向量的减法运算及其几何意义
向量减法运算及其几何意义 课件

方法归纳
用已知向量表示其他向量的三个关注点 (1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三 角形三向量之间的关系,确定已知向量与被表示向量的转化渠道. (2)注意综合应用向量加法、减法的几何意义以及向量加法的结 合律、交换律来分析解决问题. (3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形 ABCD 中,A→B+B→C+C→D+D→A=0.
类型一 向量的减法运算
[例 1] 化简下列各式: (1)(A→B+M→B)+(-O→B-M→O); (2)A→B-A→D-D→C.
【解析】 (1)解法一:原式=A→B+M→B+B→O+O→M=(A→B+B→O) +(O→M+M→B)=A→O+O→B=A→B.
解法二:原式=A→B+M→B+B→O+O→M =A→B+(M→B+B→O)+O→M=A→B+M→O+O→M=A→B+0=A→B. (2)解法一:原式=D→B-D→C=C→B. 解法二:原式=A→B-(A→D+D→C)=A→B-A→C=C→B.
B=B→A就可以把减法转化为加法.即:减去一个向量等于 加上这个向量的相反向量,即 a-b=a+(-b).
2.在用三角形法则作向量减法时,要注意“差向量连接两向 量的终点,箭头指向被减向量”.解题时要结合图形,准确判断,
防止混淆. 3.以平行四边形 ABCD 的两邻边 AB、AD 分别表示向量A→B=
向量减法运输及其几何意义
1.相反向量 与 a 长度相等,方向相反的向量,叫作 a 的相反向量,记作-
a. (1)零向量的相反向量仍是零向量,即-0=0. (2)任一向量与其相反向量的和是零向量,即 a+(-a)=0. (3)如果 a,b 是互为相反的向量,则 a=-b,b=-a,a+b=
0.
向量减法运算及其几何意义(数学-优秀课件)

向量减法的几何意义
向量减法可以理解为在几何空间中,从一个点出发,沿着两个向量的方向移动, 一个向量的长度减去另一个向量的长度。
向量减法可以用于描述速度和加速度的变化。例如,如果一个物体在一段时间内速 度从$vec{A}$变为$vec{B}$,那么$vec{B} - vec{A}$表示这段时间内的加速度。
向量减法不满足交换律
$overset{longrightarrow}{A} - overset{longrightarrow}{B} neq overset{longrightarrow}{B} overset{longrightarrow}{A}$,除非$overset{longrightarrow}{A}$和$overset{longrightarrow}{B}$共 线。
03
向量减法的运算规则
向量减法的代数运算规则
定义
向量减法是通过将一个向量的起点平移到另一个向量的终点,然后按照向量加法的规则 进行计算。
计算方法
设$overset{longrightarrow}{A} = (a_1, a_2, ldots, a_n)$, $overset{longrightarrow}{B} = (b_1, b_2, ldots, b_n)$,则 $overset{longrightarrow}{A} - overset{longrightarrow}{B} = (a_1 - b_1, a_2 - b_2,
向量减法在三维空间中的几何解释
01
定义
在三维空间中,向量减法同样表示从一个向量中减去另一个向量。
02
几何解释
与平面上的解释类似,但在三维空间中,除了在平面上的移动外,还需
要考虑垂直方向上的移动。
向量减法及其几何意义

设有两个向量 $vec{A} = (x_1, y_1, z_1)$ 和 $vec{B} = (x_2, y_2, z_2)$,则向量 $vec{A}$ 减去向量 $vec{B}$ 的结果是一个新的向量 $vec{C} = vec{A} - vec{B} = (x_1 - x_2, y_1 - y_2, z_1 - z_2)$。
几何意义
向量 $vec{C}$ 是由向量 $vec{A}$ 的终点指向向量 $vec{B}$ 的起点的向量。在平面直角坐标系中,这相当于从 点 $(x_1, y_1)$ 到点 $(x_2, y_2)$ 画一个有向线段,其方向由 $(x_1, y_1)$ 指向 $(x_2, y_2)$。
空间直角坐标系中向量减法
04 向量减法在物理问题中应 用
位移、速度、加速度等物理量计算
01
02
03
位移计算
向量减法可以应用于计算 物体在一段时间内的位移, 即末位置向量减去初位置 向量。
速度计算
通过位移向量与时间向量 的商,可以计算物体的平 均速度或瞬时速度。
加速度计算
加速度是速度向量的变化 率,可以通过相邻两个时 刻的速度向量相减并除以 时间间隔来计算。
向量减法及其几何意义
目录
• 向量减法基本概念 • 向量减法在坐标系中表示 • 向量减法几何意义探讨 • 向量减法在物理问题中应用 • 向量减法在数学问题中应用 • 总结与拓展
01 向量减法基本概念
定义与性质
定义
性质
结合律
交换律的逆
存在零元
向量减法定义为加上一个 向量的相反向量。即对于 任意两个向量 A 和 B, 向量 A 减去向量 B 的结 果是一个新的向量,记作 C = A - B,其中 C 是 A 与 -B(B的相反向量)的 向量和。
向量减法运算及其几何意义

向量
向量的概念
向量的关系
向表 零 单
量示 向 位
的方 量 向
定法
量
平相 相 行等 反 (向 向 共量 量
义
线
)
讲
向
课 人 : 邢
量
启 强
2
二、向量的加法:
rr
uuur r uuur r
已知非零向量 a 、b , 在平面内任取一点A,作 AB a, BC b,
uuur r r
讲 课
rr
r r rr r r
人 : 邢
对任意两个向量a,b,有 || a | | b ||| a b || a | | b |
启 强
3
练习:判断下列命题r 是否r 正确。 ① 或相如反果,模不那相么a等r 的br非的零方向向量必a与与arb, br的其方中向之相一同的
方向相同;
3. 正确熟练地掌握向量减法的三角形法则
(二)重点:向量减法的定义、向量减法的三角形法则
注意:
1、两个向量相减,则表示两个向量起点的字母必须相同
2、差向量的终点指向被减向量的终点
作业:
讲
课
人
:
邢
启 强
18
数学使人聪颖
数学使人严谨
数学使人深刻
数学使人缜密
数学使人坚毅
讲 课 人
数学使人智慧
:
邢
启 强
19
a
b
b
讲
课
人
:
邢
启 强
11
典型例题
例2.已 知 平 行 四 边 形ABCD, AB a, AD b,
D
C
用 a, b 表 示 向 量AC , DB
人教版数学第二章2 向量减法运算及其几何意义 (共25张PPT)教育课件

?
如何作图得到
思考2:分组讨论 合作探究
B
A
o
B
B
C
O
A
o
A
D
C
思考3:
1 在 平 面 内 任 取 一 点 O
B
b
b
a
O
a
A
共起点, 连终点, 指向被减向量
向量减法 几何意义
测测你的反应速度
尝试运用法则
bd c
a
bd
c
a
作 法 :
A
BD
C
bd
a
c
O•
1.在 平 面 上 任O取 ,作O 点Aa,OBb,OC
;书一笔
清远,盈
一抹恬淡
,浮华三
千,只做
自己;人
间有
情,心中有爱
,携一米
阳光,微
笑向暖
。
口
罗
不
是
。
■
电
:
那
你
的
第
一
部
戏
有
没
有
胆
怯
,
像
费
里
尼
拍
第
一
部
戏
时
就
穿
戴
得
很
正
式
给
人
一
种
威
严
感
。
口
罗
没
有
我
和
他
不
同
。
我
是
从
底
层
爬
上
来
的
我
清
楚
怎
么
运
作
这
个
向量减法运算及其几何意义

向量减法与向量加法的结合规则
向量加法满足交换律
对于任意向量$vec{A}$、$vec{B}$,有 $vec{A}+vec{B}=vec{B}+vec{A}$。
向量加法满足结合律
对于任意向量$vec{A}$、$vec{B}$、$vec{C}$,有 $(vec{A}+vec{B})+vec{C}=vec{A}+(vec{B}+vec{C})$。
Байду номын сангаас THANK YOU
感谢聆听
向量减法在实际问题中的应用
物理问题
向量减法可以用于解决物理问 题,如速度和加速度的计算、 力的合成与分解等。
导航问题
在导航中,通过计算起点和终 点之间的向量差,可以确定从 一个位置移动到另一个位置的 方向和距离。
机器学习
在机器学习中,向量减法可以 用于计算两个样本之间的差异 ,用于分类、聚类和降维等任 务。
向量减法运算及其几何意义
目
CONTENCT
录
• 向量减法的定义 • 向量减法的性质 • 向量减法的几何意义 • 向量减法的运算规则 • 向量减法的运算实例
01
向量减法的定义
向量减法的数学定义
向量减法是通过在第二个向量的起点绘制一个箭头,该箭头与第 一个向量的箭头在同一直线上,并且具有与第一个向量相反的方 向和长度,从而得到的结果。
04
向量减法的运算规则
向量减法与标量乘法的结合规则
标量乘法满足结合律
对于任意向量$vec{A}$、$vec{B}$和标量 $k$,有$(kvec{A})-vec{B}=k(vec{A}vec{B})$。
VS
标量乘法满足分配律
向量的减法运算及其几何意义

(2)AB AC DB C
A.AD B.AC C.CD D.DC
例3 : 如图, 平行四边形ABCD中, AB a, AD b, 试用a,b表
示向量AC, DB.
D
C
b
解: AC AB AD a b
A
a
B
DB AB AD a b
证明:b c a OA
D
C
c
b
O
Aa
B
证明:b c DA OC OC CB OB b c a OB AB OB BA OA
例5.在四边形ABCD中,设AB
a,
AD
b,
BC
c,
试用a,
b,
c表示向量CD.
A
思考1:两个相反向量的和向量是什么?向量a的相反向量
可以怎样表示? -a
思考2:-a的相反向量是什么?零向量的相反向量是什么?
-(-a)=a 规定:零向量的相反向量仍是零向量.
思考3:在实数的运算中,减去一个数等于加上这个数的
相反数.据此原理,向量a-b可以怎样理解?
定义:a-b=a+(-b)
思考4:两个向量的差还是一个向量吗?
3. 作图验证: (a b) a b .
B
C
b
D
a .
O
ab b
ab
a
A
F
E
练习2 (1)化简AB AC BD CD
解 : 原式 CB BD CD CD CD 0
(2)化简OA OC BO CO
解 : 原式 (OA BO) (OC CO) (OA OB) 0 BA
向量减法运算及其几何意义 课件

【审题路线图】1.向量的加减运算⇒向量加减法的三 角形法则⇒化简. 2.看到作图⇒向量加减法的三角形法则⇒作图的一般步 骤⇒作图.
【解析】1.选B.根据题意,得 AB BC AD AC AD DC. 2.方法一:如图①,在平面内任取一点O,作 OA=a,AB=b, 则 OB=a+再b作, 则OC=c, CB=a+b-c.
【方法技巧】 1.向量减法运算的常用方法
2.向量加减法化简的两种形式 (1)首尾相连且为和. (2)起点相同且为差. 解题时要注意观察是否有这两种形式,同时注意逆向应 用.
3.与图形相关的向量运算化简 首先要利用向量加减的运算法则、运算律,其次要分析 图形的性质,通过图形中向量的相等、平行等关系辅助 化简运算.
方法二:如图②,在平面内任取一点O,作 OA=a,AB=b,
则OB=a+再b作, 连CB接=cO,C,则
OC=a+b-c.
【方法技巧】求作两个向量的差向量的两种思路 (1)可以转化为向量的加法来进行,如a-b,可以先作-b, 然后作a+(-b)即可. (2)可以直接用向量减法的三角形法则,即把两向量的 起点重合,则差向量为连接两个向量的终点,指向被减 向量的终点的向量.
3.设a表示向西走10km,b表示向北走10 3 km,则a-b表 示( ) A.向南偏西30°走20 km B.向北偏西30°走20 km C.向南偏东30°走20 km D.向北偏东30°走20 km 【解析】选A.由减法的三角形法则易求得.
4. PA PB =________. 【解析】 PA PB BA. 答案:
3.如图,已知O为平行四边形ABCD内一点, OA a,OB b, OC c, 则 OD =________.
【审题路线图】1.图形中的向量化简运算⇒图形的性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量的减法运算及其几何意义
向量的减法运算及其几何意义向量的减法运算及其几何意义教学目标:
1.了解相反向量的概念;
2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;
3.通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.
教学重点:向量减法的概念和向量减法的作图法.
教学难点:减法运算时方向的确定.
学法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.
教具:多媒体或实物投影仪,尺规
授课类型:新授课
教学思路:
一、复习:向量加法的法则:三角形法则与平行四边形法则
向量加法的运算定律:
例:在四边形中, .
解:
二、提出课题:向量的减法
1.用“相反向量”定义向量的减法
(1)“相反向量”的定义:与a长度相同、方向相反的向量.记作a
(2)规定:零向量的相反向量仍是零向量. ( a) = a.
任一向量与它的相反向量的和是零向量.a + ( a) = 0
如果a、b互为相反向量,则a = b,b = a,a + b = 0
(3)向量减法的定义:向量a加上的b相反向量,叫做a与b的差.
即:a b = a + ( b) 求两个向量差的运算叫做向量的减法.
2用加法的逆运算定义向量的减法:
向量的减法是向量加法的逆运算:
若b + x = a,则x叫做a与b的差,记作a b
3求作差向量:已知向量a、b,求作向量
∵(a b) + b = a + ( b) + b = a + 0 = a
作法:在平面内取一点o,
作= a,= b
则= a b
即a b可以表示为从向量b的终点指向向量a的终点的向量.
注意:1 表示a b.强调:差向量“箭头”指向被减数
2 用“相反向量”定义法作差向量,a b = a + ( b)
显然,此法作图较繁,但最后作图可统一.
2.探究:
1)如果从向量a的终点指向向量b的终点作向量,那么所得向量是b a.
2)若a∥b,如何作出a b ?
三、例题:
例一、(p97例三)已知向量a、b、c、d,求作向量a b、c d.。