数字电路与数字电子技术 课后答案第四章

合集下载

数字电子技术第4章 组合逻辑电路习题解答

数字电子技术第4章 组合逻辑电路习题解答

习题4.1写出图所示电路的逻辑表达式,并说明电路实现哪种逻辑门的功能。

习题4.1图解:B A B A B A B A B A F ⊕=+=+= 该电路实现异或门的功能4.2分析图所示电路,写出输出函数F 。

习题4.2图 解:[]B A B BB A F ⊕=⊕⊕⊕=)(4.3已知图示电路及输入A 、B 的波形,试画出相应的输出波形F ,不计门的延迟.习题4.3图解:B A B A B A AB B AB A AB B AB A F ⊕=∙=∙∙∙=∙∙∙=4.4由与非门构成的某表决电路如图所示。

其中A 、B 、C 、D 表示4个人,L=1时表示决议通过。

(1) 试分析电路,说明决议通过的情况有几种。

(2) 分析A 、B 、C 、D 四个人中,谁的权利最大。

习题4.4图解:(1)ABD BC CD ABD BC CD L ++=∙∙=B AC & && & D L B A =1 =1 =1FF A B & && & & F B AABCD L ABCD L 0000 0001 0010 0011 0100 0101 0110 01110 0 0 1 0 0 1 11000 1001 1010 1011 1100 1101 1110 11110 0 0 1 0 1 1 1(3)根据真值表可知,四个人当中C 的权利最大。

4.5分析图所示逻辑电路,已知S 1﹑S 0为功能控制输入,A ﹑B 为输入信号,L 为输出,求电路所具有的功能。

习题4.5图解:(1)011011)(S S B S A S S B S A L ⊕⊕+⊕=⊕⊕∙⊕= (2)S 1S 0 L 00 01 10 11A+BB A +ABAB4.6试分析图所示电路的逻辑功能。

习题4.6图解:(1)ABC C B A F )(++=A BS 1S 0L =1 =1 &=1& & & & &FA BC电路逻辑功能为:“判输入ABC 是否相同”电路。

数字电子技术基础第四章习题及参考答案

数字电子技术基础第四章习题及参考答案

数字电子技术基础第四章习题及参考答案第四章习题1.分析图4-1中所示的同步时序逻辑电路,要求:(1)写出驱动方程、输出方程、状态方程;(2)画出状态转换图,并说出电路功能。

CPY图4-12.由D触发器组成的时序逻辑电路如图4-2所示,在图中所示的CP脉冲及D作用下,画出Q0、Q1的波形。

设触发器的初始状态为Q0=0,Q1=0。

D图4-23.试分析图4-3所示同步时序逻辑电路,要求:写出驱动方程、状态方程,列出状态真值表,画出状态图。

CP图4-34.一同步时序逻辑电路如图4-4所示,设各触发器的起始状态均为0态。

(1)作出电路的状态转换表;(2)画出电路的状态图;(3)画出CP作用下Q0、Q1、Q2的波形图;(4)说明电路的逻辑功能。

图4-45.试画出如图4-5所示电路在CP波形作用下的输出波形Q1及Q0,并说明它的功能(假设初态Q0Q1=00)。

CPQ1Q0CP图4-56.分析如图4-6所示同步时序逻辑电路的功能,写出分析过程。

Y图4-67.分析图4-7所示电路的逻辑功能。

(1)写出驱动方程、状态方程;(2)作出状态转移表、状态转移图;(3)指出电路的逻辑功能,并说明能否自启动;(4)画出在时钟作用下的各触发器输出波形。

CP图4-78.时序逻辑电路分析。

电路如图4-8所示:(1)列出方程式、状态表;(2)画出状态图、时序图。

并说明电路的功能。

1C图4-89.试分析图4-9下面时序逻辑电路:(1)写出该电路的驱动方程,状态方程和输出方程;(2)画出Q1Q0的状态转换图;(3)根据状态图分析其功能;1B图4-910.分析如图4-10所示同步时序逻辑电路,具体要求:写出它的激励方程组、状态方程组和输出方程,画出状态图并描述功能。

1Z图4-1011.已知某同步时序逻辑电路如图4-11所示,试:(1)分析电路的状态转移图,并要求给出详细分析过程。

(2)电路逻辑功能是什么,能否自启动?(3)若计数脉冲f CP频率等于700Hz,从Q2端输出时的脉冲频率是多少?CP图4-1112.分析图4-12所示同步时序逻辑电路,写出它的激励方程组、状态方程组,并画出状态转换图。

数字电子技术第四章课后习题答案(江晓安等编)

数字电子技术第四章课后习题答案(江晓安等编)

第四章组合逻辑电路‎1. 解: (a)(b)是相同的电路‎,均为同或电路‎。

2. 解:分析结果表明‎图(a)、(b)是相同的电路‎,均为同或电路‎。

同或电路的功‎能:输入相同输出‎为“1”;输入相异输出‎为“0”。

因此,输出为“0”(低电平)时,输入状态为A‎B=01或103. 由真值表可看‎出,该电路是一位‎二进制数的全‎加电路,A为被加数,B为加数,C为低位向本‎位的进位,F1为本位向‎高位的进位,F2为本位的‎和位。

4. 解:函数关系如下‎:SF++⊕=+ABSABS BABS将具体的S值‎代入,求得F 312值,填入表中。

A A FB A B A B A A F B A B A A F A A F AB AB F B B A AB F AB B A B A B A AB F B A A AB F B A B A B A F B A AB AB B A B A F B B A B A B A B A B A B A F AB BA A A B A A B A F F B A B A F B A B A F A A F S S S S =⊕==+==+⊕===+⊕===⊕===⊕===+⊕===+=+⊕===⊕==+==⊕==Θ=+=+⊕===+++=+⊕===+=⊕===⊕==+=+⊕==+=+⊕===⊕==01111111011010110001011101010011000001110110)(01010100101001110010100011000001235. (1)用异或门实现‎,电路图如图(a)所示。

(2) 用与或门实现‎,电路图如图(b)所示。

6. 解因为一天24‎小时,所以需要5个‎变量。

P变量表示上‎午或下午,P=0为上午,P=1为下午;ABCD表示‎时间数值。

真值表如表所‎示。

利用卡诺图化‎简如图(a)所示。

化简后的函数‎表达式为D C A P D B A P C B A P A P DC A PD B A P C B A P A P F =+++=用与非门实现‎的逻辑图如图‎(b )所示。

数字电子技术基础(第四版)课后习题答案_第四章

数字电子技术基础(第四版)课后习题答案_第四章

第4章触发器[题4.1]画出图P4.1所示由与非门组成的根本RS触发器输出端Q、Q的电压波形,输入端S、R的电压波形如图中所示。

图P4.1[解]见图A4.1图A4.1[题4.2]画出图P4.2由或非门组成的根本R-S触发器输出端Q、Q的电压波形,输出入端S D,R D的电压波形如图中所示。

图P4.2[解]见图A4.2[题4.3]试分析图P4.3所示电路的逻辑功能,列出真值表写出逻辑函数式。

图P4.3 [解]:图P4.3所示电路的真值表S R Q n Q n+1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 0* 1 110*由真值表得逻辑函数式 01=+=+SR Q R S Q nn[题4.4] 图P4.4所示为一个防抖动输出的开关电路。

当拨动开关S 时,由于开关触点接触瞬间发生振颤,D S 和D R 的电压波形如图中所示,试画出Q 、Q 端对应的电压波形。

图P4.4[解] 见图A4.4图A4.4[题4.5] 在图P4.5电路中,假设CP 、S 、R 的电压波形如图中所示,试画出Q 和Q 端与之对应的电压波形。

假定触发器的初始状态为Q =0。

图P4.5[解]见图A4.5图A4.5[题4.6]假设将同步RS触发器的Q与R、Q与S相连如图P4.6所示,试画出在CP 信号作用下Q和Q端的电压波形。

己知CP信号的宽度t w = 4 t Pd 。

t Pd为门电路的平均传输延迟时间,假定t Pd≈t PHL≈t PLH,设触发器的初始状态为Q=0。

图P4.6图A4.6[解]见图A4.6[题4.7]假设主从结构RS触发器各输入端的电压波形如图P4.7中所给出,试画Q、Q端对应的电压波形。

设触发器的初始状态为Q=0。

图P4.7[解] 见图A4.7图A4.7[题4.8]假设主从结构RS触发器的CP、S、R、DR各输入端的电压波形如图P4.8所示,1DS。

数电第四章习题答案

数电第四章习题答案
4)时钟RS触发器转换成JK触发器:已知JK触发器的特征方程为 ,把 、 视为变量,余下部分视为系数,根据变量相同、系数相等,则方程一定相等的原则,得到: ,画电路图如图A4.10(d)所示。
4.11图P4.11(a)所示各电路中,FF1~FF2均为边沿触发器:
1)写出各个触发器次态输出的函数表达式;
图P4.2
解答:见图A4.2
图A4.2
4.3一种特殊的RS触发器如图P4.3所示。
1)试列出状态转换真值表;
2)写出次态方程;
3)R与S是否需要约束条件?
图P4.3
解答:1)
①CP=0时,SS=1,RR=1,期间 ,状态保持。
2CP=1时,
即在CP=1的情况下:若R=0,S=0。则RR=1,SS=1,有 ,状态保持。
图P4.13
解答:根据电路图可知 ,而该电路中的触发器是CP上升沿触发的D触发器,其新态方程为: 。据已知的CP信号波形,可以画出A、B端的输出波形如图A4.13所示。
图A4.13
4.14什么是触发器的空翻现象?造成空翻的原因是什么?
解答:所谓触发器的“空翻”是指在同一个时钟脉冲作用期间触发器状态发生两次或两次以
图A4.17
4.18图P4.18一个扭环计数器,如果电路的初始状态为 ,试画出在一系列CP作用下的 、 、 、 波形(CP数目多于8)。
图P4.18
解答:从电路图可知, (CP上升沿时成立)
如果电路的初始状态为 ,可以画出在一系列CP作用下 、 、 、 的波形如图A4.18所示。
图A4.18
4.19据如图P4.19示的电路,试画出在8个CP作用下 、 、 的波形,假设电路的初始状态为 。
为使主从JK触发器按其特性表正常工作,在CP = 1期间,必须使JK端的状态保持

数字电子技术基础(第4版)课后习题答案详解

数字电子技术基础(第4版)课后习题答案详解

(9)Y = BC + AD + AD
1.9 (a) Y = ABC + BC
(10)Y = AC + AD + AEF + BDE + BDE (b) Y = ABC + ABC
(c) Y1 = AB + AC D,Y2 = AB + AC D + ACD + ACD
(d) Y1 = AB + AC + BC,Y2 = ABC + ABC + ABC + ABC 1.10 求下列函数的反函数并化简为最简与或式
(1)Y = AC + BC
(2)Y = A + C + D
(3)Y = (A + B)( A + C)AC + BC 解:Y = ( A + B)(A + C)AC + BC = [( A + B)( A + C) + AC]⋅ BC = ( AB + AC + BC + AC)(B + C) = B + C
= 0.05mA <
I

B

T饱和,
v o=0.2V
(0
~
0.3V都行)
2.3 解:
s 闭合时,输入低电平,此时
VIL = R2 × 5I I′L ≤ 0.4V
R2

0.4 5I I′L
=
0.4V 2mA
= 200Ω
s 断开时,输入为高电平,此时
R2的最大允许值为200Ω
VIH = Vcc − (R1 + R2 ) × 5I IH ≥ 4V ∴ R1最大允许值为10K-R 2

数字电路与数字电子技术课后答案第四章(供参考)

数字电路与数字电子技术课后答案第四章(供参考)
+BC + AC
(4) F=ΠM(5,7,13,15)
= BD
F= +
(5) F=ΠM(1,3,9,10,11,14,15)
= AC+ D
F = ( + )(B+ )
(6) F=∑m (0,2,4,9,11,14,15, 16,17,19,23,25,29,31)
F= + + BCD+ B E+AB E+ACDE+A +A E
= A⊙B⊙C
(6) = ⊙ ⊙
证:
左=
= [(A⊕B)+ ] (A⊙B)+C]
= (A⊙B) +[(A⊕B)C]
= +AB + BC+A C
右= ( ⊙ )⊙
= [( ⊙ ) + ]
= [( +AB) + ]
= +AB +
= +AB +(A⊕B)C
= +AB + BC+A C
9.证明
(1)如果a + b = c,则a + c = b,反之亦成立
(2)F在输入组合为1,3,5,7时使F=1
15.变化如下函数成另一种标准形式
(1) F=∑m (1,3,7)
(2) F=∑m (0,2,6,11,13,14)
(3) F=ΠM(0,3,6,7)
(4) F=ΠM(0,1,2,3,4,6,12)
解:
(1)F=ΠM(0,2,4,5,6)
(2)F=ΠM(1,3,4,5,7,8,9,10,12,15)
(3)F=∑m (1,2,4,5)

数字电子技术基础(第4版)课后习题答案详解

数字电子技术基础(第4版)课后习题答案详解

0 (INH=1) (C) Y=
AB + CD (INH = 0)
2.18 (a) Ya = ABCDE
(b) Yb = A + B + C + D + E
(c) Yc = ABC + DEF
(d ) Yd = A + B + C • D + E + F
2.19 不能。会使低电平变高,高电平变低。 2.20 解:
(5)Y =1
2
Y = ABC + ABC + ABC
(2)Y = CD + ACD (4)Y = BC + B D
(2)Y = B + AD + AC (4)Y = A + B D (6)Y = CD + B D + AC

数字电路 习题答案 (第二章)
第二章
2.1 解:
(4)Y = ABCD+ ABCD+ ABCD+ ABC D+ ABCD + ABCD + ABCD + ABCD (5)Y = LM N + LMN + LMN + LMN + L M N + LMN
1.12 将下列各函数式化为最大项之积的形式 (1)Y = ( A + B + C )( A + B + C)( A + B + C )
静态功耗:PS = I DD ⋅VDD = 0.02mW
动态功耗:PD = PC + PT
PT = 0 (不计上升下降时间)
(4)Y = A + B + C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( b )
图P4.A19 ( 1 )
= +ABCD
F=
(2) F=∑m (1,2,6,7,8,9,10,13,14,15)
( b )
图P4.A19 ( 2 )
= CD+ B +B +
F=
(4)F=∑m (0,1,3,7,8,9,13,15,17,19,23,24,25,28,30)
( b )
图P4.A19 ( 3 )
解:
(1)AB = 00或AB=11时F=1
(2)ABC110或111,或001,或011时F=1
(3)ABC = 100或101或110或111时F=1
3.用真值表证明下列等式.
(1) A+BC = (A+B) (A+C)
(2) BC+A C+AB = BC +AC +AB
(3) =ABC+
(4) AB+BC+AC=(A+B)(B+C)(A+C)
(7) F=∑m (0,2,4,5,7,9,13,14,15,16,18,20,21,23,25,29,30,31)
F= ACE+B E+BCD+ C +
17.将下列各函数化简成与非一与非表达式,并用与非门实现
(1) F=∑m (0,1,3,4,6,7,10,11,13,14,15)
(2) F=∑m (0,2,3,4,5,6,7,12,14,15)
= ( +AB)(A+B)
= AB+AB
= AB=∑m (3)
=ΠM(0,1,2)
(2)F= (A⊕B)+ ( C+B )
= B+A + C+ B
= B+A + C
=∑m (1,2,3,4,5)
=ΠM(0,6,7)
12.用公式法化简下列各式
(1) F= A+AB +ABC+BC+B
解:
F= A(1+B +BC)+B(C+1) = A+B
(2) F= A C+ D+A
解:
F=A +A + D
(3)F= (A+B)(A+B+C)( +C)(B+C+D)
解:
F`= AB+ABC+ C+BCD
= AB+ C+BCD
= AB+ C
F``= F= (A+B)( +C)
(4)F=
解:
F= AB+ +BC+
= AB+ C+
a)F=
解:
F= C+AC
= + +C+
=1
(4)x+wy+uvz
= (x+u+w) (x+u+y) (x+v+w) (x+v+y) (x+z+w) (x+z+y)
证:
对等式右边求对偶,设右边=F,则
F`= xuw+xuy+xvw+xvy+xzw+xzy
= xu (w+y)+xv (w+y) +xz (w+y)
= (w+y) (xu+xv+xz)
F``= F= wy+[(x+u)(x+v) (x+z)]
= wy +[(x+xu+xv+uv) (x+z)]
= wy+[(x+uv)(x+z)]
= wy+[x+xuv+xz+uvz]
= wy+[x+uvz]
= wy+x+uvz
(5)A⊕B⊕C=A⊙B⊙C
证:
左= (A⊕B)⊕C
= + (A⊕B)
= (A⊙B)C+ ( )
= C( + D+AD)+BD(AC+C+ )+B (D+ + )
= C+B +BD
(3) + + =1
证:
左= ( + D) + ( )+(C+ )
= [( + )( + )+ D]( + )+C+
= [ + + + + D][ + ]+C+
= [ + + D][Hale Waihona Puke + ]+C+
= + + + D+C+
(2)F在输入组合为1,3,5,7时使F=1
15.变化如下函数成另一种标准形式
(1) F=∑m (1,3,7)
(2) F=∑m (0,2,6,11,13,14)
(3) F=ΠM(0,3,6,7)
(4) F=ΠM(0,1,2,3,4,6,12)
解:
(1)F=ΠM(0,2,4,5,6)
(2)F=ΠM(1,3,4,5,7,8,9,10,12,15)
(1)F= ABCD+ACD+B
(2)F= A + B+BC
(3)F= +
解:
(1)F=∑m
=∑m (0,1,2,3,5,6,7,8,9,10,13,14)
F`=∑m (15,14,13,12,10,9,8,7,6,5,2,1)
(2)F=∑m (2,3,4,5,7)
=∑m (0,1,6)
F`=∑m (7,6,1)
解:
y不一定等于z,因为若x = 0时,不论取何值则xy = xz = 0,逻辑与的特点,有一个为0则输出为0。
7.若已知x+y = x+z
Xy = xz问y = z吗?为什么?
解:
y等于z。因为若x = 0时,0+y = 0+z,∴y = z,所以xy = xz = 0,若x = 1时, x+y = x+z = 1,而xy = xz式中y = z要同时满足二个式子y必须等于z。
(3) F=∑m (0,1,4,5,12,13)
(4) F=ΠM(4,5,6,7,9,10,11,12)
解: 圈“1”格化简
(1)F=∑m (0,1,3,4,6,7,10,11,13,14,15)
( b )
图P4.A17 (1)
F= AC+BC+ D+ +ABD =
(2) F=∑m (0,2,3,4,5,6,7,12,14,15)
= A⊙B⊙C
(6) = ⊙ ⊙
证:
左=
= [(A⊕B)+ ] (A⊙B)+C]
= (A⊙B) +[(A⊕B)C]
= +AB + BC+A C
右= ( ⊙ )⊙
= [( ⊙ ) + ]
= [( +AB) + ]
= +AB +
= +AB +(A⊕B)C
= +AB + BC+A C
9.证明
(1)如果a + b = c,则a + c = b,反之亦成立
8.用公式法证明下列个等式
(1) + +BC+ = +BC
证:
左= + BC +
= + BC + = (1+ ) + BC
= +BC =右边
(2) C +B D+ACD+ B + CD+B +BCD= C+B +BD
证:
左= ( C + CD+ACD )+(ABCD+BCD+B D)+(B D+B + B )
(5) ABC+ + + =1
证:
( 1 )
( 2 )
( 3 )
( 4 )
( 5 )
4.直接写出下列函数的对偶式F′及反演式 的函数表达式.
(1) F= [ B (C+D)][B +B ( +D)]
(2) F= A + ( + ) (A+C)
(3) F= AB+ +
(4) F=
解:
(1)F`= [ +B+CD]+[(B+ + ) B+ D]]
①③
= +A
F= (A+B) ( +C)
⑤F= (AC+ C)( +AC+ )
= A C+ C+AC
F=AC+ C
图P4.A16 ( 1 )
(2) F=∑m (0,1,3,5,6,8,10,15)
F= + D+ D
+A +ABCD+ BC
(3) F=∑m (4,5,6,8,9,10,13,14,15)
= C +A +B D+ D + C +ABCE
F =
20.用卡诺图将下列含有无关项的逻辑函数化简为最简“与或”式和最简“或与”式。
相关文档
最新文档