食品化学第二章 水
食品化学名词解释与问答题

食品化学习题集(第二版)参考答案第二章水名词解释1.水分活度:水分活度——食品中水分逸出的程度,可以近似地用食品中水的蒸汽分压与同温度下纯水饱和蒸汽压之比表示,也可以用平衡相对湿度表示。
2.吸湿等温线:在恒定温度下,食品水分含量(每单位质量干物质中水的质量)对Aw作图得到水分吸着等温线。
(等温条件下以食品含水量为纵坐标Aw为横坐标得到的曲线。
)3.滞后现象:对于食品体系,水分回吸等温线很少与解吸等温线重叠,一般不能从水分回吸等温线预测解吸现象(解析过程中试样的水分含量大于回吸过程中的水分含量)。
水分回吸等温线和解吸等温线之间的不一致性被称为滞后现象。
问答题1.食品中水的存在状态有哪些?各有何特点?答:食品中水的存在状态有结合水和自由水两种,其各自特点如下:①结合水(束缚水,bound water,化学结合水)可分为单分子层水(monolayer water),多分子层水(multilayer water)作用力:配位键,氢键,部分离子键特点:在-40℃以上不结冰,不能作为外来溶质的溶剂②自由水( free water)(体相水,游离水,吸湿水)可分为滞化水、毛细管水、自由流动水(截留水、自由水)作用力:物理方式截留,生物膜或凝胶内大分子交联成的网络所截留;毛细管力特点:可结冰,溶解溶质;测定水分含量时的减少量;可被微生物利用。
2.食品的水分活度Aw与吸湿等温线中的分区的关系如何?答:为了说明吸湿等温线内在含义,并与水的存在状态紧密联系,可以将其分为Ⅰ、Ⅱ、Ⅲ区:Ⅰ区 Aw=0~0.25 约0~0.07g水/g干物质作用力:H2O—离子,H2O—偶极,配位键属单分子层水(含水合离子内层水)不能作溶剂,-40℃以上不结冰,与腐败无关Ⅱ区 Aw=0.25~0.8(加Ⅰ区,<0.45gH2O/g干)作用力:氢键:H2O—H2O H2O—溶质属多分子层水,加上Ⅰ区约占高水食品的5%,不作溶剂,-40℃以上不结冰,但接近0.8(Aw w)的食品,可能有变质现象。
食品化学第二章水知识点总结

食品化学第二章水知识点总结第二章水分2.1食品中的水分含量和功能2.1.1水分含量?普通生物和食物中的水分含量为3 ~ 97%?生物体中水的含量约为70-80%。
动物体内的水分含量为256±199,随着动物年龄的增长而减少,而成年动物体内的水分含量为58-67%不同部位水分含量不同:皮肤60 ~ 70%;肌肉和器官脏70 ~ 80%;骨骼12-15%植物中水分的含量特征?营养器官组织(根、茎和叶的薄壁组织)的含量高达70-90%?生殖器官和组织(种子、微生物孢子)的含量至少为12-15%表2-1某些食物的含水量食物的含水量(%)卷心菜,菠菜90-95猪肉53-60新鲜鸡蛋74牛奶88冰淇淋65大米12面包35饼干3-8奶油15-20 2.2水的功能2.2.1水在生物体中的功能1。
稳定生物大分子的构象,使它们表现出特定的生物活性2。
体内化学介质使生化反应顺利进行。
营养物质,代谢载体4。
热容量大,体温调节5。
润滑。
此外,水还具有镇静和强有力的作用。
护眼、降血脂、减肥、美容2.2.2水的食物功能1。
食品成分2。
展示颜色、香气、味道、形状和质地特征3。
分散蛋白质、淀粉并形成溶胶4。
影响新鲜度和硬度5。
影响加工。
它起着饱和和膨胀的作用。
它影响2.3水的物理性质2.3.1水的三态1,具有水-蒸汽(100℃/1个大气压)2、水-冰(0℃/1个大气压)3、蒸汽-冰(> 0℃/611帕以下)的特征:水、蒸汽、冰三相共存(0.0098℃/611帕)* * 2.3.2水的重要物理性质256水的许多物理性质,如熔点、沸点、比热容、熔化热、汽化热、表面张力和束缚常数数,都明显较高。
*原因:水分子具有三维氢键缔合,1水的密度在4℃时最高,为1;水结冰时,0℃时冰密度为0.917,体积膨胀约为9%(1.62毫升/升)。
实际应用:是一种容易对冷冻食品的结构造成机械损伤的性质,是冷冻食品工业中应注意的问题。
水的沸点与气压成正比。
食品化学:水分

第二节 水和冰的性质和结构
一、水和冰的物理性质
部分氢化物的物理性质 氢化物 CH4 NH3 H2S H2O HF 熔点(℃) -184 -78 -86 0 -92 沸点(℃) -161 -33 -61 100 19 蒸发热( J/mol) 9210960 23027400 18673128 40821300 30144960
92
90 87 87
香蕉
鸡 肉 面包
75
70 65 35
奶油
稻米、面 粉 奶粉 酥油
16
12 4 0
表1 食 奶油 乳酪 鲜奶油 乳粉 液体乳制品 冰淇淋和冰糕 鳄梨 豆(青刀豆) 浆果 柑橘 黄瓜 干水果 新鲜水果(可食部分) 豆类(干) 马铃薯 红薯 芹菜、萝卜 品 水分含量 (%) 15 40~75 60~70 4 87~91 65 65 67 81~90 86~89 96 ≤ 25 90 10~12 78 69 79
在大多数新鲜食品中,水是最重要的成分,若希望 长期贮藏这类食品,只要采取有效的贮藏方法控制 水分就能够延长保藏期。 无论采用普通方法脱水或是低温冷冻干燥脱水,食 品和生物材料的固有特性都会发生很大的变化, 都无法使脱水食品恢复到它原来状态(复水或解 冻)。 因此研究水和食品的关系是食品科学的重要内容之 一,对食品的储藏有重要的意义。
三、水的缔合作用
水分子中的氧原子电负性大, O—H键的 电子对强烈的偏向氧原子一边,使氢原子 带有部分正电荷。 氢原子无内层电子,几乎是一个裸露的质 子,极易与另一个水分子中的氧原子的孤 对电子通过静电引力形成氢键。
温 0℃ 0.99984 1.793×10-3 75.64×10-3 0.6113 4.2176 0.5610 1.3×10-7 87.90
食品化学课件精简

精心整理食品化学江西科技师范大学授课老师:赵利谭政第二章水第一节引言1.水分在食品加工中的作用⏹水对食品的外观形态、色泽、硬度、风味、鲜度等性质具有重要的影响。
⏹水是微生物生长繁殖和生物体内化学反应的必需条件,关系到食品腐败变质的问题,影响到食品⏹ ⏹⏹⏹➢在0➢⏹➢➢➢1.➢➢间隙式:水保留在一种似冰或笼形物的结构中,其中个别水分子填充在笼形物的间隙中。
➢连续式:液态水中存在着一个由水分子构成的连续网状结构,并且具有动态的本质,分子之间的氢键均匀地分布在整个水样中,原存在于冰中的许多氢键在冰融化时简单地扭曲而不是断裂。
(所有的模型都认为:各个水分子能够频繁地改变它们的排列,即一个氢键快速地终止而代之以一个新的氢键,在温度不变的条件下,整个体系维持一定的氢键键合和结构的程度。
)2.在液态水中,温度对水的缔合的影响:➢改变最邻近水分子间的距离➢改变水分子的配位数3.当固态的冰向液态的水转变时,同时出现两种情况:➢最邻近的水分子间的距离增大(密度下降,称之为“热膨胀效应”)➢最邻近的水分子的平均数目增加(密度增加,称之为“配位数增加效应”)(当配位数增加效应占优势时就导致大家所熟悉的净密度增加,而热膨胀效应占优势时则净密度下降。
)4.不同温度下水的密度变化的特点:➢水的密度在3.98℃达到最大值➢在0~3.98℃之间水的净密度随着温度的升高而逐渐升高➢超过3.98℃后表现为相反的变化趋势(这是因为配位数增加效应在0~3.98℃之间是占优势的,而热膨胀效应在温度超过了 3.98℃后占优势。
)第七节水-溶质相互作用二、分子水平1.水分在食品中的存在形式取决于:➢➢➢2.3.结合水⏹➢结合较牢固;➢牢固。
⏹具有“⏹⏹4.⏹⏹⏹1.2.离子对水的净结构的影响:⏹在稀水溶液中,存在两种效应:与极化力或电场强度紧密相关⏹净结构破坏效应(breakingeffect)➢大离子和单价离子产生较弱电场,能阻碍水形成网状结构➢K+,Rb+,Cs+,NH4+,Cl-,Br-,I-,NO3-,BrO3-,IO3-,ClO4-➢盐溶液流动性比纯水强⏹净结构形成效应(formingeffect)➢小离子或多价离子产生强电场➢Li+,Na+,H3O+,Ca2+,Ba2+,Mg2+,Al3+,F-,OH-➢具有比纯水较低的流动性和较紧密的堆积⏹稀盐溶液中的各种离子对水的结构都有着一定程度的影响。
食品化学 2水分

食 品 中 水 分 的 存 在 形 式
1、结合水
化合水,又称组成水
是指与非水物质结合得最牢固并构成非水 物质整体的那些水。
在-40℃下不结冰 无溶解溶质的能力 与纯水比较分子平均运动为0
不能被微生物利用
食 品 中 水 分 的 存 在 形 式
邻近水(单分子层水) 是指处在非水组分亲水性最强的基团周围的 第一层位置,与离子或离子基团缔合的水。
这些离子大多为负离子和大的正离子 如:K+, Rb+, Cs+, NH4+, Cl-, Br-I-,NO3-,BrO3,IO3-,ClO4-等。 结果:粘度变小,流动性增加
离子对水的净结构的影响
水 与 离 子 基 团 的 相 互 作 用
②净结构形成效应:溶液比纯水具有较低的流动性。
一些离子有助于水形成网状结构 这些离子大多是电场强度大,离子半径小的离子。 如:Li+, Na+, Ca2+, Ba2+,Mg2+, Al3+,F,OH-
结晶大分子的亲水基团间的距离是与纯水中最邻近两 个氧原子间的距离相等。
如果在水合大分子中这种间隔占优势,这将会促进第一 层水和第二层水之间相互形成氢键。
在生物大分子的 两个部位或两个大 分子之间可形成由 几个水分子所构成 的“水桥”。
木瓜蛋白酶中的三分子水桥
水 与 非 极 性 物 质 的 相 互 作 用
结果:粘度增加,流动性变小
水与具有形成氢键能力的中性基团(亲水性溶 质)的相互作用 水能与某些基团, 例如羟基、氨基、 羰基、酰氨基和亚 氨基等极性基团, 发生氢键键合。
共价键 H2O-离子 H2O-H2O H2O-亲水性溶质 键的强度
食品化学02第二章 水

第二章 水
第一节 引言 第二节 水和溶质的相互作用
一 宏观水平
持水力(water holding capacity): 由分子(通常是以低浓度存在的大分子)构
成的基体通过物理方式截留大量水而阻止水渗出 的能力。
第二节 水和溶质的相互作用
一 宏观水平 二 分子水平
溶质和水的混合同时改变了溶质和水的性质 亲水溶质会改变邻近水分子的结构和流动性。 水会改变亲水溶质的反应性,甚至改变其结构。
二 分子水平
① 化合水 是与非水物质结合的最牢固的水,这些水是构成非水物
质结构的一部分。 ② 邻近水
处于非水组分亲水性最强的基团周围的第一层位置。是 水与离子或偶极缔合的这部分水。 ③ 多层水
占据邻近水剩余的位置和邻近水外层的几个水层,少量 水在-40℃可结冰,可溶解极少量的溶质。
二 分子水平
1 结合水: 2 体相水:具有类似纯水的性质,易结冰,能作
(P0-P)/ P0=n2/(n1+n2) P:食品在密闭容器中达到平衡时,水的蒸汽压 P0:同温度下纯水的饱和蒸汽压。 n1:溶剂的摩尔数 n2:溶质的摩尔数 上式仅适用理想溶液,电解质溶液误差很大。
第三节 水分活度与食品的稳定性
一 水分活度(Water Activity) 二 水分活度与温度的关系
键,形成四面体结构些不寻常的 性质?例如,高沸点.
由于每个水分子具有相同数目的氢 键供体和受体部位,它们可以形成
三维氢键,因此,每个水分子最多
2 水密度在4℃左右变化的原因?
能与其它4个水分子形成氢键,形成 四面体结构。
3 一些溶质溶于水后,为何水 的流动性会发生变化?
4 在中等至高水分含量食品中反 应速度随Aw提高而下降的原因 可能是?
食品化学习题集及答案

第二章水分一、名词解释1.结合水:是指存在于食品中的非水成分与水通过氢键结合的水。
2.自由水:是指食品中没有被非水物质化学结合的水。
3.毛细管水:是指在生物组织的细胞间隙和制成食品的结果组织中,还存在着一种由于天然形成的毛细管而保留的水分。
4.水分活度:是指在一定温度下,食品水的蒸汽压与纯水的饱和蒸气压的比值。
5.滞后现象:6.吸湿等温线:是指在恒定温度下,以食品的含水量为纵坐标,以其水分活度为横坐标绘制形成的曲线称为水分西施等温线。
7.单分子层水:8.疏水相互作用二、填空题1. 食品中的水是以结合水、邻近水、构成水、多层水、不移动水、毛细管水、自由流动水等状态存在的。
2. 水在食品中的存在形式主要有自由水和结合水两种形式。
3. 水分子之间是通过氢键相互缔合的。
4. 食品中的结合水不能为微生物利用。
5. 食品中水的蒸汽压p与纯水蒸汽压p0的比值称之为水分活度,即食品中水分的有效浓度。
6. 每个水分子最多能够与4个水分子通过氢键结合,每个水分子在3维空间有相等数目的氢键给体和受体。
7. 由化学键联系着的水一般称为结合水,以毛细血管力联系着的水一般称为自由水。
8.在一定温度下,使食品吸湿或干燥,得到的水分含量与水分活度的关系曲线称为水分等温吸湿线。
9. 温度在冰点以上,食品的组成、影响其Aw;温度在冰点以下,温度、湿度影响食品的Aw。
10. 回吸和解吸等温线不重合,把这种现象称为滞后现象。
11、在一定A W时,食品的解吸过程一般比回吸过程时水分含量更高。
12、食品中水结冰时,将出现两个非常不利的后果,即___膨胀效应_________和_____浓缩效应_______。
14、单分子层水是指__结合水和邻近水、_____,其意义在于_可准确地预测干制品最大稳定性时的最大水分含量_____。
15、结合水主要性质为:①在-40度下不结冰②不能作为溶质的溶剂③不能被微生物利用④不易发生增减变化。
三、选择题1、属于结合水特点的是(B C D)。
食品化学 第二章 水分

18种同位素变体 量极少
水分子的缔合作用
一个水分子可以和周围四个水分子缔合, 形成三维空间网络结构。
2015年10月25日
第二章 水分
水分子缔合的原因:
H-O键间电荷的非对称分布使H-O键具
有极性,这种极性使分子之间产生引力. 由于每个水分子具有数目相等的氢键 供体和受体,因此可以在三维空间形成 多重氢键. 静电效应.
R(水合的)+R(水合的)→R2(水合 偶极-疏水性物质 疏水相互作用ΔG<0 的)+水
2015年10月25日
疏水水合ΔG>0
第二章 水分
1、水与离子和离子基团的相互作用
类 型 实 例 作用强度 (与水-水氢键比)
偶极-离子
水-游离离子 较大 水-有机分子上的带电基团 (离子水合作用)
水-蛋白质NH 水-蛋白质CO 水-侧链OH 水+R→R(水合的) R(水合的)+R(水合的)→R2 (水合的)+水
水分含量不是一个腐败性的可靠指标
水分活度Aw 水与非水成分缔合强度上的差别 比水分含量更可靠,也并非完全可靠
与微生物生长和许多降解反应具有相关性
第二章 水分
2015年10月25日
第四节
f Aw f0 f p f 0 po
差别1%
2015年10月25日
水分活度
f ——溶剂(水)的逸度 f0——纯溶剂(水)的逸度 逸度:溶剂从溶液逃脱的趋势
p Aw po
严格
p Aw po
第二章 水分
仅适合理想溶液
RVP,相对蒸汽
第四节
水分活度
一、定义: 指食品中水的蒸汽压和该温度下纯水 的饱和蒸汽压的比值
Aw=P/P0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节
水、冰的结构和性质
一、水分子的结构
SP3
O H
104.50
H
1.84D
二、水分子的缔合与水的三态
由于水分子的极性及两种组成原子的电负性差 别,导致水分子之间可以通过形成氢键而呈现缔合 状态:
由于每个水分子上有四个形成氢键的位点,因此 每个水分子的可以通过氢键结合4个水分子。
由于水分子之间可以以不同数目和不同形式结 合,因此缔合态的水在空间有不同的存在形式, 如:
尽管结合或附着在分子上的水分子数量并不多,但其作 用和性质常常非常重要。它们常是一些酶保持活性结构并 能发挥作用的重要因素;也常是食品保持正常结构的重要 因素。
3、与非极性物质的相互作用
非极性的分子通常包括烃类、脂类、甾萜类等,通 过化学的手段也可在一些含极性基团的分子(如蛋白质 等)中引入非极性部分(基团)。 疏水水合作用
Aw 测定方法
• • • • 冰点测定法 相对湿度传感器测定法 恒定相对湿度平衡法 水分活度测定仪测定
水分活度与温度的关系
冰点以上与冰点以下的Aw的比较:
1、冰点以上温度时,水分活度与食品组成和温度有 关;冰点以下温度时,水分活度仅与温度有关。 2、Aw的意义不同。 3、冰点以下的Aw不能预测相同食品冰点以上的Aw。
1、与离子或离子基团的相互作用 当食品中存在离子或可解离成离子或离子基团 的盐类物质时,这些物质由于在水中可以溶解而且 解离出带电荷的离子,因而可以固定相当数量的水。 例如食品中的食盐和水之间的作用。
Na+
Cl-
随着离子种类的变化及所带电荷的不同,与水之 间的相互作用也有所差别。大致可以分作两类: 阻碍水分子之间网状结构的形成 其溶液的流动性比水大,此类离子如:K+、Rb+、 Cs+、NH+4、Cl-、Br-、I-、NO-3、BrO-3等。
区Ⅱ的水的性质
• 通过氢键与相邻的水 分子和溶质分子缔合 • 流动性比体相水稍差 • 大部分在-40℃不结冰 • 导致固体基质的初步 肿胀 • 多层水 • 区Ⅰ和区Ⅱ的水占总 水分的5%以下
真实单层
• 区Ⅱ和Ⅲ接界 • 0.38g H2O/ g干物质
第四节 食品中水的存在状态
理解食品中水的存在状态是掌握水在食品中的 作用及各种与水相关的加工技术的关键。而水在食 品中的存在状态说到底是水在食品中和各类食品物 质之间的关系及水的存在量。
根据食品中水与非水物质之间的相互关系,可 以把食品中的水分作体相水和结合水。
结合水也称束缚水、固定水。结合水又分为化 合水、临近水、多层水。
水在食品中的重要作用
a.水是食品的重要组成成分,是形成食品加工工艺考虑的 重要因素;
某些代表性食品的含水量
食品名称 水分% 食品名称 水分% 食品名称 水分%
番茄 莴苣 卷心菜 啤酒 柑橘 苹果汁
95 95 92 90 87 87
牛奶 马铃薯 香蕉 鸡 肉 面包
87 78 75 70 65 35
果酱 蜂蜜 奶油 稻米面粉 奶粉 酥油
当水中存在非极性物质,即疏水性物质时,由于它 们与水分子产生斥力,可以导致疏水分子附近的水分子 之间的氢键键合增强。由于在这些不相容的非极性实体 邻近的水形成了特殊的结构,使得熵下降,此过程称为 疏水水合作用。
疏水相互作用 由于疏水水合在热力学上是不利的,因此水倾向 于尽可能地减少与存在的非极性实体靠近。如果存在 两个分离的非极性实体,那么不相容的水环境将促使 它们相互靠近并缔合,从而减少水-非极性实体界面 面积,此过程是疏水水合的部分逆转,被称为“疏水 相互作用”。
• 食品的水分含量~食品的腐败性 – 存在相关性 – 但发现水分含量相同,腐败性显著不同 – 水分含量不是一个腐败性的可靠指标 • 水分活度Aw – 水与非水成分缔合强度上的差别 – 比水分含量更可靠 – 与微生物生长和许多降解反应具有相关性
二、水分活度的定义和测定方法
f Aw f0 f p f 0 po
有助于水分子网状结构的形成
其溶液的流动性小于水,此类离子一般为离子 半径小、电场强度大或多价离子,如:Li+、Na+、 H3O+、Ca2+、Ba2+、Mg2+、Al3+、OH-等。
2、与具有氢键键合能力的中性分子或基团的相互作用
许多食品成分,如蛋白质、多糖(淀粉或纤维 素)、果胶等,其结构中含有大量的极性基团,如羟 基、羧基、氨基、羰基等,这些极性基团均可与水分 子通过氢键相互结合。因此通常在这些物质的表面总 有一定数量的被结合、被相对固定的水。
最强烈地吸附 最少流动 水-离子或水-偶 极相互作用 在-40℃不结冰 不能作为溶剂 看作固体的一部分 构成水和邻近水 占总水量极小部分
BET单层
• 区Ⅰ和Ⅱ接界 • 0.07g H2O/ g干物质 • Aw =0.2 • 相当于一个干制品能 呈现最高的稳定性时 含有的最大水分含量
H H H H O O O H H H H O H O H H H O H O H H O
H H O H
由于水分子之间除了通过氢键结合外,还有极 性的作用力,因此水分子之间的缔合数可能大于 4。
• 水分子缔合的原因有哪些?
• 氢键 • 静电效应 • H-O键的极性
在通常情况下,水有三种存在状态,即气态、液态和固 态。 水的存在状态与水分子之间的缔合程度的关系: 在气态下,水分子之间的缔合程度很小,可看作以自由 的形式存在。 在液态,水分子之间有一定程度的缔合,几乎没有游离 的水分子,由此可理解为什么水具有高的沸点。 在固态也就是结冰的状态下,水分子之间的缔合数是4, 每个水分子都固定在相应的晶格里,这也是水的熔点高的原 因。
食品所含溶质的种类和数量可以影响冰晶的数 量、大小、结构、位置和取向。一般有4种类型,即 六方形、不规则树状、粗糙球状、易消失的球晶。 六方形是多见的、在大多数冷冻食品中重要的 结晶形式。这种晶形形成的条件是在最适的低温冷 却剂中缓慢冷冻,并且溶质的性质及浓度不严重干 扰水分子的迁移。 现代食品冷藏技术中提倡速冻,这是因为速冻 形成的冰晶细小,呈针状,冻结时间短且微生物活 动受到更大限制,从而保证了食品品质。
四、水、冰的物理特性与食品质量关系 a.水的熔点、沸点比质量和组成相近的分子高
如甲烷的b.p:-162℃ ,m.p:-183℃ ,而水在 0.1MPa下b.p:100℃ ,m.p:0℃ ,这些特性将对食 品加工中的冷冻和干燥过程产生很大的影响。
b.水在冻结时体积增加 水的密度较低,水在冻结时体积增加,表现出异 常的膨胀行为,这会使得含水的食品在冻结的过程中 其组织结构遭到破坏。
差别1%
f ——溶剂(水)的逸度 f0——纯溶剂(水)的逸度 逸度:溶剂从溶液逃脱的趋势
p Aw po
严格
p Aw po
仅适合理想溶液
RVP,相对蒸汽压
Aw =P/P0=ERH/100
• ERH 食品上空已经恒定了的水蒸气的分压与同 温下水的饱和蒸汽压的比值(用乘以100后的整 数表示) • Aw 是食品内在的品质,与食品的组成结构有关, 而ERH则与食品平衡时大气的性质有关。 • 应用aw =ERH/100时必须注意: • ① aw 是样品的内在品质,而ERH是与样品中的水 蒸气平衡是的大气性质。 ②仅当食品与其环境 达到平衡时才能应用。
28 20 16 12 4 0
b.水分含量、分布和状态对于食品的结构、外观、 质地、风味、新鲜程度会产生极大的影响; c.是引起食品化学变化及微生物作用的重要原因, 直接关系到食品的贮藏特性。
水与食品加工的关系
• 大多数食品加工的单元操作都与水有关。
干燥、浓缩、冷冻、水的固定。
• 复水、解冻没有完全成功。 • 了解水在食品中的存在形式是掌握食品加 工和保藏技术原理的基础。
结合水与自由水主要的区别在于:
a.结合水的量与食品中所含极性物质的量有比较固定的关系 如100g蛋白质大约可结合50g 的水,100g淀粉的持水能力 在30~40g;结合水对食品品质和风味有较大的影响,当结合 水被强行与食品分离时,食品质量、风味就会改变。 b.结合水的蒸气压比体相水低得多 在一定温度(100℃)下结合水不能从食品中分离出来。
1、食品中非水物质可以分为哪几种类型? 2、食品中水的存在形式有哪几种?主要 区别在哪里? 3、水分活度的定义?
三、 水分吸着等温线
(一)定义
在恒定温度下,食品水分含量(每克干物质中水的质量) 与Aw的关系曲线。 MSI的实际意义: 1、由于水的转移程度与Aw有关, 从MSI图可以看出食品脱水的难易程 度,也可以看出如何组合食品才能 避免水分在不同物料间的转移。 2、据MSI可预测含水量对食品稳 定性的影响。 3、从MSI还可看出食品中非水组 分与水结合能力的强弱。
在冰的晶体结 构中,每个水 和另外4个水 分子相互缔合, O-O之间的最 小距离为 0.276nm,O- O-O之间的夹 角为109°。
纯水的结晶 过冷温度结晶
尽管冰点是0℃,但常并不在0℃结冻,而是出 现过冷状态,只有当温度降低到零下某一温度时才 可能出现结晶(加入固体颗粒或振动可促使此现象 提前出现),把开始出现稳定晶核时的温度叫过冷 温度。
MSI上不同区水分特性
区 Aw 含水量% 冷冻能力 溶剂能力 水分状态 I区 0-0.2 1-6.5 不能冻结 无 II区 0.2-0.85 6.5-27.5 不能冻结 轻微-适度 III区 >0.85 >27.5 正常 正常
单分子层水 多分子层水 体相水 部分可利用 可利用
微生物利用 不可利用
区Ⅰ的水的性质
水的黏度与水分子之间缔合的关系:
水的流动性与水分子之间缔合的关系: 水具有流动性是因为水分子之间的缔合是动态的。当水 分子在很短的时间内改变它们与临近水分子之间的氢键键合 关系时,会改变水的流动性。