导数及其应用典型例题
高中数学专题 微专题4 导数的几何意义及函数的单调性

由 f(3x-2)<f(x2)可得x32x>-3x2->02,, 解得23<x<1 或 x>2, 因此不等式 f(3x-2)<f(x2)的解集为23,1∪(2,+∞).
跟踪训练3 (1)(2023·玉林模拟)设函数f(x)=ex-e1x-2x,若f(a-3)+ f(2a2)≤0,则实数a的取值范围是
专题一 函数与导数
微专题4
导数的几何意义及函数的单调性
考情分析
1.此部分内容是高考命题的热点内容.在选择题、填空题中多考 查导数的计算、几何意义,难度较小. 2.应用导数研究函数的单调性多在选择题、填空题靠后的位置 考查,难度中等偏上,属综合性问题.
思维导图
内容索引
典型例题
热点突破
PART ONE
则 f(x)的单调递增区间为12,-1a,单调递减区间为0,12,-1a,+∞. 2x-12
当 a=-2 时,f′(x)=- x ≤0 恒成立, f(x)的单调递减区间为(0,+∞),无单调递增区间. 当 a<-2 时,-1a<12, 由 f′(x)>0,得-1a<x<12;
由 f′(x)<0,得 0<x<-1a或 x>12,
则直线 l 的方程为 y-(3+ln x2)=x12(x-x2), 即 y=x12x+ln x2+2.
所以 ex1=x12,且 x1ex1+ex1+1=ln x2+2,
消去x2得(x1-1)( ex1-1)=0,
故x1=1或x1=0,
所以直线l的方程为y=ex+1或y=x+2.
跟踪训练1 (1)(2023·常德模拟)已知l为曲线y=a+xln x 在(1,a)处的切线,
导数洛必达法则7种例题

导数洛必达法则7种例题1、一次函数的导数洛必达法则:设y=f(x)为某函数,当x的变化量Δx趋近于零时,函数y的变化量Δy满足下式:$$\lim \limits_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=f'(x)$$2、几何意义:对于一元函数f(x),函数图像的斜率正好就是f'(x),而且x位置上的斜率正好等于f(x)的导数。
3、函数的连续性的应用:若二元函数F(x,y)满足一定的条件,关于x 的变量中存在某函数f(x),且f(x)的可导性有保证,则f(x)具有极限函数f'(x),由此可得:$$F(x, y) ~ \underset {y \to f(x)} \toL f'(x)$$4、极限符号的应用:在求出某函数f(x).f'(x)的极限值时,由于x变化量趋近于零,因此可将其表示为极限符号:$$f'(x)=\lim_{\Deltax\to 0}\frac{f\left(x+\Delta x\right)-f\left(x\right)}{\Delta x}$$5、二元函数的导数:F(x,y)为定义在⊿内的连续的二元函数,它满足有限差分式,对于常数C,则有:$$\frac{\partial F}{\partialx}=\lim_{\Delta x\to 0}\frac{F(x+\Delta x,y)-F(x-\Delta x,y)}{2\Deltax}=C$$6、定义极限的应用:假设F(x,y)为可导函数,其极限能够有意义:$$\frac{\partial F}{\partial x}=\lim_{\Delta x\to 0}\frac{F(x+\Delta x,y)-F(x-\Delta x, y)}{2\Delta x}=F'(x,y)$$7、其他函数求导数:若函数f(x)为多元函数,只要逐步求导就能求出任意次偏导数,对f(x)如此:$$\frac {\partial^2 f}{\partialx^2}=\lim_{\Delta x\to 0}\frac{f\left(x+\Delta x\right)+f\left(x-\Deltax\right)-2f\left(x\right)}{\Delta x^2}$$。
《导数的概念及其几何意义》典型例题

《导数的概念及其几何意义》典型例题深研1 导数的几何意义1.可导函数在0x x =处切线的斜率为此处函数的导数值.2.根据导数值的变化可确定原函数图象的变化情况. 考向1 由切线确定导数值例1(★)如图,函数()y f x =的图象在点P 处的切线方程是29y x =-+,点P 的横坐标是4,则(4)(4)f f +'=_______________.解析 ∵函数()f x 的图象在点P 处的切线为29y x =-+, ∴2(4)k f '=-=切.又 ∵点P 在切线29y x =-+上,∴(4)1f =,∴(4)(4) 1.f f +'=-① 答案 1-考向2 由切线特点确定函数图象②例2(★)已知函数()y f x =的图象如图所示,则其导函数()y f x '=的图象可能是___________.(填序号)解析 由()y f x =的图象及导数的几何意义可知,当x <0时,()f x '>0;当x =0时,()f x '=0;当x >0时,()f x '<0,故②符合. 答案 ② 方法技巧①1.由切线方程可确定函数()y f x =在0x 处的导数值,即()0f x k '=切. 2.切点为切线与曲线的公共点. 即时训练1.(1)(★★)已知函数()f x 在R 上可导,其部分图象如图所示,设(2)(1)21f f a -=-,则下列不等式正确的是( )A.(1)(2)f f a '<'<B.(1)(2)f a f '<<'C.(2)(1)f f a '<'<D.(1)(2)a f f <'<'解析 由题中图象可知,在区间(0,)+∞上,函数()f x 增长得越来越快,∴(1)f '(2)f <',∵(2)(1)21f f a -=-,∴通过作切线与割线可知(1)(2)f a f '<<',故选B.答案 B 方法技巧②导数的符号、曲线的升降、切线的斜率、切线的倾斜角之间的关系即时训练2.(★)()()()y f x y g x y h x ===,,的图象如图1所示:而图2是其对应导数的图象:则()y f x =的导数图象对应___________;()y g x =的导数图象对应___________;()y h x =的导数图象对应___________.解析 由导数的几何意义,知()f x 图象上任一点处的切线斜率均小于零且保持不变,故()y f x =的导数图象对应B ;()y g x =图象上任一点处的切线斜率均小于零,且在起始部分斜率值趋近负无穷,故()y g x =的导数图象对应C ;()y h x =图象上任一点处的切线斜率都大于零,且先小后大,故()y h x =的导数图象对应A. 答案 B ;C ;A深研2 求曲线的切线方程由于可导函数()f x 在0x x =处切线的斜率为0()f x ',从而可用点斜式确定切线方程.考向1 求过曲线上一点的切线方程 例3(★★)求曲线213y x x=+-在2x =处的切线方程. 解析 设()y f x =,则21()3f x x x=+-.2222(2)(2)11(2)32322114()224().2(2)14.2(2)y f x f x x x x x xx x x yx x x ∆=+∆-⎛⎫=+∆+--+- ⎪+∆⎝⎭=∆+∆+-+∆∆=∆+∆+∆∆∴=+∆-∆+∆-∵当x ∆无限趋近于0时,y x ∆∆无限趋近于115444-=, ∴曲线()y f x =在2x =处的切线斜率为154. 又2x =时,32y =,∴切点坐标为32,2⎛⎫ ⎪⎝⎭. ∴曲线在2x =处的切线方程为315(2)24y x -=-, 即154240x y --=.考向2 求过曲线外一点的切线方程例4(★★)求曲线2y x =过点(3,5)的切线方程.思路分析 先判断点(3,5)是否在曲线上,不在曲线上则需设切点坐标为(0x ,20x ),再利用(3,5)与(0x ,20x )连线的斜率等于0()f x '建立方程求0x ,从而确定切线斜率.解析 因为点(3,5)不在曲线上,所以设切点坐标为(0x ,20x ), 又()()()220000lim lim 22x x x x x f x x x x x∆→∆→+∆-'==+∆=∆,故切线斜率为02x ,则切线方程为()20002y x x x x -=-, 因为点(3,5)在切线上,所以()2000523x x x -=-,解得01x =或05x =,则切点坐标为(1,1)或(5,25),故切线方程为12(1)y x -=-或2510(5)y x -=-, 即210x y --=或10250x y --=. 主编点评求过某点的曲线的切线方程④时,需先设切点(0x ,0y ),再对()y f x =求导得出切线斜率()0f x ',从而得到含参的切线方程0y y -=()()00f x x x '-,最后代入已知点,从而求出切点坐标以及切线方程.即使已知点在曲线上,也不能按在某点处的切线方程求解,否则易漏解.⑤ 方法技巧③求曲线()y f x =在点()00,P x y 处的切线方程,其切线只有一条,点()00,P x y 在曲线()y f x =上,且是切点.切线方程为()()000y y f x x x -='-.如图1,在点()00,P x y 处的切线为1l ,如图2,在点()00,P x y 处的切线为(22l l 与曲线()y f x =有两个公共点不影响结果).即时训练3.(★★)已知3()21f x x x =-+,求曲线()y f x =在点(1,0)处的切线方程.解析 因为330()2()121()lim x x x x x x x f x x ∆→∆+-∆++-+-'=∆3220()3()32lim x x x x x x xx∆→∆+⋅∆+⋅∆-∆=∆ 220lim ()332x x x x x ∆→⎡⎤=∆+⋅∆+-⎣⎦ 232x =-,所以(1)321f '=-=, 所以切线的方程为1y x =-, 即10x y --=. 知识补充④求曲线()y f x =过点()00,P x y 的切线方程的步骤 第一步:设出切点坐标()()11,P x f x ';第二步:写出过()()11,P x f x '的切线方程()()()111y f x f x x x -='⋅-; 第三步:将点P 的坐标()00,x y 代入切线方程,求出1x ;第四步:将1x 的值代入方程()()11y f x f x -='()1x x ⋅-,由此即可得过点()00,P x y 的切线方程. 误区警示⑤此处点()00,P x y 可以在曲线()y f x =上,也可以不在曲线()y f x =上.如图1,过点()00,P x y (不在曲线()y f x =上)的切线12l l ,,如图2,过点(0P x ,0y )(在曲线()y f x =上)的切线34l l ,.即时训练4.(★★)求过点(-1,-2)且与曲线32y x x =-相切的直线方程.解析 33002()()2limlim x x y x x x x x x y x x∆→∆→∆+∆-+∆-+'==∆∆2220lim 233()23x x x x x x ∆→⎡⎤=--∆-∆=-⎣⎦. 设切点坐标为()3000,2x x x -,则切线方程为()320000223()y x x x x x -+=--.∵切线过点(1,2)--,∴()()32000022231x x x x --+=---,即320230x x +=,解得00x =或032x =-, ∴切点坐标为(0,0)或33,28⎛⎫- ⎪⎝⎭,当切点坐标为(0,0)时,切线斜率2k =,切线方程为20x y -=;当切点坐标为33,28⎛⎫- ⎪⎝⎭时,切线斜率23192324k ⎛⎫=-⨯-=- ⎪⎝⎭,切线方程为192(1)4y x +=-+,即194270x y ++=. 综上可知,过点(1,2)--且与曲线32y x x =-相切的直线方程为20x y -=或19x +4270y +=.考点3 导数几何意义的综合应用求解导数几何意义的综合应用问题的关键是对函数进行求导,利用题目所提供的直线的位置关系、斜率的范围等条件求解相关问题,此处常与函数、方程、不等式等知识相结合. 考向1 求切点坐标⑥例5(★★)在曲线2y x =上取一点,使得在该点处的切线; (1)平行于直线45y x =-; (2)垂直于直线2650x y -+=; (3)倾斜角为135︒.分别求出满足上述条件的点的坐标.思路分析 先求函数的导函数()f x ',再设切点()00,P x y ,由导数的几何意义知切点()00,P x y 处的切线的斜率为()0f x ',最后根据题意列方程,解关于0x 的方程即可求出0x ,又点()00,P x y 在曲线2y x =上,易得0y .解析 设()y f x =,则2200()()()()lim lim x x f x x f x x x x f x x x∆→∆→+∆-+∆-'==∆∆lim(2)2x x x x ∆→=+∆=.设()00,P x y 是满足条件的点.(1)因为点P 处的切线与直线45y x =-平行,所以024x =,解得0x 2=,所以04y =,即(2,4)P .(2)因为点P 处的切线与直线2650x y -+=垂直,且直线265x y -+0=的斜率为13, 所以01213x ⋅=-,解得032x =-,所以094y =,即39,24P ⎛⎫- ⎪⎝⎭. (3)因为点P 处的切线的倾斜角为135︒,所以切线的斜率为tan1351︒=-,即021x =-,解得012x =-,所以014y =,即11,24P ⎛⎫- ⎪⎝⎭.⑦知识补充⑥根据切线斜率求切点坐标的步骤 (1)设切点坐标为()00,x y ; (2)求导函数()f x '; (3)求切线的斜率()0f x ';(4)由斜率间的关系列出关于0x 的方程,解方程求0x ;(5)由点()00,x y 在曲线()f x 上,将()00,x y 代入解析式求0y ,即得切点坐标. 知识补充⑦求解本题注意方程思想的应用.切点坐标()00,x y 有两个变量,因此需建立两个方程求解. 即时训练5.(★)已知曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.解析 设点P 的坐标为()300,x x ,∵()()000limx f x x f x x∆→+∆-∆22300033()()lim x x x x x x x ∆→∆+∆+∆=∆ 22000lim 33()x x x x x ∆→⎡⎤=+∆+∆⎣⎦ 203x =,2033x =,解得01x =±,∴点P 的坐标是(1,1)或(1,1)--. 考向2 切线围成的三角形的面积问题例6(★★)已知直线1l 为曲线22y x x =+-在点(1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥. (1)求直线2l 的方程;(2)求由直线1l 、2l 和x 轴所围成的三角形的面积.解析(1)因为()2200()()22lim lim x x x x x x x x y y x x∆→∆→+∆++∆--+-∆'==∆∆21x =+,所以12113x y ='=⨯+=,所以直线1l 的方程为3(1)y x =-,即330x y --=. 设直线2l 与曲线22y x x =+-切于点()2,2B b b b +-,则2l 的方程为2(21)2y b x b =+--.因为12l l ⊥,所以1213b +=-,所以23b =-,所以直线2l 的方程为12239y x =--,即39220x y ++=.(2)由(1)知,联立330,39220,x y x y --=⎧⎨++=⎩解得1,65.2x y ⎧=⎪⎪⎨⎪=-⎪⎩所以直线1l 和2l 的交点坐标为15,62⎛⎫- ⎪⎝⎭.又易知1l 、2l 与x 轴的交点的坐标分别为22(1,0),03⎛⎫- ⎪⎝⎭、,所以所求三角形的面积125512523212S =⨯⨯-=.主编点评本题求解时应抓住两切线斜率的关系及切线斜率与导数的关系,构建方程组求解. 方法技巧求切线围成的三角形的面积时,关键是准确求得切线方程,然后分析围成的三角形的特点,进而求其面积.6.(★★)求曲线1(0)y x x x =->上一点()00,P x y 处的切线分别与x 轴、y 轴交于点,A B O 、是坐标原点,若△OAB 的面积为13,则0x =_____________.解析 ∵1(0)y x x x=->, ∴011lim x x x x x x x y x∆→⎡⎤⎛⎫+∆--- ⎪⎢⎥+∆⎝⎭⎣⎦'=∆011()lim x x x x x x x x∆→⎡⎤⎛⎫+∆-+- ⎪⎢⎥+∆⎝⎭⎣⎦=∆ 0()lim x x x x x x x∆→∆∆++∆=∆ 01lim 1()x x x x ∆→⎡⎤=+⎢⎥+∆⎣⎦ 211x=+, ∴切线的斜率为2011x +,则切线的方程为()00200111y x x x x x ⎛⎫-+=+- ⎪⎝⎭, 令0x =得02y x =-,令0y =得02021x x x =+,∴△OAB 的面积020********x S x x =⨯⨯=+,解得0x =(负根舍去).答案考向3 根据切线求参数值例7(★★)设函数32()91(0)f x x ax x a =+--<,若曲线()y f x =的斜率最小的切线与直线126x y +=平行,求a 的值.思路分析 先利用定义求导,结合二次函数求最值,最后结合切线斜率求a . 解析 ∵32()()()()9()1y f x x f x x x a x x x x ∆=+∆-=+∆++∆-+∆--()()3222391329(3)()()xax x x ax x x a x x +--=+-∆++∆+∆, ∴22329(3)()y x ax x a x x x∆=+-++∆+∆∆, ∴22220()lim 329399333x y a a a f x x ax x x ∆→∆⎛⎫'==+-=+---- ⎪∆⎝⎭. 由题意知()f x '的最小值是12-,∴29123a --=-,即29a =,∵0a <,∴3a =-.⑨ 主编点评本题得到()f x '的表达式是关于x 的二次函数,从而可利用二次函数求最值. 方法技巧⑨当题中涉及切线方程、切线的斜率(或倾斜角)、切点坐标等问题时,可利用导数的定义与几何意义迅速获解.遇到“切线的斜率最小、最大”问题时,通常只需求出导函数,再求其最值即可解决.即时训练⑦(★★)已知函数3()1f x x ax =++的图象在点(1,(1))f 处的切线过点(1,1)-,求a 的值.解析 函数3()1f x x ax =++的导函数为3320()()11()lim 3x x x a x x x ax f x x a x∆→⎡⎤+∆++∆+---⎣⎦'==+∆, ∴(1)3f a '=+,而(1)2f a =+,∴切线方程为2(3)(1)y a a x --=+-,∵切线方程过点(1,1)-,∴12(3)(11)a a --=+--,解得5a =-.。
高考导函数综合训练(含标准参考答案)

导函数的综合应用【典型例题】考点一、利用导数研究函数的零点或方程的根【例1】(2015·高考北京卷)设函数f(x)=-k ln x,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.(2)【变式训练2】已知函数f(x)=(e为自然对数的底数).(1)求函数f(x)的单调区间;(2)设函数φ(x)=xf(x)+tf′(x)+,存在实数x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,求实数t的取值范围.考点三与导函数有关的参数求解或求取值范围问题【例3】已知函数f(x)=ln x-.(2)M;【应用体验】1.函数f(x)=ax3+x恰有三个单调区间,则a的取值范围是__________.2.若函数f(x)=x+a sin x在R上递增,则实数a的取值范围为________.3.已知函数f (x )的定义域为R ,f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为( )A.(-3,-2)∪(2,3)B.(-,)C.(2,3)4.)5.,g ′(x )>01.已知曲线cos y ax x =在(22A .2πB .2π-C .1-πD .1π2.已知定义域为R 的偶函数()f x ,其导函数为()f x ',对任意[)0,x ∈+∞,均满足:()()2xf x f x '>-.若()()2g x x f x =,则不等式()()21g x g x <-的解集是()A .(),1-∞-B .1,3⎛⎫-∞ ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .()1,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭3.若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( )A.B .(-∞,3] C.D .[3,+∞)二、填空题4.a 12≤恒5.6.7y8.已知函数f (x )=ln x ++ax (a 是实数),g (x )=+1.(1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.B 组能力提升2.b 的3.2)为偶5.已知函数()()21x f x e x ax a =--+,其中a <1,若存在唯一的整数0x ,使得()0f x <0,则a 的取值范围是.(e 为自然对数的底数)6.若()x x f x e ae -=+为偶函数,则21(1)e f x e +-<的解集为_____________.三、解答题7.(2015·高考广东卷)设a>1,函数f(x)=(1+x2)e x-a.(1)求f(x)的单调区间;(2)证明:f(x)在(-∞,+∞)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1.【例题1】[解](1)由f(x)=-k ln x(k>0),得x>0且f′(x)=x-=.由f′(x)=0,解得x=.f(x)与f′(x)在区间(0,+∞)上的情况如下:∞);f(x)在x=处取得极小值f()=.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以≤0,从而k≥e.当k=e时,f(x)在区间(1,)上单调递减,且f()=0,所以x=是f(x)在区间(1,]上的唯一零点.,0000由u′(x)=1-≥0知,函数u(x)在区间(1,+∞)上单调递增,故0=u(1)<a0=u(x0)<u(e)=e-2<1,即a0∈(0,1).当a=a0时,有f′(x0)=0,f(x0)=φ(x0)=0.再由(1)知,f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,从而f(x)>f(x0)=0;又当x∈(0,1]时,f(x)=(x-a0)2-2x ln x>0.故x∈(0,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【例题2】解:(1)m=-1时,f(x)=(1-x)e x+x2,则f′(x)=x(2-e x),(2)假设存在x1,x2∈[0,1],使得2φ(x1)<φ(x2)成立,则2[φ(x)]min<[φ(x)]max.∵φ(x)=xf(x)+tf′(x)+e-x=,∴φ′(x)==-.①当t≥1时,φ′(x)≤0,φ(x)在[0,1]上单调递减,∴2φ(1)<φ(0),即t>3->1.②当t≤0时,φ′(x)>0,φ(x)在[0,1]上单调递增,∴2φ(0)<φ(1),即t<3-2e<0.③当0<t<1时,若x∈[0,t),φ′(x)<0,φ(x)在[0,t)上单调递减;若x∈(t,1],φ′(x)>0,φ(x)在(t,1]上单调递增,所以2φ(t)<max{φ(0),φ(1)},即2·<max,(*)③若-e<a<-1,令f′(x)=0得x=-a,当1<x<-a时,f′(x)<0,∴f(x)在(1,-a)上为减函数;当-a<x<e时,f′(x)>0,∴f(x)在(-a,e)上为增函数,∴f(x)min=f(-a)=ln(-a)+1=,∴a =-.综上所述,a =-.(3)∵f (x )<x 2,∴ln x -<x 2.又x >0,∴a >x ln x -x 3.令g (x )=x ln x -x 3,h (x )=g ′(x )=1+ln x -3x 2,1.【答案】C 【解析】令()cos y f x ax x ==,则()c o s s in f x a x a x x '=-,所以()cos sin 22222a a f a πππππ'=-=- 12=,解得1a =-π.故选C . 2.【答案】C【解析】试题分析:[)0,x ∈+∞时()()()()()22(2)0g x xf x x f x x f x xf x '''=+=+>,而()()2g x x f x =也为偶函数,所以()()()()2121|2||1||2||1|321013g x g x g x g x x x x x x <-⇔<-⇔<-⇔+-<⇔-<<,选C.3.解析:f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]12k ≤12≥. 令()333x g x x x e =-+-,则()233(1)(33)x x g x x x x e e'=--=-++,所以当(,1)x ∈-∞时,()0g x '<,当(1,)x ∈+∞时,()0g x '>,所以()g x 在(,1)x ∈-∞上是减函数,在(1,)x ∈+∞是增函数,故()()min 111g x g e==-.6.【答案】),1()1,(+∞⋃--∞【解析】()()()()()22''2'211221'()222x g x f x g x x f x x x f x f x ⎡⎤=--∴=⋅-=⋅-<⎣⎦ ()'2210f x ∴⋅-<()'0g x ∴>得0x <,()'0g x <得0x >()()g x g x -=可知函数为偶函数()()()111010g f g =-=∴-=,结合()g x 的函数图像可知()0g x <的解集为),1()1,(+∞⋃--∞,即不等式212)(22+<x x f 的解集为),1()1,(+∞⋃--∞ 7.解:(1)f ′(x )=x -(a +b )+=.(a ,(a ,+∞)点,不合题意.综上所述,a 的取值范围为.8.解:(1)当a =2时,f (x )=ln x ++2x ,x ∈(0,+∞),f ′(x )=-+2==,令f ′(x )=0,则x =-1或x =.当x ∈时,f ′(x )<0;当x ∈时,f ′(x )>0,所以f (x )在x =处取到最小值,最小值为3-ln2;无最大值.(2)f ′(x )=-+a =,x ∈[1,+∞),显然a ≥0时,f ′(x )≥0,且不恒等于0,所以函数f (x )在[1,+∞)上是单调递增函数,符合要求.当a <0时,令h (x )=ax 2+x -1,易知h (x )≥0在[1,+∞)上不恒成立,所以函数f (x )在[1,+∞)上只能是单调递减函数.a 无试题分析:设12()()x g x e f x =,则11122211'()'()()(()2'())22x x x g x e f x e f x e f x f x =+=+,则已知'()0g x >,所以()g x 是增函数,所以(1)(0)g g >,即12(1)(0)e f f >,(1)f>A . 考点:导数与函数的单调性.2.【答案】C【解析】 试题分析:由题意,得2212()ln ()()x x b x x b f x x +----'=,则()()f x xf x +'=2ln ()x x b x+--212()ln ()x x b x x b x +----=12()x x b x +-.若存在1[,2]2x ∈,使得()'()f x x f x >-⋅,则12()0x x b +->,所以12b x x <+.设1()2g x x x=+,则222121()122x g x x x -'=-=,当122x ≤≤时,()g x '<递增,94=,)x 是单)1=,所以(g )∞,故试题分析:验证发现,当x=1时,将1代入不等式有0≤a+b ≤0,所以a+b=0,当x=0时,可得0≤b ≤1,结合a+b=0可得-1≤a ≤0,令f (x )=x 4-x 3+ax+b ,即f (1)=a+b=0,又f ′(x )=4x 3-3x 2+a ,f ′′(x )=12x 2-6x ,令f′′(x)>0,可得x>12,则f′(x)=4x3-3x2+a在[0,12]上减,在[12,+∞)上增,又-1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0,又x≥0时恒有430x x ax b≤-++,结合f(1)=a+b=0知,1必为函数f(x)=x4-x3+ax+b的极小值点,也是最小值点.y ax =-12 x>-时,1时,考点:利用导数研究函数的极值;函数的零点.6.【答案】(0,2)【解析】试题分析:由()x x f x e ae -=+为偶函数可得1a =,所以()x x f x e e -=+.因为()x x f x e e -'=-),0(+∞上为增函数,所以()(0)0f x f ''>=,所以函数()f x 在),0(+∞上为增函数,所以21(1)e f x e+-<等价于1(1)f x e e --<+,即(1)(1)f x f -<,所以111x -<-<,所以02x <<. 考点:1、函数的奇偶性;2、函数的单调性.7.解:(1)f ′(x )=2x e x +(1+x 2)e x =(x 2+2x +1)e x =(x +1)2e x ≥0,故f (x )是R 上的单调(2)ln 2a )a(3)0,即8.=2,设h (x )=f (x )-g (x )=(x +1)ln x -,当x ∈(0,1]时,h (x )<0,又h (2)=3ln2-=ln8->1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0.因为h ′(x )=ln x ++1+,所以当x ∈(1,2)时,h ′(x )>1->0,当x∈[2,+∞)时,h′(x)>0,所以当x∈(1,+∞)时,h(x)单调递增.所以k=1时,方程f(x)=g(x)在(k,k+1)内存在唯一的根.(3)由(2)知,方程f(x)=g(x)在(1,2)内存在唯一的根x0,且x∈(0,x0)时,f(x)<g(x),x∈(x0,+∞)时,f(x)>g(x),所以m(x)=。
2.2导数的概念及其几何意义(讲义+典型例题+小练)(解析版)

2.2导数的概念及其几何意义(讲义+典型例题+小练)一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆例1:1.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( ) A .4π B .3π C .34π D .23π 【答案】C 【分析】根据导数的概念可得()21f '=-,再利用导数的几何意义即可求解. 【详解】 因为()()()022lim222x f x f x f x∆→+∆--∆'==-∆,所以()21f '=-,则曲线()y f x =在点()()22f ,处的切线斜率为1-,故所求切线的倾斜角为34π. 故选:C2.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2【分析】由已知结合导数的定义即可直接求解. 【详解】解:因为函数()y f x =在0x x =处的导数为1, 则()()()()()0000000111limlim 2222x x f x x f x f x x f x f x x x ∆→∆→+∆-+∆-'===∆∆.故选:B . 【点睛】本题考查导数的概念,涉及极限的性质,属于基础题.举一反三:1.设()f x 是可导函数,且()()000lim 2x f x x f x x∆→+∆-=-∆,则0()f x '=( )A .2B .1-C .1D .2-【答案】D 【分析】由导数的定义可得()()0000lim ()x f x f x f x x x∆→+-'=∆∆,即可得答案.【详解】 根据题意,()()0000lim()2x f x f x f x x x∆→∆+-'==-∆,故0()2f x '=-. 故选:D . 【点睛】本题考查导数的定义,属于基础题. 2.若()02f x '=,则()()000lim2h f x h f x h→+-=______.【答案】1 【解析】 【分析】根据导数的几何定义即可计算.()()()()()000000011limlim 1222h h f x h f x f x h f x f x h h →→+-+-'===.故答案为:1.二.导数的几何意义:函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
导数大题典型例题

导数大题典型例题《导数大题那些事儿》嘿,你知道吗?导数大题就像一座神秘的大山,我们这些小学生可能现在还不能完全攀登上去,但就像看远处的高峰一样,也能看出个大概,觉得特别神奇呢!我有个哥哥,他上高中,每次看到他做导数大题,那表情就像在战场上和超级大怪兽战斗一样。
他皱着眉头,眼睛紧紧盯着本子,手里的笔在纸上不停地写啊算啊。
有一次我就凑过去问他:“哥,这导数大题到底是啥呀?咋看起来这么复杂呢?”哥哥叹了口气说:“这你就不懂了吧,导数啊,就像是一个魔法棒,可以知道函数的变化情况呢。
”我当时眼睛就瞪大了,就像听到了超级英雄有新的超能力一样。
我又追问:“那怎么个魔法法呢?”哥哥指着一道例题说:“你看这个函数,就好比是一辆汽车在路上跑,导数呢就是这个汽车的速度表。
它能告诉我们汽车在每个点的速度是多少,是加速还是减速。
”我似懂非懂地点点头,心里想这导数还真像个超级厉害的小助手呢。
比如说这道例题:已知函数f(x)=x²+2x,求这个函数的导数。
哥哥就开始给我讲啦,他说求导数就像拆礼物一样,要按照一定的规则来。
对于x的幂函数求导呢,就把幂次拿下来当成系数,然后幂次再减1。
那对于f(x)=x²+2x,x²的导数就是2x,2x的导数就是2,所以这个函数的导数f'(x)=2x + 2。
我就觉得很奇怪,我问哥哥:“为啥要这样算呢?这就像在玩一种奇怪的游戏规则。
”哥哥笑着说:“这可不是奇怪的游戏规则,这是数学家们经过很久很久才发现的规律呢,就像探险家发现宝藏的路线一样,我们只要按照这个路线走,就能求出导数。
”还有更复杂一点的例题呢。
像函数y = sinx,求它的导数。
哥哥说这个就像在探索一个神秘的宝藏,sinx的导数是cosx,这就好像是打开了一扇神秘的门,里面藏着的就是这个答案。
我当时就想,这数学世界可真像一个充满神秘魔法的城堡啊,导数就是打开城堡里不同房间的钥匙。
我问哥哥:“那这个sinx的导数为啥就是cosx呢?”哥哥挠挠头说:“这就需要用到更高级的数学知识啦,等你长大就会慢慢明白的。
妙用洛必达法则-2023年新高考数学导数压轴题(解析版)

妙用洛必达法则【典型例题】例1.已知f(x)=(x+1)ln x.(1)求f(x)的单调区间;(2)若对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立,求a的取值范围.【解析】解:(1)f(x)的定义域为(0,+∞),f′(x)=ln x+1+1 x,令g(x)=ln x+1+1x(x>0),则g (x)=1x-1x2=x-1x2所以当0<x<1时,g (x)<0;当x>1时,g (x)>0,所以g(x)在(0,1)单调递减,在(1,+∞)单调递增,所以x>0时,g(x)>g(1)=2>0,即f(x)在(0,+∞)上单调递增,所以f(x)的增区间为(0,+∞),无减区间.(2)对任意x≥1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x≥1,ln x-a x-1x≤0恒成立.当x=1,a∈R对任意x>1,不等式xf(x)x+1-ax+a≤0恒成立等价于对任意x>1,a≥x ln xx2-1恒成立.记m(x)=x ln xx2-1(x>1),则m (x)=(1+ln x)(x2-1)-2x2ln x(x2-1)2=x2-1-(1+x2)ln x(x2-1)2=1 x2+11-2x2+1-ln x (x2-1)2,记t(x)=1-21+x2-ln x(x>1),则t (x)=4x(1+x2)2-1x=4x2-(1+x2)2x(1+x2)2=-(1-x2)2x(1+x2)2<0,所以t(x)在(1,+∞)单调递减,又t(1)=0,所以,x>1时,t(x)<0,即m (x)<0,所以m(x)在(1,+∞)单调递减.所以m(x)max<m(1)=limx→1x ln xx2-1=limx→1x ln xx+1-0x-1=x ln xx+1x=1=x+1-ln x(x+1)2x=1=12,综上所述,a的取值范围是12,+∞.例2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)极值点的个数,并说明理由;(3)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】解:(1)当a=1时,切点为(1,ln2),则f′(x)=1x+1+2x-1,所以f′(1)=32,切线方程为y-ln2=32(x-1),即3x-2y+2ln2-3=0,所以切线方程为:3x-2y+2ln2-3=0;(2)由题意可知,函数f(x)的定义域为(-1,+∞),则f′(x)=1x+1+a(2x-1)=2ax2+ax-a+1x+1,令g(x)=2ax2+ax-a+1,x∈(-1,+∞),①当a=0时,f′(x)>0,函数f(x)在(-1,+∞)上单调递增,无极值点,②当a>0时,△=a(9a-8),当0<a≤89时,△≤0,g(x)≥0,f′(x)≥0,所以f(x)在(-1,+∞)上单调递增,无极值点,当a>89时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1<x2,因为x1+x2=-12,x1<-14,x2>-14,g(-1)=1>0,所以-1<x1<-14,因为x∈(-1,x1),(x2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增,x∈(x1,x2)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有两个极值点,当a<0时,△>0,设方程2ax2+ax-a+1=0的两个根,x1,x2,且x1=-a-9a2-8a4a,x2=-a+9a2-8a4a,此时x1>x2,因为g(-1)=1>0,所以x2<-1,所以,x∈(-1,x1)时,g(x)>0,f′(x)>0,函数f(x)单调递增,当x∈(x2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减,所以函数有一个极值点,综上可知,当a<0时,函数f(x)有一个极值点;当0≤a≤89时,函数f(x)无极值点;当a>89时,函数f(x)有两个极值点;(3)当0≤a≤89时,函数f(x)在(0,+∞)上单调递增,因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当89<a≤1时,g(0)>0,得x2<0,所以函数f(x)在(0,+∞)上单调递增,又因为f(0)=0,所以x∈(0,+∞)时,f(x)>0,符合题意,当a>1时,由g(0)<0,得x2>0,所以x∈(0,x2)时,函数f(x)单调递减,因为f(0)=0,所以x∈(0,x2)时,f(x)<0时,不符合题意,当a<0时,设h(x)=x-ln(x+1),因为x∈(0,+∞)时,h′(x)=1-1x+1=xx+1>0,所以h(x)在(0,+∞)上单调递增,所以当x∈(0,+∞)时,h(x)>h(0)=0,即h(x+1)<x,可得f(x)<x+a(x2-x)=ax2+(1-a)x,当x>1-1a时,ax2+(1-a)x<0,此时f(x)<0,不合题意,综上,a的取值范围为[0,1].例3.已知函数f(x)=x2-mx-e x+1.(1)若函数f(x)在点(1,f(1))处的切线l经过点(2,4),求实数m的值;(2)若关于x的方程|f(x)|=mx有唯一的实数解,求实数m的取值范围.【解析】解:(1)f (x)=2x-m-e x,∴在点(1,f(1))处的切线l的斜率k=f (1)=2-e-m,又f(1)=2-e-m,∴切线l的方程为y-(2-e-m)=(2-e-m)(x-1),即l:y=(2-e-m)x,由l经过点(2,4),可得4=2(2-e-m)⇒m=-e.(2)证明:易知|f(0)|=0=m×0⇒x=0为方程的根,由题只需说明当x>0和x<0时原方程均没有实数解即可.①当x>0时,若m<0,显然有mx<0,而|f(x)|≥0恒成立,此时方程显然无解,若m=0,f(x)=x2-e x+1⇒f (x)=2x-e x,f (x)=2-e x,令f (x)>0⇒x<ln2,故f (x)在(0,ln2)单调递增,在(ln2,+∞)单调递减,故f (x)<f (ln2)=2ln2-2<0⇒f(x)在(0,+∞)单调递减⇒f(x)<f(0)=0,从而|f(x)|>0,mx=0×x=0,此时方程|f(x)|=mx也无解.若m>0,由|f(x)|=mx⇒m=x+1x-e xx-m,记g(x)=x+1x-e xx-m,则g (x)=(x-1)(x+1-e x)x2,设h(x)=x+1-e x,则h (x)=1-e x<0有(0,+∞)恒成立,∴h(x)<h(0)=0恒成立,故令g (x )>0⇒0<x <1⇒g (x )在(0,1)上递增,在(1,+∞)上递减⇒g (x )≤g (1)=2-e -m <0⇒|g (x )|≥e -2+m >m ,可知原方程也无解,由上面的分析可知x >0时,∀m ∈R ,方程|f (x )|=mx 均无解.②当x <0时,若m >0,显然有mx <0,而|f (x )|≥0恒成立,此时方程显然无解,若m =0,和①中的分析同理可知此时方程|f (x )|=mx 也无解.若m <0,由|f (x )|=mx ⇒-m =x +1x -e x x-m,记g (x )=x +1x -e x x -m ,则g(x )=(x -1)(x +1-e x )x 2,由①中的分析知h (x )=x +1-e x <0,故g (x )>0在(-∞,0)恒成立,从而g (x )在(-∞,0)上单调递增,当x →0时,g (x )→lim x →0-g (x )=lim x →0-x 2+1-e x x -m =lim x →0-2x -e x1-m =-1-m ,如果-1-m ≤0,即m ≥-1,则|g (x )|>m +1,要使方程无解,只需-m ≤m +1⇒m ≥-12,即有-12≤m <0如果-1-m >0,即m <-1,此时|g (x )|∈[0,+∞),方程-m =|g (x )|一定有解,不满足.由上面的分析知x <0时,∀m ∈-12,+∞ ,方程|f (x )|=mx 均无解,综合①②可知,当且仅当m ∈-12,+∞ 时,方程|f (x )|=mx 有唯一解,∴m 的取值范围为-12,+∞ .【同步练习】1.设函数f (x )=e x -1-x -ax 2,(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.【解析】(1)a =0时,f (x )=e x -1-x ,f '(x )=e x -1.当x ∈(-∞,0)时,f '(x )<0;当x ∈(0,+∞)时,f '(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加.(2)当x =0时,f (x )=0,对于任意实数a ,f (x )≥0恒成立;当x >0时,f (x )≥0等价于a ≤e x -1-x x 2,令g (x )=e x -x -1x 2(x >0),则g(x )=xe x -2e x +x +2x 3,令h (x )=xe x -2e x +x +2(x >0),则h (x )=xe x -e x +1,h (x )=xe x >0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,所以g (x)>0,g(x)在(0,+∞)上为增函数.而limx→0+(e x-1-x)=0,limx→0+(x2)=0,由洛必达法则知,lim x→0+e x-1-xx2=limx→0+e x-12x=limx→0+e x2=12,故a≤12.综上得a的取值范围为-∞,1 2.2.设函数f(x)=ln(x+1)+a(x2-x),其中a∈R.(1)讨论函数f(x)极值点的个数,并说明理由;(2)若∀x>0,f(x)≥0成立,求a的取值范围.【解析】(1)f(x)=ln(x+1)+a(x2-x),定义域为(-1,+∞)f (x)=1x+1+a(2x-1)=a(2x-1)(x+1)+1x+1=2ax2+ax+1-ax+1,当a=0时,f (x)=1x+1>0,函数f(x)在(-1,+∞)为增函数,无极值点.设g(x)=2ax2+ax+1-a,g(-1)=1,Δ=a2-8a(1-a)=9a2-8a,当a≠0时,根据二次函数的图像和性质可知g(x)=0的根的个数就是函数f(x)极值点的个数.若Δ=a(9a-8)≤0,即0<a≤89时,g(x)≥0,f(x)≥0函数在(-1,+∞)为增函数,无极值点.若Δ=a(9a-8)>0,即a>89或a<0,而当a<0时g(-1)≥0此时方程g(x)=0在(-1,+∞)只有一个实数根,此时函数f(x)只有一个极值点;当a>89时方程g(x)=0在(-1,+∞)都有两个不相等的实数根,此时函数f(x)有两个极值点;综上可知当0≤a≤89时f(x)的极值点个数为0;当a<0时f(x)的极值点个数为1;当a>89时,f(x)的极值点个数为2.(2)函数f(x)=ln(x+1)+a(x2-x),∀x>0,都有f(x)≥0成立,即ln(x+1)+a(x2-x)≥0恒成立,设h(x)=-ln x+1x2-x,则h (x)=-1x+1(x2-x)+(2x-1)ln(x+1)(x2-x)2=(2x-1)-x2-x(2x-1)(x+1)+ln(x+1)(x2-x)2,设φ(x)=-x2-x(2x-1)(x+1)+ln(x+1),则φ (x)=(x2-x)(4x+1)(2x-1)2(x+1)2,所以x∈0,1 2和x∈12,1时,φ (x)<0,所以φ(x)在对应区间递减,x∈(1,+∞)时,φ (x)>0,所以φ(x)在对应区间递增,因为φ(0)=0,limx→12+-x2-x(2x-1)(x+1)>0,φ(1)=ln2>0,所以x∈(0,1)和x∈(1,+∞)时,h (x)>0,所以h(x)在(0,1)与(1,+∞)上递增.当x∈0,1时,x2-x<0,所以a≤-ln x+1x2-x,由h(x)的单调性得,a≤limx→0-ln x+1x2-x=limx→0-1x+12x-1=limx→0-12x-1x+1=1;当x=1时,f(x)=0,恒成立;当x∈1,+∞时,x2-x>0,所以a≥-ln x+1x2-x,由h(x)的单调性得,所以a≥-ln x+1x2-x=limx→+∞-ln x+1x2-x=limx→+∞-1x+12x-1=limx→+∞-12x-1x+1=0,综上,a∈0,13.已知函数f(x)=e x,g(x)=bx+1,若f(x)≥g(x)对于任意x∈R恒成立,求b的取值集合.【解析】e x≥bx+1恒成立,即e x-1≥bx.当x=0时显然成立,即b∈R.当x>0时,b<e x-1x,令F(x)=e x-1x,则F(x)=e x(x-1)+1x2,令G(x)=e x(x-1)+1,则G (x)=xe x>0,所以G(x)递增,所以G(x)>G(0)=0,所以F (x)在(0,+∞)上恒成立.所以F(x)在(0,+∞)上递增,根据洛必达法则得,limx→0+e x-1x=limx→0+e x1=1,所以b≤1.同理,当x<0时,b≥1.综上所述,b的取值集合为1 .4.设函数f(x)=ln(x+1),g(x)=xf (x),x≥0,其中f (x)是f(x)的导函数,若f(x)≥ag(x)恒成立,求实数a的取值范围.【解析】已知f(x)≥ag(x)恒成立,即ln(x+1)≥axx+1恒成立.当x=0时,a为任意实数,均有不等式恒成立.当时x>0,不等式变形为a≤(x+1)ln(x+1)x恒成立.令h(x)=(x+1)ln(x+1)x,则h(x)=x-ln(x+1)x2,再令φ(x)=x-ln(x+1),则φ (x)=xx+1.因为x>0,所以φ (x)>0,所以φ(x)在(0,+∞)上递增,从而有φ(x)>φ(0)=0.进而有h (x)>0,所以h(x)在(0,+∞)上递增.当x→0+时,有(x+1)ln(x+1)→0,x→0,由洛必达法则得limx→0+h(x)=limx→0+(x+1)ln(x+1)x=limx→0+ln(x+1)+11=1,所以当x→0+时,h(x)→1.所以a≤(x+1)ln(x+1)x恒成立,则a≤1.综上,实数的取值范围为(-∞,1].5.若不等式sin x>x-ax3对于x∈0,π2恒成立,求a的取值范围.【解析】当x∈0,π2时,原不等式等价于a>x-sin xx3.记f(x)=x-sin xx3,则f (x)=3sin x-x cos x-2xx4.记g(x)=3sin x-x cos x-2x,则g (x)=2cos x+x sin x-2.因为g (x)=x cos x-sin x=cos x(x-tan x),g (x)=-x sin x<0,所以g (x)在0,π2上单调递减,且g (x)<0,所以g (x)在0,π2上单调递减,且g (x)<0.因此g(x)在0,π2上单调递减,且g(x)<0,故f (x)=g(x)x4<0,因此f(x)=x-sin xx3在0,π2上单调递减.由洛必达法则有lim x→0f(x)=limx→0x-sin xx3=limx→01-cos x3x2=limx→0sin x6x=limx→0cos x6=16即当x→0时,g(x)→16,即有f(x)<16.故a≥16时,不等式sin x>x-ax3对于x∈0,π2恒成立.6.设函数f(x)=1-e-x.设当x≥0时,f(x)≤xax+1,求a的取值范围.【解析】应用洛必达法则和导数由题设x≥0,此时f(x)≥0.(1)当a<0时,若x>-1a,则xax+1<0,f(x)≤xax+1不成立;(2)当a≥0时,当x≥0时,f(x)≤xax+1,即1-e -x≤xax+1;若x=0,则a∈R;若x>0,则1-e-x≤xax+1等价于1-e-xx≤1ax+1,即a≤xe x-e x+1xe x-x.记g(x)=xe x-e x+1xe x-x,则g (x)=e2x-x2e x-2e x+1xe x-x2=e x xe x-x 2e x-x2-2+e-x.记h(x)=e x-x2-2+e-x,则h (x)=e x-2x-e-x,h (x)=e x+e-x-2>0.因此,h (x)=e x-2x-e-x在(0,+∞)上单调递增,且h (0)=0,所以h (x)>0,即h(x)在(0,+∞)上单调递增,且h(0)=0,所以h(x)>0.因此g (x)=e xxe x-x2h(x)>0,所以g(x)在(0,+∞)上单调递增.由洛必达法则有lim x→0g(x)=limx→0xe x-e x+1xe x-x=limx→0xe xe x+xe x-1=limx→0e x+xe x2e x+xe x=12,即当x→0时,g(x)→12,即有g(x)>12,所以a≤12.综上所述,a的取值范围是-∞,12.。
(完整版)导数应用题

(完整版)导数应用题
导数应用题
导数是微积分中的一个重要概念,它在物理学、经济学等学科
中有广泛的应用。
下面是几个关于导数应用的题目。
题目一:速度和加速度
一个物体随时间 t 的位移函数为:s(t) = 2t^3 - 3t^2 + 4t - 6。
求:
1. 物体在 t=2 时的速度;
2. 物体在 t=2 时的加速度。
题目二:边际利润
某公司生产某种产品的总成本和销售量之间的关系由函数 C(x) = 40x^2 - 10x + 200 决定,其中 x 表示销售量(单位:千件)。
产
品的销售价格为 500 元/件。
求:
1. 销售量为 10 千件时的总成本;
2. 销售量为 10 千件时的边际利润(边际利润定义为每增加一
单位销售量所带来的额外利润)。
题目三:物体的高度
一颗子弹以初速度 v0 被发射成 60°角度与水平面成的抛体轨迹。
子弹的飞行轨迹可以用函数 h(t) = -5t^2 + v0*sin(60°)*t 表示,
其中h(t) 表示子弹的高度(单位:米),t 表示时间(单位:秒)。
求:
1. 子弹飞行的最高点的高度;
2. 子弹从发射到达最高点的时间。
题目四:排队等候时间
某银行服务窗口的等候时间服从指数分布,平均等候时间为 10 分钟。
一位客户进入银行后等候 8 分钟后决定离开,请问他的等待
时间与等候时间之差服从的概率分布是什么?
以上是关于导数应用的几个题目,希望能帮助到你。
如果有任何疑问,请随时提问。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 导数及其应用1.1 变化率与导数【知识点归纳】1.平均变化率:2.瞬时速度:3.导数及导函数的概念:4.导数的几何意义:拓展知识:5.平均变化率的几何意义:6.导数与切线的关系:【典型例题】题型一 求平均变化率:例 1.已知函数2()21y f x x ==-的图像上一点(1,1)及其邻近一点(1,1)x y +∆+∆,则y x∆∆=_______.变式训练:1.以00(0)v v >速度竖直向上抛出一物体,t 秒时的高度为201()2s t v t gt =-,求物体在0t 到0t t +∆这段时间的平均速度v .2.求正弦函数sin y x =在0x =和2x π=附近的平均变化率,并比较他们的大小.题型二 实际问题中的瞬时速度例 2 已知质点M 按规律223s t =+做直线运动(位移单位:cm ,时间单位:s )(1)当2,0.01t t =∆=时,求s t ∆∆;(2)当2,0.001t t =∆=时,求s t∆∆; (3)求质点M 在t=2时的瞬时速度.题型三 求函数的导数及导函数的值例 3求函数1y x x=-在1x =处的导数.题型四 曲线的切线问题例 4 (1)已知曲线22y x =上一点A (1,2),求点A 处的切线方程.(2)求过点(-1,-2)且与曲线32y x x =-想切的直线方程.(3)求曲线321()53f x x x =-+在x=1处的切线的倾斜角. (4)曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.1.2 导数的计算【知识点归纳】1.常见函数的导数:2.基本初等函数的导数公式:3.导数的运算法则:4.复合函数的导数:【典型例题】题型 一 基本初等函数导数公式运用例1 给出下列结论: ①1(cos )sin 662ππ'=-=-;②若21y x=,则32y x -'=-;③若()3f x x =,则[(1)]3f ''=;④.若y =y '= 其中正确的是_________________.题型 二 导数运算法则的应用例 2 求下列函数的导数:(1)531253y x x =+;(2)lg x y x e =-;(3cos x ;(4)sin cos 22x x y x =-.变式训练:判断下面的求导是否正确,如果不正确,加以改正.2221cos 2(1cos )sin ()x x x x x x x +++'=题型 三 复合函数求导的应用例 7 求下列函数的导数.(1)3(1cos 2)y x =+;(2)21siny x=.变式训练:求函数2(2y x =-题型 四 切线方程及应用例4 曲线sin x y x e =+在点(0,1)处的切线方程是?变式训练:曲线32y x x =+-在P 处的切线平行于直线41y x =-,则点P 的坐标为_________.题型 五 利用导数求参数问题例5 若曲线3y x ax =+在坐标原点处的切线方程是20x y -=,则实数a=_________变式训练:若函数()xe f x x=在x=a 处的导数值为函数值互为相反数,求a 的值题型 六 对数求导数的应用(选讲)例6 求下列函数的导数(1)(1)(2)(3)(3)y x x x x =--->;(2)(1)(2)(3)1()212x x x y x x +++=>-+;题型 七 求导数的实际应用1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数【知识点归纳】1.函数的单调性与其导数的关系:2.利用导数求函数的单调区间:3.导数的绝对值的大小与图像的关系(选讲):【典型例题】题型 一 里用导数的信息确定函数大致图像例1 已知导函数()f x '的下列信息:当23x <<时,()0f x '<; 当3x >或2x <时,()0f x '>;当3x =或2x =时,()0f x '=;试画出函数f (x )图像的大致形状.题型 二 判断或者证明函数的单调性例2 试判断函数()ln f x x x =+在其定义域上的单调性.变式训练:证明:函数ln ()x f x x=在区间(0,2)上是单调递增函数.题型 三 求函数的单调性例3 确定函数32()267f x x x =-+的单调区间.变式训练:求函数3y x x =-的单调性.题型 四 含有参数的函数的单调性例4 已知函数2()ln (2)f x x ax a x =-+-,讨论f (x )的单调性.变式训练:已知函数1()2ax f x x +=+在(2,)-+∞内单调递增,求实数a 的取值范围.1.3.2 导数的极值与导数【知识点归纳】1.导数的极值的概念:2.导数的极值的判断和求法:【典型例题】题型 一 求函数的极值例1 求下列函数的极值:(1)276y x x =-+; (2)2ln y x x =.变式训练:设32()1f x x ax bx =+++的导数()f x '满足(1)2,(2)f a f b ''==-,其中常数,a b R ∈.(1)求曲线()y f x =在点(1,(1))f 处的切线方程.(2)设()()xg x f x e -'=,求函数()g x 的极值.题型 二 判断函数极值点的情况例2 判断下列函数有无极值,若有极值,请求出极值;如果没有极值,请说明理由.(1)31()43f x x =+; (2)321()43f x x x x =++; (3)23()1(2)f x x =--.变式训练:设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数f (x )没有极值点,当0ab <时,函数f (x )有且只有一个极值点,并求出极值.题型 三导函数的图像与函数极值的关系 例3 函数f (x )的定义域为开区间(a ,b ),导函数f′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点的个数为( )A 1个 B.2个 C.3个 D.4个题型 四 极值的逆向问题例4 已知函数44()ln (0)f x ax x bx c x =+->在x=1处取得极值-3-c ,其中a ,b 为常数.(1)试确定a ,b 的值.(2)讨论函数f (x )的单调区间.综上:若说明函数没有极值,一般不讨论有无导数,而是在区间上只有一个单调性,没有“拐点”.1.3.3 函数的最大小值与导数【知识点归纳】1.最大小值与极值的关系:2.求最大小值的步骤:3.开区间的最值问题:【典型例题】题型 一 利用导数求函数最值问题例1 求函数543()551f x x x x =+++在区间[1,4]-上的最大值和最小值.变式训练:设函数3()(0)f x ax bx c a =++≠为奇函数,其图像在(1,(1))f 处的切线与直线670x y --=垂直,导数的最小值为-12.(1)求a ,b ,c 的值.(2)求函数f (x )的单调递增区间,并求函数f (x )在[-1,3]上的最大小值.题型 二 含参数最值问题例 2 设a 为常数,求函数3()3(01)f x x ax x =-+≤≤的最大值.变式训练:1.设3211()232f x x x ax =-++ (1)若f (x )在2(,)3+∞上存在单调递增区间,求a 的取值范围. (2)当02a <<时,f (x )在[1,4]上的最小值为163-,求f (x )在该区间上的最大值.题型 三 由函数的最值求参数的值例3 设213a <<,函数323()(11)2f x x ax b x =-+-≤≤的最大值为1,最小值为2-,求a ,b 的值.1.4 生活中的优化问题【知识点归纳】利用求函数的最大小值的方法求实际应用中的最优化问题函数的极值与端点值的比较【典型例题】题型 一 利润最大问题例 1 某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出商品件数与商品单价的降低值x (单位:元, 021x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一星期的商品销售利润表示成x 的函数(2)如何定价才能使一个星期的商品销售利润最大变式训练:某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交m (3≤m ≤5)元的管理费,预计当每件产品的售价为x (9≤x≤11)元时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q (m ).题型二用料最省、费用最低问题例2如图,某单位用木料制作如图所示的框架,框架的下部是边长分别为x,y(单位:米)的矩形,上部是斜边长为x的等腰直角三角形,要求框架围成的总面积为8平方米.(Ⅰ)求x,y的关系式,并求x的取值范围;(Ⅱ)问x,y分别为多少时用料最省?变式训练:某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.题型 三 面积、体积最值问题例 3如图在二次函数2()4f x x x =-的图像与x 轴所围成的图形中有一个内接矩形ABCD ,求这个内接矩形的最大面积.变式训练:请您设计一个帐篷.它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如图所示).试问当帐篷的顶点O 到底面中心O 1的距离为多少时,帐篷的体积最大?x y1.5 定积分的概念【知识点归纳】定积分的概念:定积分的性质:【典型例题】题型 一 利用定义计算积分例 1利用定积分定义,计算21(32)x dx +⎰题型 二 求曲边梯形的面积例 2利用定积分的定义求出直线x=1,x=2和y=0及曲线3y x =围成的图形的面积.1.6 微积分基本定理【知识点归纳】1.牛顿—莱布尼茨公式:2.定积分的取值:3.定积分的一些性质:【典型例题】题型一求简单函数的定积分例1 求下列函数的定积分:(1)2211()x dxx+⎰;(2)22sin xdxππ-⎰;(3)4dx⎰;题型二求分段函数的定积分例2 求函数32,[0,1](),[1,2]2,[2,3]xx xf x x xx⎧∈⎪=∈⎨⎪∈⎩在区间[0,3]上的定积分.变式训练:求定积分:(1)2201x dx -⎰; (2)题型 三 定积分的实际应用例 3 汽车以每小时36 km 的速度行驶,到某处需要减速停车,设汽车的减速度为21.8 /a m s =刹车,求从开始停车到停车,汽车的走过的距离.变式训练:等比数列{}n a 中,36a =,前三项和3304s xdx =⎰,则公比q 的值是多少?1.7 定积分的简单应用【知识点归纳】1.常见的平面图形的面积求法:2.定积分在物理公式中的应用:【典型例题】题型 一 用定积分求平面图形的面积例 1 求曲线2y x =与y x =所围成的图形的面积.变式训练:求由抛物线22,15x y y x ==-所围成的图形的面积例 2 求正弦曲线3sin ,[0,]2y x x π=∈和直线32x π=及x 轴所围成的平面图形的面积.变式训练:求由曲线222,24y x x y x x =-=-所围成的图形的面积题型 二 用定积分求变速直线运动的距离例 3 有一两汽车以每小时36km 的速度形式,在B 出以22 /m s 的加速度减速停车,问从开始刹车到停车一共行驶多少的路程.题型 三 用定积分解决变力作功问题例 4 有一个长为25cm 的弹簧,若以100N 的力,则弹簧伸长到30cm ,求弹簧由25cm 伸长到40所做的功.。