浸矿微生物技术
有色金属尾矿微生物原位浸出关键技术

… 、矿 物表 面性质 、细 菌细胞 物质 及酶等 方 面揭 示 7 - 浮选 药刹对浸矿体 系抑制机理 ( 3) 硫 酸亚铁 、 硫 代硫 酸钠 、黄铁 矿作 为能源物 质均 能够 提高金 属 浸j l J 效 率 ,其 I 1 硫代 硫酸钠 的效 果最 为 著 ;同时
发现在浸 矿初 期不需 要添加 无机 盐培 养基 ,尾矿 巾
圾资源化和减量化具有一定 的借鉴和指导作川。
作者简介 :董 颖博( 1 9 8 3 一) ,女 ,河 南郑州人 ,北京 科技 大学环 境工程 系,博 士后 ,讲 师 。2 0 0 2 年9 月一 2 o 0 6 年7 月在 山 东科技 大学矿物 加工 工程 专业 学 习,获得 工 学 学 士 学 位 ;2 0 0 6 年9 月一 2 0 1 】 年6 月在 北 京科 技 大 学矿 物 加 工工程专 业硕博连读 ,获得工学博士 学位;2 0 1 】 年1 0 月一
矿产 资源 日趋减 少 ,低 品位矿和 复杂难选矿的开 发 已戍 当务之 急。有 色金属尾 矿微 生物原位浸 出关键技 术研 究取 得 了突破 性 的创 新性成果 :建立 了浸矿 细 菌复合 诱 变育种新方法 ,使尾 矿 中有价
金属浸 出效率提 高 了3 0 %;揭 示 了不 同浮选 药剂对浸矿菌浸 出有 色金属尾矿 的影响规律和机制 ,并揭
示 了浮选 药剂对 浸矿体 系抑 制机理 ;探 明 了能够提 高金属 浸 出效率 效果显著 的能源物质 ;指 出直接
从尾矿 中溶解 出来的无机 盐 离子完全 可以满足 菌种 生长 需求 :开发 了微 生物原位 浸 出尾矿 的工 艺 ,
有效解 决 了尾 矿含 泥量 高、渗 透性 差、茵液分布 不均 、不 能与尾矿 充分接 触 而形 成死 角和 盲 区等技 术 问题 。研 究成果在 我 国有 色金 属尾矿 资源综合利 用领域具 有较 好 的应 用前景 ,对被 誉为 “ 城 市矿 山”的电子垃圾 资源化 和减量化 具有一定的借鉴 和指导作 用。 /
金属冶炼中的微生物浸取技术

CATALOG
DATE
ANALYSIS
SUMMAR Y
01
微生物浸取技术概述
微生物浸取技术的定义
• 微生物浸取技术:利用微生物及其代谢产物,通过与矿石或废 渣等含金属资源发生相互作用,实现金属提取和富集的一种生 物技术。
微生物浸取技术的原理
01
02
03
微生物吸附
微生物通过细胞表面的吸 附作用,将金属离子吸附 在细胞表面。
微生物浸取技术具有低能耗、低污染、高效率等优点,已成为铜矿资源开发的重 要手段之一。
铀矿的微生物浸取
01
铀矿的微生物浸取是利用某些具 有氧化能力的微生物,将矿石中 的铀氧化成可溶性的铀酸盐,从 而提取出铀。
02
微生物浸取技术对于低品位、难 处理的铀矿资源的开发具有重要 意义,能够降低提取成本和提高 资源利用率。
REPORT
CATALOG
DATE
ANALYSIS
SUMMARY
金属冶炼中的微生物 浸取技术
汇报人:可编辑
2024-01-06
目录
CONTENTS
• 微生物浸取技术概述 • 微生物在金属冶炼中的作用 • 微生物浸取技术的优势与挑战 • 微生物浸取技术在金属冶炼中的应用
实例 • 未来展望
REPORT
金矿的微生物浸取
金矿的微生物浸取是利用某些具有还 原能力的微生物,将矿石中的金离子 还原成金属金,从而提取出金。
微生物浸取技术对于处理含金量较低 的矿石具有优势,能够实现金的低成 本、高效提取。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
未来展望
提高微生物浸取技术的效率
镍块矿的微生物浸出技术的研究进展

镍块矿的微生物浸出技术的研究进展1. 引言镍是一种重要的金属资源,广泛应用于不锈钢、合金和电池等领域。
然而,传统的镍矿石矿体中镍含量较低,矿石贫化技术面临着环境破坏和高能耗的问题。
因此,开发新型的矿石处理技术对于提高镍的回收率和资源利用效率至关重要。
微生物浸出技术由于其环境友好和高效节能的特点,成为了矿石处理领域的研究热点之一。
2. 微生物浸出技术的原理微生物浸出技术利用特殊微生物在适宜环境条件下对矿石中的金属元素进行溶解和转移的能力。
典型的微生物浸出过程包括生物氧化和生物还原两个主要阶段。
在生物氧化过程中,一些硫杆菌和放线菌能够利用氧气在酸性条件下氧化金属硫化物矿石,产生相应金属离子。
而在生物还原过程中,某些还原菌则利用有机物或无机物作为电子供体,将溶解金属离子还原成金属沉淀。
该技术具有资源环境友好,生产成本低等优点。
3. 微生物浸出在镍矿石处理中的应用研究表明,微生物浸出技术在镍矿石处理中被广泛应用,并取得了显著的效果。
其中,一种重要的应用是利用硫杆菌对镍矿石进行生物氧化。
硫杆菌可以将镍矿石中的金属硫化物氧化为相应的金属离子,从而提高镍的浸出率。
此外,一些产氢菌也被发现可以利用氢气还原金属离子,从而实现镍的生物还原沉淀。
这些应用使得镍矿石的处理不仅环境友好,同时也能够提高镍的回收率。
4. 研究进展虽然微生物浸出技术在镍矿石处理中显示出很大的潜力,但仍然存在一些挑战和问题需要解决。
首先,微生物的培养和维护需要耗费一定的人力和资源,因此,提高微生物的活性和生存率是当前研究的重点。
其次,微生物浸出的效率受到很多因素的影响,如温度、酸度、氧气含量等,因此,优化环境条件对于提高浸出效果非常重要。
另外,一些矿石中可能含有抑制菌活性的有害物质,这也需要进一步的研究和解决。
近年来,研究人员通过改进微生物的培养方法、优化环境条件等措施,取得了一系列进展。
例如,利用基因工程技术可以构建具有更高金属氧化能力的菌株;通过调节温度、氧气含量等因素,提高微生物的生物代谢效率;同时,一些研究还结合化学浸出技术,利用微生物间接浸出的预处理产物进行进一步处理,提高了处理效果。
微生物技术在铀矿堆浸中的应用研究

微生物技术在铀矿堆浸中的应用研究铀矿堆浸是一种利用微生物技术进行铀浸取的工艺过程。
微生物技术在铀矿堆浸中的应用研究主要包括利用微生物促进铀矿石氧化和浸出、微生物降低堆浸条件要求、微生物对堆浸影响研究等方面。
首先,微生物可以通过氧化作用促进铀矿石中的铀氧化成U(VI)离子,然后铀可以通过浸出作用从矿石中被溶解出来。
微生物氧化铀矿石的研究主要包括利用自然降解微生物种群和经过改造的铀氧化细菌,通过分离和培养等方法进行。
通过研究微生物对铀矿石氧化的作用机理和影响因素,可以优化铀氧化的工艺条件,提高铀的溶解率。
其次,微生物可以降低铀堆浸过程中的条件要求,提高矿石的可浸性。
传统的铀堆浸过程需要高温、高浓度酸和长时间的反应,这些条件对设备的耐腐蚀性和能耗要求很高。
而微生物堆浸则可以在较低的温度和酸度条件下进行,大大降低了工艺的成本和环境污染。
此外,微生物在堆浸过程中还能促进铀溶解物的搬运和迁移,进一步提高了铀的浸出率。
最后,微生物对堆浸系统中的复杂微环境有很大的影响。
研究微生物在堆浸过程中的生态学行为、代谢产物和生长规律,有助于进一步优化堆浸过程。
此外,微生物对堆浸性能的影响也需要进行深入的研究,包括微生物种群结构、代谢产物与堆浸效果的关系等方面。
综上所述,微生物技术在铀矿堆浸中的应用研究具有重要的意义。
通过深入研究微生物在铀矿堆浸中的作用机理和影响因素,可以优化堆浸工艺条件,提高铀的溶解率和浸出率,从而为铀矿资源的高效利用提供了新途径。
微生物技术的应用还可以降低堆浸过程的条件要求和环境污染,具有良好的经济效益和环境效益。
未来的研究可以进一步深入微生物对堆浸系统的影响,提高堆浸工艺的稳定性和高效性。
微生物冶金研究及应用示例(可编辑

微生物冶金研究及应用示例(可编辑1.生物浸矿生物浸矿是微生物冶金的重要应用之一,它利用微生物在生物氧化过程中释放的酸性代谢产物溶解金属矿石中的金属,从而提高金属的回收率。
例如,硫氧化细菌可以利用元素硫氧化为硫酸,将硫酸溶解金属矿石中的金属,从而实现对金属的浸出。
生物浸矿具有环境友好、能源节约和高回收率等优点,已广泛应用于金、铜等金属的提取与回收。
2.生物氧化生物氧化是指微生物通过氧化作用将金属硫化物中的金属氧化为可溶解的阳离子。
这种方法主要应用于金属硫化物矿石的处理,如黄铁矿和黄铜矿等。
微生物通常通过产生氧化酶、氧化酶等在酸性条件下将金属硫化物中的金属氧化,使其转化为可溶解的阳离子,从而实现金属的回收。
3.生物沉淀生物沉淀是指利用微生物对金属离子的还原、沉淀作用,将金属离子从溶液中沉淀出来,实现金属的分离和提取。
这种方法主要应用于含金属废水的处理和资源回收。
例如,利用还原菌可以将废水中的金属离子还原为金属颗粒,并通过沉淀或过滤等方式将其分离出来。
生物沉淀具有选择性强、成本低廉的优点,已被广泛应用于废水处理和金属回收等领域。
除了上述的示例之外,微生物冶金还在其他领域有很多应用,如微生物驱油、微生物脱硫、微生物修复污染土壤等。
这些应用都利用了微生物的特殊代谢和生物活性来实现冶金工艺的优化和环境治理的目的。
总之,微生物冶金是一种创新的冶金技术,通过利用微生物的代谢能力和生物活性产物,实现对金属矿石的浸出、氧化、沉淀等过程,为冶金工业的发展提供了新的思路和方法。
微生物冶金在提高金属回收率、节能减排和环境保护等方面具有巨大潜力,将在未来得到更广泛的应用和推广。
微生物浸出技术及其研究进展

微生物浸出技术及其研究进展摘要:随着人们生活水平的不断提高,对矿产资源消耗量越来越大,而高品位矿石已近枯竭,开发利用低品位资源已提到议事日程;为此,必须找到一种经济上合理,技术上可行,并且安全环保的回收低品位矿石的方法,以充分利用原先丢弃的废矿或开采低品位的矿床。
目前,原地浸出(穿孔注液,不爆破)、就地浸出(爆破后就地喷液)、堆浸、池浸、搅拌浸出等技术被广泛应用,这些方法都伴随有微生物浸出部份。
在金矿、铜矿、铀矿的开采中,为了充分利用矿产资源和降低经济成本,科研人员利用微生物浸出技术来实现矿产资源的开发,使得微生物浸出技术成为开采金矿、铜矿、铀矿开采的重要技术。
本文在此通过对铜矿中使用的微生物品种的介绍、微生物浸出原理以及微生物浸出效率等进行讨论,并对微生物浸出技术的研究提出作者自己的看法。
关键词:微生物浸出技术;微生物浸出原理;浸出效率;影响因素;研究进展微生物浸出技术中,矿洞的开采环境以及微生物的特性不同,都会导致铜矿回收率的变化,从而影响到微生物的浸出效率。
因此,在使用微生物浸出技术进行铜矿资源的开采时,要保证其达到合适的pH值并满足铜矿的矿浆浓度,保证矿石粒度满足要求,避免粒径过细引起的叠堆。
同时,对加入了微生物的矿石进行充分搅拌,使其在搅拌中与微生物接触,保证微生物浸出过程中氧气和二氧化碳的充足。
目前,我国在研究高效菌种的培育以及高效菌种的散体渗流过程等还存在部分欠缺,为了提高微生物浸矿工艺的高效率,科研人员需要对现有的微生物浸出技术进行改进和完善。
1微生物浸出技术的概述最早的微生物浸出主要用于冶金,因此它还有着一个别称:湿式冶金技术,即通过利用微生物生命活动中的氧化以及还原特性来实现铜矿资源的开采。
在铜矿开采中,使用微生物浸出技术主要是因为微生物可以浸出金属,并对矿石表面的成份产生氧化还原,使其在水溶液中,以另一种形态的方式与原物质进行分离,包括元素沉淀或者离子状态等。
微生物浸出技术最早是被应用于贫矿中对金属的回收,比如铀、铜、金等。
浸矿微生物选育及鉴定

浸矿微生物选育及鉴定引言浸矿微生物选育及鉴定是一项重要的研究领域,该领域的研究内容主要涉及如何从自然环境中筛选出适宜于浸矿过程的微生物,并通过鉴定和分析微生物的特性,进一步优化浸矿过程,提高浸矿效率。
本文将介绍浸矿微生物选育及鉴定的基本原理、方法和应用。
一、浸矿微生物的基本特性浸矿微生物是一类能够在浸矿过程中起到促进作用的微生物。
这些微生物通常能够利用矿石中的有机物和无机物,进行代谢产物的生成,并释放出酸性物质,从而溶解矿石中的金属元素。
同时,浸矿微生物还具有良好的耐受性和适应性,能够适应较高的温度、酸碱度和重金属浓度等恶劣环境条件。
2.1 野外筛选法野外筛选法是最常用的浸矿微生物选育方法之一。
该方法通过采集不同环境样品,如矿石、土壤、水等,将这些样品接种到含有合适培养基的培养皿中,利用培养条件的调控,筛选出具有浸矿能力的微生物。
这种方法具有简单、经济的优点,但由于样品的复杂性和微生物的不确定性,需要进行大量的筛选和鉴定工作。
2.2 定向选育法定向选育法是一种基于已知浸矿微生物特性的选育方法。
在这种方法中,研究人员首先对目标浸矿微生物的特性进行深入研究,了解其代谢途径、酶系统等信息。
然后,根据这些特性设计合适的培养条件,并通过选育和筛选,获得具有高浸矿效率的微生物。
浸矿微生物鉴定是确定分离出的微生物是否具有浸矿能力的重要步骤。
常用的鉴定方法包括形态学观察、生理生化特性测试、分子生物学分析等。
3.1 形态学观察形态学观察是浸矿微生物鉴定的最基本方法之一。
通过显微镜观察微生物的形态特征,如细胞形状、大小、颜色等,可以初步判断微生物的种类,并与已知的浸矿微生物进行比对。
3.2 生理生化特性测试生理生化特性测试是通过测定微生物的代谢产物、酶活性、生长温度和PH范围等指标,进一步鉴定和比较微生物。
例如,浸矿微生物通常能够产生特殊的酶来溶解矿石,并在酸性环境下生长,这些特性可以通过生化特性测试进行评估。
3.3 分子生物学分析分子生物学分析是一种基于微生物DNA或RNA的鉴定方法。
微生物学在浸矿技术中的应用研究

:L ;N ;L ;G D 7 @ 5 F C ’ ( < , 8 9 C ? C ? < E C 8D ’ @ < ( , 8 E < C , ( ’ M C @ , E C ’ ? < , 8 E ’ F 6H 生物浸出又称微生物浸出或细菌浸出, 它是利用自然界中存在的某些细菌实现从硫化矿石或精矿中提 取贵金属和基本金属— — —实质上是加速硫化物自然转化成氧化物的湿法冶金过程。此法特别适于处理贫 矿、 废矿及难采、 难选、 难冶矿的堆浸和就地浸出。 ! $ 世纪 % $ 年代, J ’ ( D < -和 3 < D ( <等人的研究证明烟煤 K
动力学模型, 并探讨了生物冶金的发展方向。生物浸出利用特定微生物细菌对某些金属硫化物的氧化作用, 使矿石中的 金属离子溶解、 富集, 浸出率可达0 堆浸 萃取 电解技术能从低品位矿石中把有价值的贵金属提取出来, 取得较高的 1 !, 2 2 经济效益和广阔的市场前景。 关键词: 生物浸出; 动力学模型; 细菌氧化; 反应器 中图分类号: 3 40 # 0 ) 0 文献标志码: 5 文章编号: ( ) . 6 " . 2 / / # . ! $ $ % $ # 2 $ $ % 6 2 $ #
[ ] 中美国! 全世界难处理金矿中有! % ! 的铜产量得自生物浸出法; % ! 左右采用生物浸出法 ! 。
I 生物浸出的基本原理
I ) I 浸矿微生物 生物浸出是利用特定微生物细菌对某些金属硫化物的氧化作用, 使矿石中的金属离子溶解、 富集的湿法
收稿日期: ! $ $ / 2 . $ 2 $ / ) 基金项目: 教育部科学技术研究重点项目 ( ) $ ! $ % ! ) 万方数据 作者简介: 汪 恂 ( ) , 男, 博士生) : . 0 " $ 2 A 2 D , C ( Q M # $ % # $ % ! . 6 # ) 8 ’ D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程结业论文
题目浸矿微生物技术
姓名李诚
所在学院化工学院
专业班级化学工程与工艺09级2班
学号2009301767
指导教师张东晨
二〇一 1 年4 月28 日学年论文指导教师评阅意见
浸矿微生物技术
摘要:概述了将微生物技术应用于矿业加工技术之中的原理,其中涉及到的菌种极其培养条件和各种石矿运用这种技术进行浸出的实例应用
关键词:矿业、微生物、浸出
大多数金属硫化矿如黄铜矿、辉铜矿、黄铁矿、黝铜矿、闪锌矿和某些金属氧化矿如铀矿、氧化锰矿难溶于稀硫酸等一般工业浸出剂。
但人们可利用某些特殊微生物,在合适条件下将上述矿物中的金属用稀硫酸浸出。
生物浸出的基本原理
生物浸出是利用微生物在生命活动中自身的氧化和还原特性,使资源中的有用成分氧化或还原,以水溶液中离子态或沉淀的形式与原物质分离,或靠微生物的代谢产物与矿物作用,溶解提取矿物有用成分。
矿石(硫化矿)的生物浸出是水溶液中多相体系的一个复杂过程,它同时包含了化学氧化、生物氧化和电化学氧化反应。
一般认为,在生物浸出过程中,微生物的作用表现在两方面,即直接氧化作用和间接氧化作用。
1、微生物的直接氧化作用
直接氧化作用是指微生物与目的矿物直接接触,加速固体矿物被氧化成可溶性盐的反应过程,如许多金属硫化矿物在浸矿微生物的直接氧化作用下会发生浸出反应。
直接氧化作用中细菌的“催化”功能是通过酶催化溶解机制来完成的,细菌在酶解矿物晶格的过程中获得生长所需的能量。
2、微生物的间接氧化作用
间接氧化作用是指通过微生物代谢产生的化学氧化剂溶解矿物的作用,如上述反应产生的硫酸亚铁又可作为能源被细菌氧化为硫酸高铁。
硫酸铁是一种强氧化剂,可通过化学氧化作用溶解矿物。
间接氧化作用是细菌代谢产物的化学溶解作用,细菌在其中的作用是再生氧化剂———硫酸高铁,完成生物化学循环,细菌可不与矿物接触。
在实际细菌浸出过程中,既有直接氧化作用,又有间接氧化作用,属于一种耦合作用。
生物浸出应用的菌种
用于生物浸出的微生物种类繁多,但主要可分为两大类:化能无机自养型和化能有机异养型。
化能无机自养型细菌主要用于有色金属硫化物的氧化浸出,化能有机异养型中的真菌、藻类等主要用于从硅酸盐和碳酸盐矿物中提取金属,如浸金。
已研究过用于生物浸出的微生物有20多种,分布于硫杆菌属、钩端螺菌属、硫化杆菌属、硫化叶菌属、酸菌属、生金球菌属和硫球菌属等。
其中比较重要的有以下几种:
1、硫杆菌属
硫杆菌属中最为重要的3个种为氧化亚铁硫杆菌、氧化硫硫杆菌和排硫硫杆菌。
(1)氧化亚铁硫杆菌
该菌是最常用的一种浸矿工程菌,革兰氏阴性、化能无机自养细菌。
靠氧化二价铁离子和还原态硫获得能源。
它栖居于含硫温泉、硫和硫化矿矿床、煤、含金矿矿床及硫化矿矿床氧化带中,能在上述矿的酸性矿坑水中存活。
菌体呈短杆状,细胞大小为直径0.3—0.5um,长 1.0—1.7um,在pH1.0—6.0范围内生长良好,最适生长pH范围为2.0—3.0,在2—40°下都能存活,但最适生长温度为28—35°。
它可以氧化几乎所有已知的硫化矿物(辰砂矿和辉铋矿除外)、元素硫、其他还原性硫化合物及二价铁。
它氧化二价铁的速率比在同样条件下空气中的氧的纯化学氧化速率快200000倍,氧化黄铁矿速率增加1000倍,氧化其他硫化物的速率可增加数十到数百倍。
(2)氧化硫硫杆菌
该菌常栖居于硫和硫化矿矿床,菌体呈圆头短杆状,常以单个、双个或短链状存在,细胞大小为宽0.5um,长1.0um,最适生长pH范围为2.0—2.5,最适生长温度为28—30°。
可以氧化元素硫和硫的一系列还原性化合物,不能氧化硫化物矿物。
在菌体两端各有一油滴,可将培养基中的硫溶人油滴之中再吸人体内进行氧化,可产生较多的酸,并有较强的耐酸性能。
研究还发现该菌能耐80—110V电压,抗电流密度4A/dm3。
(3)排硫硫杆菌
它是硫杆菌中较常见的一种,在液体硫代硫酸盐培养基上能生成小而圆的菌落。
由于生成硫沉淀,菌落呈黄色。
该菌通常只存活一星期左右,可将硫代硫酸盐氧化成元素硫,又将元素硫氧化成硫酸。
2、端螺菌属
包括一个中温菌种氧化亚铁钩端螺菌和一个中等嗜高温菌种嗜热氧化亚铁钩端螺菌。
其特征是有螺旋状端生鞭毛和黏液层,严格好氧,栖居于黄铜矿矿床矿堆等处,能氧化亚铁离子、黄铁矿和白铁矿,不能氧化硫和硫的其他还原性化合物。
最适生长pH为2.5—3.0,最适生长温度为30°。
所有的钩端螺菌属菌种都是严格好氧微生物。
它们专一性地通过氧化溶液中的亚铁离子或矿物中的亚铁离子来获取能量。
在浸矿系统中它们通常和氧化亚铁硫杆菌协同作用。
3、硫化杆菌属
该属菌种的生理及生化特性都很相似。
它们的能量来源于亚铁离子、硫磺及其他矿物,如硫铁矿、黄铜矿、砷黄铁矿、闪锌矿、亚锑酸盐、蓝铜矿和辉铜矿等。
培养基中加入0.01%—0.2%的酵母膏,则菌体生长会更好。
该属中所有种在混合营养(矿物质加上酵母膏、某些糖类、氨基酸或一些更为复杂的有机底物)条件下,比只在谷胱甘肽或酪蛋白水解产物的环境中更能良好生长。
该属菌均严格好氧且极度嗜酸,广泛分布于自然界,杆状、G-,主要集中在硫化矿物矿床及火山地带,其中热氧化硫化杆菌还可见于城市供热管道的锈蚀处。
4、嗜酸嗜热古生菌纲
在该类群中,一共有4个属的菌可以氧化硫化物,它们分别为硫化叶菌属、酸菌属、生金球菌属及硫球菌属。
该4属菌均为好氧菌,极度嗜热嗜酸,兼性无机化能自养菌。
呈球形,
直径1.0um,细胞不具运动性,不具有鞭毛。
在硫化叶菌表面有类纤毛结构,有助于细菌附着在矿粒表面。
在自养条件下能催化元素硫、二价铁离子及硫化物矿物的氧化,在含0.01%—0.02%酵母膏或其他有机物的混合培养条件下生长更快。
热酸硫化叶菌还可在厌氧条件下以Fe3+作电子受体氧化元素硫,其生长pH范围为1.0—5.9,最适生长pH为2.0—3.0,生长温度为 55—80°,最适生长温度为70°。
该类群微生物主要分布于高温硫磺泉中。
生物浸出的基本原理
生物浸出是利用微生物在生命活动中自身的氧化和还原特性,使资源中的有用成分氧化或还原,以水溶液中离子态或沉淀的形式与原物质分离,或靠微生物的代谢产物与矿物作用,溶解提取矿物有用成分。
矿石(硫化矿)的生物浸出是水溶液中多相体系的一个复杂过程,它同时包含了化学氧化、生物氧化和电化学氧化反应。
一般认为,在生物浸出过程中,微生物的作用表现在两方面,即直接氧化作用和间接氧化作用。
1、微生物的直接氧化作用
直接氧化作用是指微生物与目的矿物直接接触,加速固体矿物被氧化成可溶性盐的反应过程,如许多金属硫化矿物在浸矿微生物的直接氧化作用下会发生浸出反应。
直接氧化作用中细菌的“催化”功能是通过酶催化溶解机制来完成的,细菌在酶解矿物晶格的过程中获得生长所需的能量。
2、微生物的间接氧化作用
间接氧化作用是指通过微生物代谢产生的化学氧化剂溶解矿物的作用,如上述反应产生的硫酸亚铁又可作为能源被细菌氧化为硫酸高铁。
硫酸铁是一种强氧化剂,可通过化学氧化作用溶解矿物。
间接氧化作用是细菌代谢产物的化学溶解作用,细菌在其中的作用是再生氧化剂———硫酸高铁,完成生物化学循环,细菌可不与矿物接触。
在实际细菌浸出过程中,既有直接氧化作用,又有间接氧化作用,属于一种耦合作用。
微生物浸矿的应用实践
1、铜矿石的微生物浸出
细菌浸铜工艺分地面废石堆浸和地下就地浸出。
堆浸用于处理传统选冶技术难以处理的低品位矿、废矿、尾矿和表外矿,地下就地浸出用于品位高但无法采至地面的矿石。
黄铜矿是最主要的铜矿物,属四方晶系矿物,其晶格能比常见硫化物高很多,故较难浸出。
目前大多采用萃取一电积技术从浸出液中提取铜,微生物浸铜技术的成功提高了生物冶金的竞争力。
2、铀矿石的微生物浸出
细菌浸铀工艺主要采用地下就地浸出,其次还有堆浸和槽浸,其对象为低品位铀矿石和地下不能采出的富铀矿石。
铀的微生物浸出主要为间接氧化作用,在硫酸、硫酸高铁或硫杆菌属细菌存在下,不溶性四价铀转变成可溶性的六价铀,Fe2+是铀矿氧化反应的电子
传递者.浸出得到含铀溶液后用离子交换吸附或溶剂萃取的方法提取铀。
3、难处理金矿的生物氧化预处理
金矿资源中有1/3属于用传统氰化法难于提取的“难处理”金矿。
这类矿可分为3类:(1)含金硫化矿
金具有亲硫和亲铁的双重性质,故常常与硫化矿物共生,黄铁矿和砷黄铁矿(毒砂)是常见的载金矿物。
金常以固溶体或次显微形态包裹在其中。
直接氰化浸出时,包裹金无法与浸出剂直接接触。
(2)碳质金矿
金被碳质物包裹或与碳质物形成稳定配合物,阻碍用传统氰化法回收金。
(3)黏土型金矿
细菌氧化能破坏金的包裹体释放出金,是难处理金矿预处理的有效手段。
以含金砷黄铁矿的细菌氧化预处理为例,常用菌种为硫杆菌属,采用槽浸工艺。
溶于浸出液中的三价砷比五价砷毒性要大,故处理含砷矿石的工艺流程须考虑以生态环境可以接受的形式排放固态或液态的含砷废物。
对浸出液中砷的稳定存在形式目前尚存不同观点,表明微生物氧化预处理含砷金矿的原理还有待进一步研究。
参考文献
1、矿物加工机械振动学生物浸出——浸矿微生物2
2、微生物浸矿的理论与实践
3、资源微生物技术。