2017离散数学答案1--5

合集下载

离散数学(第二版)课后习题答案详解(完整版)

离散数学(第二版)课后习题答案详解(完整版)

离散数学(第⼆版)课后习题答案详解(完整版)习题⼀1.下列句⼦中,哪些是命题?在是命题的句⼦中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四⼤发明.答:此命题是简单命题,其真值为 1.(2)5 是⽆理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的⾯积等于半径的平⽅乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下⼤雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四⼤发明.(2)p: 是⽆理数.(7)p:刘红与魏新是同学.(10)p:圆的⾯积等于半径的平⽅乘以π.(13)p:2008 年元旦下⼤雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是⽆理数. p:5 是有理数.q:5 是⽆理数.其否定式q 的真值为1.(2)25 不是⽆理数.答:否定式:25 是有理数. p:25 不是⽆理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是⾃然数.答:否定式:2.5 不是⾃然数. p:2.5 是⾃然数. q:2.5 不是⾃然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧,其真值为 1.(2)不但π是⽆理数,⽽且⾃然对数的底e 也是⽆理数.答:p:π是⽆理数,q:⾃然对数的底e 是⽆理数,符号化为p q∧,其真值为1.(3)虽然2 是最⼩的素数,但2 不是最⼩的⾃然数.答:p:2 是最⼩的素数,q:2 是最⼩的⾃然数,符号化为p q∧? ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为? ∧?p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨,其真值为1.(2)符号化:p r∨,其真值为1.(3)符号化:r t∨,其真值为0.(4)符号化:? ∨?q s,其真值为1.(5)符号化:? ∨?r s,其真值为0.6.将下列命题符号化.(1)⼩丽只能从筐⾥拿⼀个苹果或⼀个梨.答:p:⼩丽从筐⾥拿⼀个苹果,q:⼩丽从筐⾥拿⼀个梨,符号化为: p q∨ .(2)这学期,刘晓⽉只能选学英语或⽇语中的⼀门外语课.答:p:刘晓⽉选学英语,q:刘晓⽉选学⽇语,符号化为: (? ∧∨∧?p q)(p q) .7.设p:王冬⽣于1971 年,q:王冬⽣于1972 年,说明命题“王冬⽣于1971 年或1972年”既可以化答:列出两种符号化的真值表:合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化⽅式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;, 才有;(3)只有, 才有;(4)除⾮, 否则;(5)除⾮(6)仅当.答:设p: , 则: ; 设q: , 则: .(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.(1)若2+2=4,则地球是静⽌不动的;(2)若2+2=4,则地球是运动不⽌的;(3)若地球上没有树⽊,则⼈类不能⽣存;(4)若地球上没有⽔,则是⽆理数.12.将下列命题符号化,并给出各命题的真值:(1)2+2=4 当且仅当3+3=6;(2)2+2=4 的充要条件是3+3 6;(3)2+2 4 与3+3=6 互为充要条件;(4)若2+2 4,则3+3 6,反之亦然.答:设p:2+2=4,q:3+3=6.(1)若今天是星期⼀,则明天是星期⼆;(2)只有今天是星期⼀,明天才是星期⼆;(3)今天是星期⼀当且仅当明天是星期⼆;(4)若今天是星期⼀,则明天是星期三.答:设p:今天是星期⼀,q:明天是星期⼆,r:明天是星期三.(1)刘晓⽉跑得快,跳得⾼;(2)⽼王是⼭东⼈或者河北⼈;(3)因为天⽓冷,所以我穿了⽻绒服;(4)王欢与李乐组成⼀个⼩组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他⼀⾯吃饭,⼀⾯听⾳乐;(8)如果天下⼤⾬,他就乘班车上班;(9)只有天下⼤⾬,他才乘班车上班;(10)除⾮天下⼤⾬,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:q:⼤熊猫产在中国.r:太阳从西⽅升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下⾯⼀段论述是否为真:“ 是⽆理数.并且,如果3 是⽆理数,则也是⽆理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是⽆理数q: 3 是⽆理数r:是⽆理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重⾔式,所以论述为真。

离散数学 习题答案

离散数学 习题答案

离散数学 习题 参考答案1、构造公式(p ∧q)∨ (¬p ∧¬q)、p↔q 的真值表。

2、构造公式¬(p ∨q)与¬p ∧¬q 的真值表。

3、构造公式 p 、p ∧p 、p ∨p 的真值表。

4、构造公式 p ∨(q ∧r)、(p ∨q)∧(p ∨r)的真值表。

5、构造公式 p ∨(p ∧r)、p 的真值表。

6、构造公式 p ∧(p ∨r)、p 的真值表。

7、构造公式 p↔q 、¬q↔¬p 的真值表。

8、构造公式(p→q)∧(p→¬q)、¬p 的真值表。

9、构造公式 p 、¬¬p 的真值表。

10、构造公式 p ∨¬p 、p ∧¬p 的真值表 略一、分别用等算演算与真值表法,判断下列公式是否存在主析取范式或主合取范式,若有,请写出来。

(1)(¬p→q)→(¬q ∨p) (2)(¬p→q)→(q ∧r)(3)(p ∨(q ∧r))→(p ∨q ∨r) (4) ¬(q→¬p)∧¬p (5)(p ∧q)∨(¬p ∨r) (6)(p→(p ∨q))∨r (7)(p ∧q)∨r(8) (p→q)∧(q→r) (9) (p ∧q)→q (10) ¬(r↔p)∧p ∧q存在主析取范式=成真赋值对应的小项的析取 =m 00∨m 10∨m 11=(¬p ∧¬q)∨(p ∧¬q)∨(p ∧q)主析取范式=成假赋值对应的大项的合取 =M 01=p ∨¬q等值演算:(¬p→q)→(¬q ∨p) ⇔¬ (¬¬p ∨q)∨(p ∨¬q) ⇔¬ (p ∨q)∨(p ∨¬q) ⇔ (¬p ∧¬q)∨(p ∨¬q) ⇔ (¬p ∨(p ∨¬q))∧(¬q ∨(p ∨¬q)) ⇔ (¬p ∨p ∨¬q)∧(¬q ∨p ∨¬q) ⇔ (1∨¬q)∧(p ∨¬q) ⇔ (p ∨¬q)这是大项,故为大项的合取,称为主合取范式(¬p→q)→(¬q ∨p) ⇔ (p ∨¬q) ⇔ (p)∨(¬q) ⇔ (p ∧1)∨( 1∧¬q)⇔ (p ∧(q ∨¬q))∨( (p ∨¬p)∧¬q) ⇔ (p ∧q)∨ (p ∧¬q)∨(p ∧¬q)∨(¬p ∧¬q) ⇔ (p ∧q)∨ (p ∧¬q)∨(¬p ∧¬q)因为一个公式的值不是真,就是假,因此当我们得到一个公的取值为真的情况时,剩下的组合是取值为假, 因此当得到小项的析取组成的主析取范式后,可以针对剩下的组合写出主合取范式。

离散数学试题与参考答案

离散数学试题与参考答案

离散数学试题与参考答案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《离散数学》试题及答案一、选择题:本题共5小题,每小题3分,共15分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 命题公式Q Q P →∨)(为 ( )(A) 矛盾式 (B) 可满足式 (C) 重言式 (D) 合取范式2.设P 表示“天下大雨”, Q 表示“他在室内运动”,则命题“除非天下大雨,否则他不在室内运动”符号化为( )。

(A). P Q →; (B).P Q ∧; (C).P Q ⌝→⌝; (D).P Q ⌝∨.3.设集合A ={{1,2,3}, {4,5}, {6,7,8}},则下式为真的是( ) (A) 1A (B) {1,2, 3}A (C) {{4,5}}A (D) A4. 设A ={1,2},B ={a ,b ,c },C ={c ,d }, 则A ×(B C )= ( )(A) {<1,c >,<2,c >} (B) {<c ,1>,<2,c >} (C) {<c ,1><c ,2>,} (D) {<1,c >,<c ,2>} 5. 设G 如右图:那么G 不是( ). (A)哈密顿图; (B)完全图;(C)欧拉图; (D) 平面图.二、填空题:本大题共5小题,每小题4分,共20分。

把答案填在对应题号后的横线上。

6. 设集合A ={,{a }},则A 的幂集P (A )=7. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><, 那么R -1=8. 在“同学,老乡,亲戚,朋友”四个关系中_______是等价关系. 9. 写出一个不含“→”的逻辑联结词的完备集 . 10.设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为三、证明题(共30分)11. (10分)已知A 、B 、C 是三个集合,证明A ∩(B ∪C)=(A ∩B)∪(A ∩C) 12. (10分)构造证明:(P (Q S))∧(R ∨P)∧Q R S13.(10分)证明(0,1)与[0,1),[0,1)与[0,1]等势。

离散数学形考任务1-7试题及答案完整版

离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

离散数学 习题答案

离散数学 习题答案

命题公式 不必写 不必写 不必写 不必写
S∧¬W∧W∧Q∧¬S∧W=0 S∧¬W∧W∧Q∧S∧¬W=0
不必写 S∧¬W∧¬W∧Q∧¬S∧W=0

习题二
一、分别用等算演算与真值表法,判断下列公式是否存在主 析取范式或主合取范式,若有,请写出来。
(1)(¬p→q)→(¬q∨p) (2)(¬p→q)→(q∧r) (3)(p∨(q∧r))→(p∨q∨r) (4) ¬(q→¬p)∧¬p (5)(p∧q)∨(¬p∨r) (6)(p→(p∨q))∨r (7)(p∧q)∨r (8) (p→q)∧(q→r) (9) (p∧q)→q (10) ¬(r↔p)∧p∧q 解:(1)
p q ¬p (¬p→q) ¬q (¬q∨p) (¬p→q)→(¬q∨p)
001
0
1
1
1
011
1
0
0
0
100
1
1
1
1
110
1
0
1
1
存在主析取范式=成真赋值对应的小项的析取
=m ∨m ∨m =(¬p∧¬q)∨(p∧¬q)∨(p∧q)
00
10
11
主析取范式=成假赋值对应的大项的合取
=M =p∨¬q
01
等值演算:
(8) (p→q)∧(q→r) p q r (p→q) (q→r)
(p→q)∧(q→r)
00 0
1
1
1
00 1
1
1
1
01 0
1
0
0
01 1
1
1
1
10 0
0
1
0
10 1
0
1
0
11 0

离散数学第二版 屈婉玲 1-5章(答案)

离散数学第二版 屈婉玲  1-5章(答案)

《离散数学1-5章》练习题答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(4)5.答:⌝P ,Q→P6.答:P(x)∨∃yR(y)7.答:⌝∀x(R(x)→Q(x))8、c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。

解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4. 答:(4)5.答:(2),(4)6、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}2.答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015、解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。

离散数学课后习题答案

离散数学课后习题答案

离散数学课后习题答案1.3.1习题1.1解答1设S = {2,a,{3},4},R ={{a},3,4,1},指出下⾯的写法哪些是对的,哪些是错的?{a}∈S,{a}∈R,{a,4,{3}}?S,{{a},1,3,4}?R,R=S,{a}?S,{a}?R,φ?R,φ?{{a}}?R?E,{φ}?S,φ∈R,φ?{{3},4}。

解:{a}∈S ,{a}∈R ,{a,4,{3}} ? S ,{{a},1,3,4 } ? R ,R = S ,{a}?S ,{a}? R ,φ? R ,φ? {{a}} ? R ? E ,{φ} ? S ,φ∈R ,φ? {{3},4 }2写出下⾯集合的幂集合{a,{b}},{1,φ},{X,Y,Z}解:设A={a,{b}},则ρ(A)={ φ,{a},{{b}},{a,{b}}};设B={1,φ},则ρ(B)= { φ,{1},{φ},{1,φ}};设C={X,Y,Z},则ρ(C)= { φ,{X},{Y},{Z},{X,Y },{X,Z },{ Y,Z },{X,Y,Z}};3对任意集合A,B,证明:(1)A?B当且仅当ρ(A)?ρ(B);(2)ρ(A)?ρ(B)?ρ(A?B);(3)ρ(A)?ρ(B)=ρ(A?B);(4)ρ(A-B) ?(ρ(A)-ρ(B)) ?{φ}。

举例说明:ρ(A)∪ρ(B)≠ρ( A∪B)证明:(1)证明:必要性,任取x∈ρ(A),则x?A。

由于A?B,故x?B,从⽽x∈ρ(B),于是ρ(A)?ρ(B)。

充分性,任取x∈A,知{x}?A,于是有{x}∈ρ(A)。

由于ρ(A)?ρ(B),故{x}∈ρ(B),由此知x∈B,也就是A?B。

(2)证明:任取X∈ρ(A)∪ρ(B),则X∈ρ(A)或X∈ρ(B)∴X?A或X?B∴X?(A∪B)∴X∈ρ(A∪B)所以ρ(A)∪ρ(B) ?ρ( A∪B)(3)证明:先证ρ(A)∩ρ(B) ?ρ( A∩B)任取X∈ρ(A)∩ρ(B),则X∈ρ(A)且X∈ρ(B)∴X?A且X?B∴X? A∩B∴X∈ρ( A∩B)所以ρ(A)∩ρ(B) ?ρ( A∩B)再证ρ( A∩B) ?ρ(A)∩ρ(B)任取Y∈ρ(A∩B),则Y? A∩B∴Y?A且Y?B∴Y∈ρ(A)且Y∈ρ(B)∴Y∈ρ(A)∩ρ(B)所以ρ( A∩B) ?ρ(A)∩ρ(B)故ρ(A)∩ρ(B) = ρ( A∩B)得证。

离散数学答案版(全)

离散数学答案版(全)

第一章命题逻辑内容:命题及命题联结词、命题公式的基本概念,真值表、基本等价式及永真蕴涵式,命题演算的推理理论中常用的直接证明、条件证明、反证法等证明方法。

教学目的:1. 熟练掌握命题、联结词、复合命题、命题公式及其解释的概念。

2. 熟练掌握常用的基本等价式及其应用。

3. 熟练掌握(主)析/合取范式的求法及其应用。

4. 熟练掌握常用的永真蕴涵式及其在逻辑推理中的应用。

5. 熟练掌握形式演绎的方法。

教学重点:1 .命题的概念及判断2 .联结词,命题的翻译3. 主析(合)取范式的求法4. 逻辑推理教学难点:1. 主析(合)取范式的求法2. 逻辑推理1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。

1.1.2 命题的表示命题通常使用大写字母 A , B,…,Z或带下标的大写字母或数字表示,如A i, [10], R等,例如A1:我是一名大学生。

A1:我是一名大学生.[10]:我是一名大学生。

R:我是一名大学生。

1.2命题联结词1.2.1否定联结词「P1.2.2合取联结词A1.2.3 析取联结词V1.2.4 条件联结词—125126 与非联结词T性质:(1)P T P=「( PAP)二「P;(2)(P T Q)T( P T Q) -「( P T Q) - PAQ;(3)( P T P)T( Q TQ) -「P T「Q= P V Q。

127 或非联结词J性质:(1) P J P=「( P V Q) =「P;(2)( P J Q );( P J Q) =「( P J Q) = P V Q;(3)( P J P)J( Q J Q) =「P Q=P V-Q) = PAQ1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2 )如果P是公式,则「P是公式;(3)如果P、Q是公式,则PAQ、PVQ、P > Q、P Q都是公式;(4)当且仅当能够有限次的应用(1)、(2)、(3)所得到的包括命题变元、联结词和括号的符号串是公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

06任务_0001试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 命题公式的析取范式是( ).A.B.C.D.2. 设个体域为整数集,则公式"x$y(x+y=0)的解释可为( ).A. 存在一整数x有整数y满足x+y=0B. 任一整数x对任意整数y满足x+y=0C. 对任一整数x存在整数y满足x+y=0D.存在一整数x对任意整数y满足x+y=03. 下列公式成立的为( ).A. ⌝P∧⌝Q ⇔P∨QB. P→⌝Q⇔⌝P→QC. Q→P⇒ PD. ⌝P∧(P∨Q)⇒Q4. 下列公式中( )为永真式.A. ⌝A∧⌝B ↔⌝A∨⌝BB. ⌝A∧⌝B ↔⌝(A∨B)C. ⌝A∧⌝B ↔A∨BD. ⌝A∧⌝B ↔⌝(A∧B)5. 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A.B.C.D.6. 命题公式(P∨Q)→R的析取范式是( )A. ⌝(P∨Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. (⌝P∧⌝Q)∨R7. 命题公式(P∨Q)的合取范式是( ).A. (P∧Q)B. (P∧Q)∨(P∨Q)C. (P∨Q)D. ⌝(⌝P∧⌝Q)8. 设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是( ).A. 0, 0, 0B. 0, 0, 1C. 0, 1, 0D. 1, 0, 09. 命题公式P→Q的主合取范式是( ).A. (P∨Q)∧(∏∨⌝Θ)∧(⌝∏∨⌝Θ)B. ⌝P∧QC. ⌝P∨QD. P∨⌝Q10. 下列等价公式成立的为( ).A. ⌝P∧P⇔⌝Q∧QB. ⌝Q→P⇔P→QC. P∧Q⇔P∨QD. ⌝P∨P⇔Q06任务_0002试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 命题公式(P∨Q)→Q为( )A. 矛盾式B. 可满足式C. 重言式D. 合取范式2. 设个体域为整数集,则公式"x$y(x+y=0)的解释可为( ).A. 存在一整数x有整数y满足x+y=0B. 任一整数x对任意整数y满足x+y=0C. 对任一整数x存在整数y满足x+y=0D.存在一整数x对任意整数y满足x+y=03. 命题公式的析取范式是( ).A.B.C.D.4. 下列等价公式成立的为( ).A. ⌝P∧P⇔⌝Q∧QB. ⌝Q→P⇔P→QC. P∧Q⇔P∨QD. ⌝P∨P⇔Q5. 设命题公式G:,则使公式G取真值为1的P,Q,R赋值分别是( ).A. 0, 0, 0B. 0, 0, 1C. 0, 1, 0D. 1, 0, 06. 在谓词公式(∀x)(A(x)→B(x)∨C(x,y))中,().A. x,y都是约束变元B. x,y都是自由变元C. x是约束变元,y都是自由变元D. x是自由变元,y都是约束变元7. 命题公式P→Q的主合取范式是( ).A. (P∨Q)∧(∏∨⌝Θ)∧(⌝∏∨⌝Θ)B. ⌝P∧QC. ⌝P∨QD. P∨⌝Q8. 设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().A. ⌝(x)(A(x)∧⌝B(x))B. (∀x)(A(x)∧B(x))C. ⌝(∀x)(A(x)→B(x))D. (x)(A(x)∧B(x))9. 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A.B.C.D.10. 命题公式(P∨Q)→R的析取范式是( )A. ⌝(P∨Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. (⌝P∧⌝Q)∨R06任务_0003试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A.B.C.D.2. 下列公式成立的为( ).A. ⌝P∧⌝Q ⇔P∨QB. P→⌝Q⇔⌝P→QC. Q→P⇒ PD. ⌝P∧(P∨Q)⇒Q3. 下列公式( )为重言式.A. ⌝P∧⌝Q↔P∨QB. (Q→(P∨Q)) ↔(⌝Q∧(P∨Q))C. (P→(⌝Q→P))↔(⌝P→(P→Q))D. (⌝P∨(P∧Q)) ↔Q4. 命题公式(P∨Q)→R的析取范式是( )A. ⌝(P∨Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. (⌝P∧⌝Q)∨R5. 命题公式P→Q的主合取范式是( ).A. (P∨Q)∧(∏∨⌝Θ)∧(⌝∏∨⌝Θ)B. ⌝P∧QC. ⌝P∨QD. P∨⌝Q6. 在谓词公式(∀x)(A(x)→B(x)∨C(x,y))中,().A. x,y都是约束变元B. x,y都是自由变元C. x是约束变元,y都是自由变元D. x是自由变元,y都是约束变元7. 下列公式中( )为永真式.A. ⌝A∧⌝B ↔⌝A∨⌝BB. ⌝A∧⌝B ↔⌝(A∨B)C. ⌝A∧⌝B ↔A∨BD. ⌝A∧⌝B ↔⌝(A∧B)8. 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().A. ┐(∀x)(A(x)→B(x))B. ⌝(x)(A(x)∧B(x))C. (∀x)(A(x)∍B(x))D. ⌝(x)(A(x)∧⌝B(x))9. 设个体域D={a, b, c},那么谓词公式消去量词后的等值式为.A. (A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(b))B. (A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(b))C. (A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(b))D. (A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(b))10. 前提条件的有效结论是( ).A. PB. ⌝PC. QD. ⌝Q06任务_0004试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 下列公式成立的为( ).A. ⌝P∧⌝Q ⇔P∨QB. P→⌝Q⇔⌝P→QC. Q→P⇒ PD. ⌝P∧(P∨Q)⇒Q2. 命题公式(P∨Q)→R的析取范式是( )A. ⌝(P∨Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. (⌝P∧⌝Q)∨R3. 设A(x):x是人,B(x):x是教师,则命题“有人是教师”可符号化为().A. ⌝(x)(A(x)∧⌝B(x))B. (∀x)(A(x)∧B(x))C. ⌝(∀x)(A(x)→B(x))D. (x)(A(x)∧B(x))4. 下列公式( )为重言式.A. ⌝P∧⌝Q↔P∨QB. (Q→(P∨Q)) ↔(⌝Q∧(P∨Q))C. (P→(⌝Q→P))↔(⌝P→(P→Q))D. (⌝P∨(P∧Q)) ↔Q5. 表达式中的辖域是( ).A. P(x, y)B. P(x, y)∨Q(z)C. R(x, y)D. P(x, y)∧R(x, y)6. 命题公式(P∨Q)的合取范式是( ).A. (P∧Q)B. (P∧Q)∨(P∨Q)C. (P∨Q)D. ⌝(⌝P∧⌝Q)7. 下列等价公式成立的为( ).A. ⌝P∧P⇔⌝Q∧QB. ⌝Q→P⇔P→QC. P∧Q⇔P∨QD. ⌝P∨P⇔Q8. 在谓词公式(∀x)(A(x)→B(x)∨C(x,y))中,().A. x,y都是约束变元B. x,y都是自由变元C. x是约束变元,y都是自由变元D. x是自由变元,y都是约束变元9. 命题公式(P∨Q)→Q为( )A. 矛盾式B. 可满足式C. 重言式D. 合取范式10. 设个体域D={a, b, c},那么谓词公式消去量词后的等值式为.A. (A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(b))B. (A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(b))C. (A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(b))D. (A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(b))06任务_0005试卷总分:100 测试时间:0单项选择题一、单项选择题(共10 道试题,共100 分。

)1. 命题公式P→Q的主合取范式是( ).A. (P∨Q)∧(∏∨⌝Θ)∧(⌝∏∨⌝Θ)B. ⌝P∧QC. ⌝P∨QD. P∨⌝Q2. 设个体域D是整数集合,则命题"x$y (x×y = y)的真值是().A. TB. FC. 不确定D. 以上说法都不是3. 命题公式的析取范式是( ).A.B.C.D.4. 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).A.B.C.D.5. 设个体域为整数集,则公式"x$y(x+y=0)的解释可为( ).A. 存在一整数x有整数y满足x+y=0B. 任一整数x对任意整数y满足x+y=0C. 对任一整数x存在整数y满足x+y=0D.存在一整数x对任意整数y满足x+y=06. 命题公式(P∨Q)→R的析取范式是( )A. ⌝(P∨Q)∨RB. (P∧Q)∨RC. (P∨Q)∨RD. (⌝P∧⌝Q)∨R7. 下列公式成立的为( ).A. ⌝P∧⌝Q ⇔P∨QB. P→⌝Q⇔⌝P→QC. Q→P⇒ PD. ⌝P∧(P∨Q)⇒Q8. 设个体域D={a, b, c},那么谓词公式消去量词后的等值式为.A. (A(a)∨A(b)∨A(c))∨(B(a)∧B(b)∧B(b))B. (A(a)∧A(b)∧A(c))∨(B(a)∨B(b)∨B(b))C. (A(a)∨A(b)∨A(c))∨(B(a)∨B(b)∨B(b))D. (A(a)∧A(b)∧A(c))∨(B(a)∧B(b)∧B(b))9. 下列公式中( )为永真式.A. ⌝A∧⌝B ↔⌝A∨⌝BB. ⌝A∧⌝B ↔⌝(A∨B)C. ⌝A∧⌝B ↔A∨BD. ⌝A∧⌝B ↔⌝(A∧B)10. 下列等价公式成立的为( ).A. ⌝P∧P⇔⌝Q∧QB. ⌝Q→P⇔P→QC. P∧Q⇔P∨QD. ⌝P∨P⇔Q。

相关文档
最新文档