动态规划问题的基本要素和最优化原理
动态规划.pdf

第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。
即决策过程可划分为明显的阶段。
二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。
广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。
三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。
四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。
•连续型动态决策问题。
2、按决策过程演变的性质分为:•确定型动态决策问题。
•随机型动态决策问题。
五1、阶段(stage)n :作出决策的若干轮次。
n = 1、2、3、4、5。
2、状态(state)S n :每一阶段的出发位置。
构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。
阶段的起点。
3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。
构成决策集,记为D n (S n )。
阶段的终点。
D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。
4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。
如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。
经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。
由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。
不存在一种万能的动态规划算法。
但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。
多阶段决策过程最优化问题——动态规划的基本模型在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。
因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。
当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。
这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。
【例题1】最短路径问题。
图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。
现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。
用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。
具体计算过程如下:S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3S2: K=3,有:F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8F3(C2)=d3(C2,D1)+f4(D1)=5+3=8F3(C3)=d3(C3,D3)+f4(D3)=8+3=11F3(C4)=d3(C4,D3)+f4(D3)=3+3=6S2: K=2,有:F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=min {9,12,14}=9F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10S4:k=1,有:F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13因此由A点到E点的全过程的最短路径为A—>B2一>C4—>D3—>E。
动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划算法原理与的应用

动态规划算法原理与的应用动态规划算法是一种用于求解最优化问题的常用算法。
它通过将原问题划分为子问题,并将每个子问题的解保存起来,以避免重复计算,从而降低了问题的时间复杂度。
动态规划算法的核心思想是自底向上地构建解,以达到求解整个问题的目的。
下面将介绍动态规划算法的原理以及一些常见的应用。
1.动态规划算法的原理1)将原问题划分为多个子问题。
2)确定状态转移方程,即找到子问题之间的关系,以便求解子问题。
3)解决子问题,并将每个子问题的解保存起来。
4)根据子问题的解,构建整个问题的解。
2.动态规划算法的应用2.1最长公共子序列1) 定义状态:假设dp[i][j]表示序列A的前i个字符和序列B的前j个字符的最长公共子序列的长度。
2) 确定状态转移方程:若A[i] == B[j],则dp[i][j] = dp[i-1][j-1] + 1;若A[i] != B[j],则dp[i][j] = max(dp[i-1][j],dp[i][j-1])。
3) 解决子问题:从前往后计算dp数组中每个元素的值。
4) 构建整个问题的解:dp[m][n]即为最终的最长公共子序列的长度,其中m和n分别为序列A和序列B的长度。
2.2背包问题背包问题是指给定一个背包的容量和一些物品的重量和价值,要求在不超过背包容量的情况下,选择若干物品放入背包中,使得背包中物品的总价值最大。
该问题可通过动态规划算法求解,具体步骤如下:1) 定义状态:假设dp[i][j]表示在前i个物品中选择若干物品放入容量为j的背包中,能够获得的最大价值。
2) 确定状态转移方程:考虑第i个物品,若将其放入背包,则dp[i][j] = dp[i-1][j-wi] + vi;若不将其放入背包,则dp[i][j] = dp[i-1][j]。
3) 解决子问题:从前往后计算dp数组中每个元素的值。
4) 构建整个问题的解:dp[n][C]即为最终的背包能够获得的最大价值,其中n为物品的个数,C为背包的容量。
动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。
最优化多目标规划动态规划

最优化多目标规划动态规划多目标规划是指在决策问题中同时考虑多个目标的优化问题,其目标可能相互矛盾或者相互关联。
动态规划是一种通过将问题划分为子问题并利用子问题的最优解来求解整体最优解的方法。
将多目标规划与动态规划结合起来,可以解决一些具有多个相互关联目标的决策问题。
下面将介绍最优化多目标规划动态规划的原理和应用举例。
1.定义决策变量:确定需要作出的决策,并定义决策变量。
2.建立状态转移方程:将问题划分为多个子问题,并建立它们之间的状态转移方程。
状态转移方程描述了子问题之间的关系,通过子问题之间的转移可以得到整体问题的最优解。
3.确定初始状态和边界条件:确定初始状态和边界条件,即子问题的初始状态和边界条件,用于递归地求解子问题。
4.递推求解:使用动态规划的递推求解方法,从初始状态开始,逐步求解子问题,直到求解出整体的最优解。
5.分析最优解:根据求解结果分析得到的最优解,并根据需要进行调整和优化。
假设有一家公司要进行产品的生产安排,公司有多个产品需要安排生产,每个产品有不同的生产时间和利润,同时公司还要考虑生产能力的限制和产品订单的要求。
问题可以建立如下的数学模型:决策变量:对于每个产品,决定其生产数量。
目标函数:最大化总利润。
约束条件:生产时间不能超过生产能力限制,同时生产数量要满足订单要求。
利用动态规划方法可以将问题分解为多个子问题,以子问题的最优解作为动态规划的递推依据。
具体步骤如下:1.将产品的生产时间和利润作为状态,根据时间顺序划分为多个子问题。
2.定义状态转移方程,将子问题的最优解与前面子问题的最优解关联起来。
3.初始状态为生产时间为0的情况,边界条件为订单要求。
4.递推求解,根据状态转移方程求解每个子问题的最优解。
5.分析最优解,确定每个产品的生产数量,以及总利润。
通过最优化多目标规划动态规划的方法,可以在满足多个目标和约束条件的情况下,求解出最优的决策方案。
这种方法可以应用于生产调度、资源分配、物流配送等领域,帮助企业做出合理的决策,达到优化目标。
动态规划-最优化原理和无后效性

动态规划-最优化啊原理和无后效性上面已经介绍了动态规划模型的基本组成,现在需要解决的问题是:什么样的“多阶段决策问题”才可以采用动态规划的方法求解?一般来说,能够采用动态规划方法求解的问题必须满足.最优化原理和.无后效性原则。
(1)动态规划的最优化原理。
作为整个过程的最优策略具有如下性质:无论过去的状态和决策如何,对前面的决策所形成的当前状态而言,余下的诸决策必须构成最优策略。
可以通俗地理解为子问题的局部最优将导致整个问题的全局最优,即问题具有最优子结构的性质,也就是说一个问题的最优解只取决于其子问题的最优解,非最优解对问题的求解没有影响。
在例题1最短路径问题中,A到E的最优路径上的任一点到终点E的路径也必然是该点到终点E的一条最优路径,满足最优化原理。
下面来讨论另外一个问题。
【例题2】余数最少的路径。
如图所示,有4个点,分别是A、B、C、D,相邻两点用两条连线C2k,C2k-1(1≤k≤3)表示两条通行的道路。
连线上的数字表示道路的长度。
定义从A到D的所有路径中,长度除以4所得余数最小的路径为最优路径。
求一条最优路径。
【分析】在这个问题中,如果还按照例题1中的方法去求解就会发生错误。
按照例题1的思想,A的最优取值可以由B的最优取值来确定,而B的最优取值为(1+3) mod 4 = 0,所以A的最优值应为2,而实际上,路径C1-C3-C5可得最优值为(2+1+1) mod 4 = 0,所以,B的最优路径并不是A的最优路径的子路径,也就是说,A的最优取值不是由B的最优取值决定的,即其不满足最优化原理,问题不具有最优子结构的性质。
由此可见,并不是所有的“决策问题”都可以用“动态规划”来解决,运用“动态规划”来处理问题必须满足最优化原理。
(2)动态规划的无后效性原则。
所谓无后效性原则,指的是这样一种性质:某阶段的状态一旦确定,则此后过程的演变不再受此前各状态及决策的影响。
也就是说,“未来与过去无关”,当前的状态是此前历史的一个完整总结,此前的历史只能通过当前的状态去影响过程未来的演变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
无后效性(马尔可夫性)
如果某阶段状态给定后,则在这个阶段以后 过程的发展不受这个阶段以前各段状态的影响;
过程的过去历史只能通过当前的状态去影响 它未来的发展; 构造动态规划模型时,要充分注意 是否满足无后效性的要求;
状态变量要满足无后效性的要求;
如果状态变量不能满足无后效性的要求,应 适当地改变状态的定义或规定方法。
系统在某一阶段的状态转移不但与系统的当前的状态
和决策有关,而且还与系统过去的历史状态和决策有
精关品。课程《运筹学》
精品文档
其状态转移方程如下(一般形式)
s2 T1(s1,u1) s3 T2(s1,u1,s2,u2) sk1 Tk(s1,u1,s2,u2,,sk,uk)
图示如下:
状态转移方程是确定
第二节 动态规划问题的基本要素 和最优化原理
§2.1 动态规划的基本概念 §2.2 动态规划的基本思想 §2.3 建立动态规划模型的步骤
精品课程《运筹学》
精品文档
§2.1 动态规划的基本概念
1、阶段:
把一个问题的过程,恰当地分为若干个相互联系 的阶段,以便于按一定的次序去求解。
描述阶段的变量称为阶段变量。阶段的划分,一
最优化原理:作为整个过程的最优策略具有这 样的性质:无论过去的状态和决策如何,相对于前 面的决策所形成的状态而言,余下的决策序列必然 构成最优子策略。”也就是说,一个最优策略的子 策略也是最优的。
精品课程《运筹学》
精品文档
§2.3 建立动态规划模型的步骤
1、划分阶段
划分阶段是运用动态规划求解多阶段决策问题的第一步, 在确定多阶段特性后,按时间或空间先后顺序,将过程划 分为若干相互联系的阶段。对于静态问题要人为地赋予 “时间”概念,以便划分阶段。
V k,n(sk,u k,sk 1,u k 1, ,sn 1)
可递推
k[sk,uk,Vk1,n(sk1,uk1,,sn1)]
指标函数形式: 和、 积
精品课程《运筹学》
精品文档
解多阶段决策过程问题,求出 最优策略,即最优决策序列
{u1 *,u2 *,,un *}
最优轨线,即执行最优策略时的状态序列
{s1 *,s2 *,,sn *}
3、决策:表示当过程处于某一阶段的某个状态 时,可以作出不同的决定,从而确定下一阶段的状态,
这种决定称为决策。
描述决策的变量,称为决策变量。决策变量是状 态变量的函数。可用一个数、一组数或一向量(多维 情形)来描述。
在实际问题中决策变量的取值往往在某一范围之内, 此范围称为允许决策集合。
4、多阶段决策过 程可以在各个阶段进行决策,去控制过程发展的多段过 程;其发展是通过一系列的状态转移来实现的;
精足品课递程推《关运筹系学。》
精品文档
小结:
无后效性
动态规划本质上是多阶段决策过程;
概念 : 阶段变量k﹑状态变量sk﹑决策变量uk;
方程 :状态转移方程 sk1Tk(sk,uk)
指标: V k ,n V k ,n (s k,u k,s k 1 ,u k 1 , ,s n 1 ) 效益
fk(sk)u o k, ,u n p V k,n t(sk,u k, ,sn 1 )
4、确定状态转移方程
根据k 阶段状态变量和决策变量,写出k+1阶段状态变 量,状态转移方程应当具有递推关系。
5、确定阶段指标函数和最优指标函数,建立动 态规划基本方程
阶段指标函数是指第k 阶段的收益,最优指标函数是指 从第k 阶段状态出发到第n 阶段末所获得收益的最优值, 最后写出动态规划基本方程。
以上五步是建立动态规划数学模型的一般步骤。由于动 态规划模型与线性规划模型不同,动态规划模型没有统一的 模式,建模时必须根据具体问题具体分析,只有通过不断实
践总结,才能较好掌握建模方法与技巧。
精品课程《运筹学》
精品文档
f1(s1)
最优目标函数值
V 1 * ,n V 1 * ,n (s 1 * ,u 1 * 子,从 策略k,的到s 最终n * 优,点u 目最n * 标优)函策数略值
fs ov ps tu s
, , ,
k k
k ,n k k
uu , ,
k
n
n 1
精品课程《运筹学》
精品文档
§2.2 动态规划的基本思想
1、动态规划方法的关键在于正确地写出基 本的递推关系式和恰当的边界条件(简称基本 方程)。要做到这一点,就必须将问题的过程 分成几个相互联系的阶段,恰当的选取状态变 量和决策变量及定义最优值函数,从而把一个 大问题转化成一组同类型的子问题,然后逐个 求解。即从边界条件开始,逐段递推寻优,在 每一个子问题的求解中,均利用了它前面的子 问题的最优化结果,依次进行,最后一个子问 题所得的最优解,就是整个问题的最优解。
精品课程《运筹学》
精品文档
2、在多阶段决策过程中,动态规划方法是既把当前一 段和未来一段分开,又把当前效益和未来效益结合起来考虑 的一种最优化方法。因此,每段决策的选取是从全局来考虑 的,与该段的最优选择答案一般是不同的.
3、在求整个问题的最优策略时,由于初始状态是已知 的,而每段的决策都是该段状态的函数,故最优策略所经过 的各段状态便可逐段变换得到,从而确定了最优路线。
般是根据时一间个和数空、间的自然特征来进行的,但要便 于问题转化一为组多数阶、段决策。 2条、件状。态通:常表一一示个个量每向阶个段阶有段若开干始个所年状路、处段态月的,、自描然述状过况程或状客态观
的变量称为状态变量。
状态变量的取值有一定的允许集合或范围,
此集合称为状态允许集合。
精品课程《运筹学》
精品文档
过程由一个状态到另
一个状态的演变过程。 如果第k阶段状态变量
sk的值、该阶段的决策 变量一经确定,第k+1
阶段状态变量sk+1的值 也就确定。
s1
u1 1
s2
u2 2
s3
sk
uk k
sk+1
能用动态规划方法求解的多阶段决策过程是一类
特殊的多阶段决策过程,即具有无后效性的多阶段
精品决课策程《过运程筹学。》
状态具有无后效性的多阶段决策过程的状
态转移方程如下
s2 s3
T1 ( s1 , u1 ) T2 ( s2 , u2 )
精品课程《运筹学》sk 1
Tk
(
sk
,
u ) 精品文档 k
动态规划中能 处理的状态转移 方程的形式。
5、策略:是一个按顺序排列的决策组成的集合。在 实际问题中,可供选择的策略有一定的范围,称为允 许策略集合。从允许策略集合中找出达到最优效果的 策略称为最优策略。
2、正确选择状态变量
选择变量既要能确切描述过程演变又要满足无后效性, 而且各阶段状态变量的取值能够确定。一般地,状态变量 的选择是从过程演变的特点中寻找。
3、确定决策变量及允许决策集合
通常选择所求解问题的关键变量作为决策变量,同时要 给出决策变量的取值范围,即确定允许决策集合。
精品课程《运筹学》
精品文档
6、状态转移方程:是确定过程由一个状态到另一 个状态的演变过程,描述了状态转移规律。
7、指标函数和最优值函数:用来衡量所实现过程优
劣的一种数量指标,为指标函数。指标函数的最优值,
称为最优值函数。在不同的问题中,指标函数的含义
是不同的,它可能是距离、利润、成本、产量或资源
消耗等。
动态规划模型的指标函数,应具有可分离性,并满