A ={a,b,c,d } ,A 上二元运算如下:* a b cdA B Cabcda b cdb c dac d abda bc那么代数系统<A,*>的幺元是,有逆元的元素为,它们的逆元分别为。

10.下图所示的偏序集中,是格的为。

二、选择 20%(每小题 2分)1、下列是真命题的有( )A.}}{{}{aa⊆; ﻩﻩ B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ; D.}}{{}{Φ∈Φ。

2、下列集合中相等的有()A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。

3、设A={1,2,3},则A上的二元关系有( )个。

A. 23 ;B. 32; C. 332⨯; D.223⨯。

4、设R,S是集合A上的关系,则下列说法正确的是()A.若R,S是自反的, 则SR 是自反的;B.若R,S是反自反的,则SR 是反自反的;C.若R,S 是对称的,则SR 是对称的;D.若R,S 是传递的, 则SR 是传递的。

5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下t st spR=∈=则P(A)/R=( )<A∧>)(||||}s({t,,|A.A;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}}6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“⊆”的哈斯图为()7、下列函数是双射的为( )A.f : I→E , f (x) = 2x ; B.f : N→N⨯N, f (n) =<n , n+1> ; C.f : R→I , f (x) = [x] ; D.f :I→N, f (x) = | x | 。

(注:I—整数集,E—偶数集, N—自然数集,R—实数集)8、图中从v1到v3长度为3的通路有( )条。

A. 0; B. 1;ﻩC. 2;ﻩD. 3。

9、下图中既不是Eular图,也不是Hamilton图的图是( )10、在一棵树中有7片树叶,3个3度结点,其余都是4度结点则该树有()个4度结点。

A.1;ﻩB.2;ﻩ C.3; D.4 。

三、证明 26%ﻩ1、R是集合X 上的一个自反关系,求证:R 是对称和传递的,当且仅当< a, b> 和<a , c>在R中有<.b , c>在R中。

(8分)2、f 和g 都是群<G 1 ,★>到< G 2, *>的同态映射,证明<C , ★>是<G1, ★>的一个子群。

其中C=)}()(|{1x g x f G x x =∈且 (8分)3、G=<V , E> (|V| = v,|E|=e ) 是每一个面至少由k (k ≥3)条边围成的连通平面图,则2)2(--≤k v k e , 由此证明彼得森图(Peterson )图是非平面图。

(11分)四、逻辑推演 16%用CP 规则证明下题(每小题 8分)1、F A F E D D C B A →⇒→∨∧→∨,2、)()())()((x xQ x xP x Q x P x ∀→∀⇒→∀五、计算 18%1、设集合A={a,b ,c ,d}上的关系R={<a , b > ,< b , a > ,< b, c > ,< c , d >}用矩阵运算求出R的传递闭包t (R)。

(9分)2、如下图所示的赋权图表示某七个城市721,,,v v v 及预先算出它们之间的一些直接通信线路造价,试给出一个设计方案,使得各城市之间能够通信而且总造价最小。

(9分)试卷二试题与答案一、填空 20% (每小题2分)1、 P:你努力,Q:你失败。

“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为。

2、论域D={1,2},指定谓词PP(1,1)P (1,2)P(2,1)P (2,2)T T FF则公式x∃∀真值为。

2、设S={a1 ,a2 ,…,a8},Bi是S的子集,则由B31所表达的子集是。

3、设A={2,3,4,5,6}上的二元关系}|,{是质数xyxyxR∨<><=,则R=ﻩﻩﻩﻩﻩﻩ(列举法)。

R的关系矩阵MR=。

5、设A={1,2,3},则A上既不是对称的又不是反对称的关系R= ;A上既是对称的又是反对称的关系R =。

6、设代数系统<A,*>,其中A={a,b,c},则幺元是;是否有幂等性 ;是否有对称性。

群或群。

8、下面偏序格是分配格的是。

9、n个结点的无向完全图K n的边数为,欧拉图的充要条件是*a b cabca b cb b cc c b。

10、公式R Q P Q P P ⌝∧∨⌝∧∧⌝∨)(())((的根树表示为。

二、选择 20% (每小题2分)1、在下述公式中是重言式为( )A.)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P ∧→⌝)(;D .)(Q P P ∨→。

2、命题公式 )()(P Q Q P ∨⌝→→⌝ 中极小项的个数为( ),成真赋值的个数为( )。

A.0; B .1; C .2; D .3 。

3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。

A .3;B .6; C.7; D .8 。

4、 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系},,,, | ,,,{c b d a S S d c S S b a d c b a R +=+⨯>∈<⨯>∈<><><<=则由 R产 生的S S ⨯上一个划分共有( )个分块。

A.4; B .5; C.6; D .9 。

5、设} 3 ,2 ,1 {=S ,S 上关系R的关系图为则R 具有( )性质。

A .自反性、对称性、传递性;B .反自反性、反对称性;C .反自反性、反对称性、传递性; D.自反性 。

6、设 ,+ 为普通加法和乘法,则( )>+< ,,S 是域。

A .},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈==C .},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。

7、下面偏序集( )能构成格。

8、在如下的有向图中,从V1到V 4长度为3 的道路有( )条。

A .1; B.2; C.3; D.4 。

9、在如下各图中( )欧拉图。

10、设R是实数集合,“⨯”为普通乘法,则代数系统<R ,×> 是( )。

A.群; B.独异点; C .半群 。

三、证明 46%1、 设R是A 上一个二元关系,)},,,(),(|,{R b c R c a A c A b a b a S >∈<>∈<∈∧∈><=且有对于某一个试证明若R 是A上一个等价关系,则S 也是A 上的一个等价关系。

(9分)2、 用逻辑推理证明:所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。

因此有些学生很有风度。

(11分)3、 若B A f →:是从A 到B的函数,定义一个函数A B g 2:→对任意B b ∈有)})(()(|{)(b x f A x x b g =∧∈=,证明:若f是A 到B 的满射,则g 是从B到 A 2的单射。

(10分)4、 若无向图G中只有两个奇数度结点,则这两个结点一定连通。

(8分)5、 设G 是具有n 个结点的无向简单图,其边数2)2)(1(21+--=n n m ,则G是Ham ilto n图(8分) 四、计算 14%1、 设<Z 6,+6>是一个群,这里+6是模6加法,Z6={[0 ],[1],[2],[3],[4],[5]},试求出<Z 6,+6>的所有子群及其相应左陪集。

(7分)2、 权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。

(7分)试卷二答案:试卷三试题与答案一、 填空 20% (每空 2分)1、 设 f,g 是自然数集N 上的函数x x g x x f N x 2)(,1)(,=+=∈∀,则=)(x g f 。

2、 设A ={a ,b,c},A 上二元关系R={< a, a > , < a, b >,< a, c >, < c, c>} ,则s(R )= 。

3、 A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法 T= ;T 的关系图为; T 具有 性质。

4、 集合}}2{},2,{{Φ=A 的幂集A 2= 。

5、 P,Q 真值为0 ;R ,S 真值为1。

则))()(())((S R Q P S R P wff ∧∧∨→∨∧的真值为 。

6、 R R Q P wff →∨∧⌝))((的主合取范式为 。

7、 设 P(x):x 是素数, E(x):x 是偶数,O(x):x是奇数 N (x,y ):x 可以整数y 。

则谓词))),()(()((x y N y O y x P x wff ∧∃→∀的自然语言是。

8、 谓词)),,()),(),(((u y x uQ z y P z x P z y x wff ∃→∧∃∀∀的前束范式为。

二、 选择 20% (每小题 2分)1、 下述命题公式中,是重言式的为( )。

A 、)()(q p q p ∨→∧;B 、))())(()(p q q p q p →∧→↔↔;C、q q p ∧→⌝)(; D 、q p p ↔⌝∧)(。

2、 r q p wff →∧⌝)(的主析取范式中含极小项的个数为( )。

相关文档
最新文档