人教A版数学选修21: 空间向量与立体几何 6

合集下载

人教A版高中数学选修2-1课件 3.1.4空间向量的正交分解及其坐标表示课件2

人教A版高中数学选修2-1课件 3.1.4空间向量的正交分解及其坐标表示课件2
1 2 解:OP OM MP OA MN 2 3 1 2 M OA (ON OM ) 2 3 1 2 1 Q OA (OB OC ) A 6 3 2
1 1 1 OA OB OC 6 3 3
量 OA, OB, OC 表 示OP和OQ .
O
P N
C
一、空间向量的坐标分解
z
给定一个空间坐标系和向量 p p 且设 i, j , k 为空间两两垂直的向 k 量,设点Q为点P在 i, j所确定平 i O j 面上的正投影 由平面向量基本定理有
x
P
y Q
一、空间向量的坐标分解
在OQ , k所确定的平面上, 存在 实数 z , 使得OP OQ z k
为基向量 a 、 b、 c 的有关运算来处理 , 而且不用添 辅助线及作证明.
练习 1.已知空间四边形 OABC 的四条边及 AC 、BD 的长都等于 1 , 点 M 、N 、P 分别是 OA 、BC 、OC 的 中点,且 OA a , OB b , OC c , ⑴用 a 、 b、 c 表示 MN , MP ; ⑵求 MN MP .
O
M A
Q
P B N
C
练习 1.已知空间四边形 OABC 的四条边及 AC 、BD 的长都等于 1 , 点 M 、N 、P 分别是 OA 、BC 、OC 的 中点,且 OA a , OB b , OC c , ⑴用 a 、 b、 c 表示 MN , MP ; ⑵求 MN MP .
分析 : ⑴ 这种表 示式的寻 找 ,只 要 结合图形, 充分运用空间向 量加法和数乘的运算律即可. ⑵运用⑴的结果,可以把 MN MP 的计算转化
z
在i, j所确定的平面上, 存在 实数x, y, 使得OQ xi y j

人教A版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量及其线性运算

人教A版高中数学选择性必修第一册精品课件 第1章 空间向量与立体几何 空间向量及其线性运算
能否用向量a,b表示?怎样表示?
提示:能.存在唯一确定的有序实数对(x,y),使向量p=xa+yb.
2.(1)两个向量共线(平行)的充要条件:对任意两个空间向量a,b(b≠0),a∥b
的充要条件是存在实数λ,使a=λb .
(2)直线的方向向量:如图,O是直线l上一点,在直线l上取非零向量a,则对
于直线l上任意一点P,存在实数λ,使得 = λa .我们把与向量a平行的非零
(1);(2)1 ;(3) + 1 .
解:(1)因为P是C1D1的中点,
所以 = 1 + 1 1 + 1 =a+ +
1
1
1
1 1 =a+c+ =a+c+ b.
2
2
2
(2)因为 N 是 BC 的中点,
所以1 = 1 + +
1
1
1
=-a+b+ =-a+b+ =-a+b+ c.
2
2
2
(3)因为 M 是 AA1 的中点,
所以 = + =
又1 = + 1 =
所以 + 1 =
1

2
1
+
2 1
1

2
+
1
=-2a+
+ 1 =
1

2
1

2
+ + +
++
1

2
+ 1 =
1

2
=
=
1

高中数学 3.2.3用空间向量求空间角课件 新人教A版选修

高中数学 3.2.3用空间向量求空间角课件 新人教A版选修

uuur uuuur x uAuFur1 • uBuDuur1
1 1 4
30
| AF1 || BD1 |
5 3 10
42
30
所以 BD与1 A所F1成角的余弦值为 10
[悟一法] 利用向量求异面直线所成的角的步骤为: (1)确定空间两条直线的方向向量; (2)求两个向量夹角的余弦值; (3)确定线线角与向量夹角的关系;当向量夹角为锐角时, 即为两直线的夹角;当向量夹角为钝角时,两直线的夹角为向 量夹角的补角.
z
(1)求证: 直线B1O 面MAC;
(2)求二面角
uuur
Bu1uur
MA
uuuur
C
的余弦值.
D1
①证明:以 DA、DC、DD1为正交基底, A1 建立空间直角坐标系如图。则可得
M
uuur
uuuur
所以MA (2,0,1),MC (0,2,1),
uuur B1O (1,1, 2)
D O
A(2,0,0),C(0,2,0),M (0,0,1), A
xB
3
AD与平面ANM所成角的正弦值是3 34 34
Dy
C
[悟一法] 利用向量法求直线与平面所成角的步骤为: (1)确定直线的方向向量和平面的法向量; (2)求两个向量夹角的余弦值; (3)确定线面角与向量夹角的关系:向量夹角为锐角 时,线面角与这个夹角互余;向量夹角为钝角时,线面角 等于这个夹角减去90°.
①向量法
D1
C1 ② 传统法
A1
B1
O
D A
C B
练习:在长方体 ABCD A1B1C1D1中, AB 6, AD 8,
AA1 6, M为B1C1上的一点,且B1M 2, 点N在线段A1D上,

数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

数学:第三章《空间向量与立体几何》教案(人教版选修2-1)

高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。

2.理解共线向量定理和共面向量定理及其意义。

3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。

三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。

5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高中数学 第三章第1节空间向量及其运算知识精讲 理 新人教版A版选修2-1

高二数学选修2-1第三章第1节空间向量及其运算人教新课标A 版(理)一、学习目标:1. 理解空间向量的概念,了解共线或平行向量的概念,掌握其表示方法;会用图形说明空间向量的加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题.2. 理解共线向量的定理及其推论.3. 掌握空间向量的夹角和模的概念及其表示方法;掌握两个向量数量积的概念、性质和计算方法及运算律;掌握两个向量数量积的主要用途,会用它解决立体几何中的一些简单问题.4. 掌握空间向量的正交分解,空间向量的基本定理及其坐标表示;掌握空间向量的坐标运算的规律;会根据向量的坐标,判断两个向量共线或垂直.二、重点、难点:重点:空间向量的加减与数乘运算及运算律,空间直线、平面的向量参数方程及线段中点的向量公式,点在已知平面内的充要条件,两个向量的数量积的计算方法及其应用,空间向量的基本定理、向量的坐标运算.难点:由平面向量类比学习空间向量,对点在已知平面内的充要条件的理解与运用,向量运算在几何证明与计算中的应用,理解空间向量的基本定理.三、考点分析:本讲知识主要为由平面向量类比学习空间向量的概念及其基本运算,涉及到空间向量中的共线向量和共面向量,以及空间向量的基本定理和空间向量的坐标运算.数量积的运用,是我们学习的重点.一、空间向量的概念:模(或长度)为0的向量称为零向量;模为1的向量称为单位向量.与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -.方向相同且模相等的向量称为相等向量.二、空间向量的加法和减法、数乘运算1. 求两个向量和的运算称为向量的加法,它遵循平行四边形法则.2. 求两个向量差的运算称为向量的减法,它遵循三角形法则.3. 实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.三、共线向量与共面向量1. 向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.2. 向量共面定理:平行与同一平面的向量是共面向量.四、向量的数量积1. 已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.2. 对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.3. 已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.五、空间向量的坐标表示和运算设()111,,a x y z =,()222,,b x y z =,则 1. ()121212,,a b x x y y z z +=+++. 2. ()121212,,a b x x y y z z -=---. 3. ()111,,a x y z λλλλ=. 4. 121212a b x x y y z z ⋅=++.5. 若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.6. 若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.7. 222111a a a x y z =⋅=++.8. 121212222222111222cos ,a b a b a bx y z x y z⋅〈〉==++⋅++.9. ()111,,x y z A ,()222,,x y z B ,则()()()222212121d x x y y z z AB =AB =-+-+-知识点一 空间向量的概念的运用例1、与向量(1,3,2)a =-平行的一个向量的坐标是( )A .(31,1,1) B .(-1,-3,2) C .(-21,23,-1)D .(2,-3,-22)思路分析:1)题意分析:本题主要考查共线向量的概念的运用.2)解题思路:利用共线向量的概念,如果b a b a b λ=⇔≠//,0,那么说向量→→b a ,共线.也可观察坐标的系数是不是成比例.解答过程:解析:向量的共线和平行是一样的,可利用空间向量共线定理写成数乘的形式. 即b a b a b λ=⇔≠//,0,因为(1,3,2)a =-=-2(-21,23,-1),故答案为C . 解题后的思考:对于空间共线向量的判定,要么利用坐标对应成比例,要么利用向量的线性关系来判定.例2、在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是( )A .++-2121B .++2121 C .c b a +-2121D .c b a +--2121思路分析:1)题意分析:本题考查的是基本的向量相等与向量的加法,考查学生的空间想象能力. 2)解题思路:把未知向量表示为已知向量,可利用三角形或平行四边形法则解决.用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.解答过程:解析:)(21111BC BA A A BM B B MB ++=+==+21(-+)=-21+21+.故选A . 解题后的思考:对于空间向量的线性表示,我们本着把所求的向量与已知向量尽量放在一个封闭图形中的原则,再结合向量的加法得到.例3、在下列条件中,使M 与A 、B 、C 一定共面的是 ( )A .OM --=2B .213151++=C .=++MC MB MA 0D .=+++OC OB OA OM 0 思路分析:1)题意分析:本题主要考查共面向量的概念的运用.2)解题思路:空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,或者AC y AB x AP +=.解答过程:由于空间的四点P 、A 、B 、C 共面只需满足,OC z OB y OA x OP ++=且1=++z y x 即可,首先判定A ,B ,D 项都不符合题意,由排除法可知只有选C .利用向量的加法和减法我们可以把+-+-=++)()(OM OB OM OA MC MB MA03)()(=-++=-OM OC OB OA OM OC ,)(31++=,显然满足题意. 解题后的思考:对空间向量的共面问题,我们只需利用课本中的两个结论判定即可.,z y x ++=且1=++z y x 或,y x +=都可判定P ,A ,B ,C 共面.例4、①如果向量,a b 与任何向量都不能构成空间向量的一组基底,那么,a b 的关系是不共线;②,,,O A B C 为空间四点,且向量,,OA OB OC 不构成空间的一个基底,那么点,,,O A B C 一定共面;③已知向量,,a b c 是空间的一个基底,则向量,,a b a b c +-也是空间的一个基底. 其中正确的命题是( )A .①②B .①③C .②③D .①②③ 思路分析:1)题意分析:本题考查空间向量的基底.2)解题思路:结合空间向量基底的概念,我们逐一的判定.解答过程:命题①中,由于,a b 与任何向量都共面,说明,a b 是共线向量.因此①是错误的.命题②中,由四点确定的、共起点的三个向量不能构成基底,说明了这四点是共面的,因此②是正确的.命题③中,要判定三个向量是否可构成基底,关键是看这三个向量是不是不共面,共面与是共面的,,→→→→→→-+b a b a b a ,因此③是正确的.选C .解题后的思考:理解空间向量的基底是由不共面的四点,或者说不共面的三个向量构成的.知识点二 空间向量的坐标运算的运用例5、在ΔABC 中,已知)0,4,2(=AB ,)0,3,1(-=BC ,则∠ABC =___.思路分析:1)题意分析:本题考查用向量数量积求夹角.2)解题思路:首先要注意夹角的概念,是共起点,因此在求角的时候,要注意向量的方向,否则容易出错.解答过程:(2,4,0),(1,3,0),BA BC =--=-2cos ,2||||2510BA BC BA BC BA BC ⋅∴===-⋅ ∴∠ABC =145°解题后的思考:向量夹角的求解是高考中的常考题型,因此,同学们要注意准确运用.例6、已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5). ⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a 分别与向量AC AB ,垂直,且|a |=3,求向量a 的坐标思路分析:1)题意分析:本题综合运用向量的数量积来判定垂直,求解夹角.2)解题思路:首先分析平行四边形的面积实际上是三角形面积的2倍,于是可转化为求三角形的面积,需先结合数量积求出夹角的余弦值,然后得到夹角的正弦值,再求面积;求向量的坐标,一般是先设出其坐标,然后结合已知条件,列出关系式,进而求解.解答过程:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB AC AB BAC AC AB . ∴∠BAC =60°,3760sin ||||==∴ AC AB S . ⑵设a =(x ,y ,z ),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x a z y x AC a解得x =y =z =1或x =y =z =-1,∴a =(1,1,1)或a =(-1,-1,-1).解题后的思考:向量的数量积是高考中的一个热点话题,出题形式较灵活,只要同学们抓住数量积解决的问题一般是有关夹角、距离的问题这个本质即可.例7、如图所示,直三棱柱ABC —A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M 、N 分别是A 1B 1、A 1A 的中点.(1)求的长;(2)求cos<11,CB BA >的值; (3)求证:M C B A 11⊥思路分析:1)题意分析:本题主要考查空间向量的概念及其运算的基本知识.考查空间两向量垂直的充要条件.2)解题思路:先建立空间直角坐标系,然后写出坐标,利用坐标的运算进行求解. 解答过程:如图,建立空间直角坐标系O -xyz .(1)解:依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.(2)解:依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={1,-1,2},1CB ={0,1,2},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB >=30101||||1111=⋅⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,-2},MC 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1.解题后的思考:对于空间中的角和垂直的判定,如果不能直接利用定义,我们可以运用代数的方法,结合坐标运算进行.例8、已知正方体''''ABCD A B C D -的棱长为a ,M 为'BD 的中点,点N 在'A C '上,且|'|3|'|A N NC =,试求MN 的长.思路分析:1)题意分析:本题考查向量的概念及向量的坐标运算,求解有关距离的问题.2)解题思路:对于空间向量的距离的求解,可借助于向量的数量积的性质来解,也可利用坐标运算进行求解.解答过程: 以D 为原点,建立如图所示的空间直角坐标系.因为正方体棱长为a ,所以B (a ,a ,0),A'(a ,0,a ),'C (0,a ,a ),'D (0,0,a ).由于M 为'BD 的中点,取''A C 的中点O',所以M (2a ,2a ,2a ),O'(2a ,2a,a ).因为|'|3|'|A N NC =,所以N 为''A C 的四等分点,从而N 为''O C 的中点,故N (4a ,34a ,a ).根据空间两点间的距离公式,可得22236||()()()242424a a a a a MN a a =-+-+-=.解题后的思考:本题是求解空间几何体中距离的问题,我们一般利用坐标的运算进行求解.解题关键是能把坐标准确地表示出来.小结:通过以上的典型例题,同学们应熟练掌握以下基本概念:共线向量与共面向量,空间向量的基底,以及运用向量的坐标运算解决有关的距离和夹角问题.注意处理以上问题的两个方法:向量法与坐标法.空间向量及其运算是解决立体几何的一种重要工具,同学们要理解基本概念,并能对比平面向量进行加、减运算和数乘运算及数量积的运算和应用.数量积问题是向量问题中经常考查的知识点,要能灵活解决有关的夹角和距离问题,从而为后面的学习打下坚实的基础.一、预习新知本讲学习了空间向量的概念及其基本运算,那么能否利用向量解决空间中有关角与距离的问题呢?二、预习点拨探究与反思:探究任务一:用空间向量解决立体几何中有关角的问题 【反思】(1)如何用向量表示线面角、二面角及异面直线所成的角 (2)具体的求角的公式应如何怎么表示?探究任务二:用空间向量解决立体几何中有关距离的问题 【反思】(1)如何用空间向量表示空间的点线的距离、异面直线的距离、线面的距离、面面的距离?(2)求解距离的具体的计算公式是什么?(答题时间:50分钟)一、选择题1.下列命题正确的是( )A .若a 与b 共线,b 与c 共线,则a 与c 共线B .向量,,a b c 共面就是它们所在的直线共面C .零向量没有确定的方向D .若//a b ,则存在唯一的实数λ使得a b λ=2. 已知A (-1,-2,6),B (1,2,-6),O 为坐标原点,则向量OA OB 与的夹角是( )A .0B .2πC .πD .32π 3. 已知空间四边形ABCO 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN =( )A .c b a 213221+- B .c b a 212132++- C .c b a 212121-+ D .c b a 213232-+4. 设A 、B 、C 、D 是空间不共面的四点,且满足000=⋅=⋅=⋅AD AB ,AD AC ,AC AB ,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定5. 空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos BC ,OA =( ) A .21B .22C .-21D .06. 已知A (1,1,1)、B (2,2,2)、C (3,2,4),则△ABC 的面积为( ) A .3B .32C .6D .267. 已知),,2(),,1,1(t t b t t t a =--=,则||b a -的最小值为( ) A .55 B .555 C .553 D .511二、填空题8.若)1,3,2(-=a ,)3,1,2(-=b ,则以b a ,为邻边的平行四边形的面积为 . 9.已知空间四边形OABC ,其对角线为OB 、AC ,M 、N 分别是对边OA 、BC 的中点,点G 在线段MN 上,且GN MG 2=,现用基组{}OC OB OA ,,表示向量OG ,有OG =x OC z OB y OA ++,则x 、y 、z 的值分别为 .10.已知点A (1,-2,11)、B (4,2,3),C (6,-1,4),则△ABC 的形状是 . 11.已知向量)0,3,2(-=a ,)3,0,(k b =,若b a ,成120°的角,则k = .三、解答题12.如图,在空间直角坐标系中BC =2,原点O 是BC 的中点,点A 的坐标是(21,23,0),点D 在平面yOz 上,且∠BDC =90°,∠DCB =30°.(1)求向量OD 的坐标;(2)设向量AD 和BC 的夹角为θ,求cos θ的值13.四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,-4),AD =(4,2,0),AP =(-1,2,-1). (1)求证:PA ⊥底面ABCD ; (2)求四棱锥P -ABCD 的体积;(3)对于向量a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )·c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,试计算(AB ×AD )·AP 的绝对值的值;说明其与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )·AP 的绝对值的几何意义.14.若四面体对应棱的中点间的距离都相等,证明这个四面体的对棱两两垂直.1.C ;解析:由于选项A 中当b =→0时,就不符合题意,因此A 错误.选项B ,向量共面,但向量所在的直线不一定共面,可以是平行.选项D ,应说明b ≠→0. 2.C ;解析:||||cos b a ⋅=θ,计算结果为-1.3.B ;解析:显然OA OC OB OM ON MN 32)(21-+=-=. 4.B ;解析:过点A 的棱两两垂直,通过设棱长、应用余弦定理可得△BCD 为锐角三角形. 5.D ;解析:先建立一组基向量OC OB OA ,,,再处理⋅的值. 6.D ;解析:应用向量的运算,显然><⇒>=<AC AB AC AB ,sin ,cos ,从而得><=S ,sin ||||21. 7.C ;解析:利用向量数量积的性质求解模的平方的最小值,然后再开方即可得到. 8.56;解析:72||||,cos -=>=<b a ,得753,sin >=<b a ,从而可得结果.9.313161、、; 解析:OM ON OA MN OA MG OM OG 313161]21)(21[3221)(32213221++=-++=-+=+=+= 10.直角三角形;解析:利用空间两点间的距离公式得:222||||||AC BC AB +=.11.39-;解析:219132,cos 2-=+=>=<k k b a ,得39±=k . 12.解:(1)过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,由∠BDC =90°,∠DCB =30°,BC =2,得BD =1,CD =3,∴DE =CD ·sin30°=23. OE =OB -BE =OB -BD ·cos60°=1-2121=. ∴D 点坐标为(0,-23,21),即向量的坐标为(0,-23,21). (2)依题意:)()()(0,1,0,0,1,0,0,21,23=-==, 所以)()(0,2,0,23,1,23=-=--=-=OB OC BC OA OD AD .设向量和BC 的夹角为θ,则cos θ222222020)23()1()23(0232)1(023||||++⋅+-+-⨯+⨯-+⨯-=⋅BC AD BC AD 1051-=. 13.(1)证明:∵AB AP ⋅=-2-2+4=0,∴AP ⊥AB . 又∵AD AP ⋅=-4+4+0=0,∴AP ⊥AD .∵AB 、AD 是底面ABCD 上的两条相交直线,∴PA ⊥底面ABCD . (2)解:设AB 与AD 的夹角为θ,则 cos θ1053416161428||||=+⋅++-=⋅AD AB AD ABABCD P V -=31|AB |·|AD |·sin θ·|AP |=161411059110532=++⋅-⋅ (3)解:|(AB ×AD )·AP |=|-4-32-4-8|=48,它是四棱锥P -ABCD 体积的3倍.猜测:|(AB ×AD )·AP |在几何上可表示以AB 、AD 、AP 为棱的平行六面体的体积(或以AB 、AD 、AP 为棱的直四棱柱的体积). 14.证明:如图,设321,,r SC r SB r SA ===,则SN SM SH SG SF SE ,,,,,分别为121r ,)(2132r r +,)(2121r r +,321r ,)(2131r r +,221r ,由条件EF =GH =MN 得: 223123212132)2()2()2(r r r r r r r r r -+=-+=-+展开得313221r r r r r r ⋅=⋅=⋅∴0)(231=-⋅r r r ,∵1r ≠,23r r -≠, ∴1r ⊥(23r r -),即SA ⊥BC .同理可证SB ⊥AC ,SC ⊥AB .。

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。

人教A版数学选修21-空间向量与立体几何-【完整版】

表示如图.
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
类型3 空间向量加减运算的应用(误区警示)
[典例3]
在长方体ABCD-A1B1C1D1中,化简
→ DA

→ DB
+B→1C-B→1B+A→1B1-A→1B.
证明:如图所示,平行六面体 ABCD-A′B′C′D′,设点O是AC′的中点,
则A→O=12A→C′=12(A→B+A→D+A→A′). 设P、M、N分别是BD′、CA′、DB′的中点. 则A→P=A→B+B→P=A→B+12B→D′=A→B+12·(B→A+B→C+
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
(3)用已知向量表示指定向量的方法. 用已知向量来表示指定向量时,常结合具体图形.通 过向量的平移等手段将指定向量放在与已知向量有关的三 角形或四边形中,通过向量的运算性质将指定向量表示出 来,然后转化为已知向量的线性式.
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
人教A 版数学选修2 1 : 空间向量与立 体几何- 精品课 件p pt( 实用版)
[变式训练] (1)下列命题中假命题的个数是( )
①向量A→B与B→A的长度相等;
②空间向量就是空间中的一条有向线段;
③不相等的两个空间向量的模必不相等.
A.1
B.2
C.3
D.0
(2)如图,在长方体ABCD-A1B1C1D1中, AB=4,AD=2,AA1=1,以该长方体的八 个顶点中的两点为起点和终点的所有向量

高中数学人教A版选择性必修第一册第一章空间向量与立体几何1.1空间向量及其运算课件

• 2.直观想象:向量运算的几何意义;
学习重难点
• 重点:理解空间向量的概念
• 难点:掌握空间向量的运算及其应用
空间向量及其运算
向量
平面向量VS空间向量
左图是一个做滑翔运动员的场景,
可以想象在滑翔过程中,飞行员会受到
来自不同方向大小各异的力,例如绳索
的拉力,风力,重力等,显然这些力不
在同一个平内。
向量.
另外,利用向量加法的交换律和结合律,还可
以得到:有限个向量求和,交换相加向量的顺序,其
和不变.
A'
B'
D
A
C
B
知识点二 空间向量的加减运算及运算律
探 对任意两个空间向量与,如果=λ (λ∈R),与有什么位置关系?反过来,
究 与有什么位置关系时,=λ?
类似于平面问量共线的充要条件,对任意两个空间向量, (≠0), ∥
联想,用平面向量解决物理问题的方法,能否把平面向量推广
到空间向量,从而利用向量研究滑翔运动员呢?
下面我们类比平面向量,研究空间向量,先从空间上的概念和
表示开始。
知识点一 空间向量的概念
思考1
类比平面向量的概念,给出空间向量的概念.
在空间,把具有大小和方向的量叫做空间向量。
空间向量的大小叫做向量的长度或模.
―→ ―→ ―→
(2)AA′+ AB +B′C′.







AA′ +AB +B′C′ =(AA′ +AB )+B′C′ =





AB′+B′C′=AC′.向量AD′、AC′如图所示.
课堂检测
如图,E,F分别是长方体ABCD -A'B'C'D'的棱AB,CD的中点.

高二数学人教版A版选修2-1课件:第三章 空间向量与立体几何 3.1.3


解析答
― → ― → ― → (2)| OA + OB + OC |.
解 = =
― → ― → ― → | OA + OB + OC | →+― →+― →2 ― OA OB OC →2 ― →2 ― →2 ― →― → ― →― → ― →― → OA + OB + OC +2 OA · OB + OB · OC + OA · OC
= 12+12+12+21×1×cos 60° ×3= 6.
解析答
类型二
例2
利用数量积求夹角
BB1⊥平面ABC,且△ABC是∠B=90°的等腰直角三角形,▱ABB1A1、▱BB1C1C的对角线都分
别相互垂直且相等,若AB=a,求异面直线BA1与AC所成的角.
反思与
解析答
跟踪训练2
且l⊥OA.
其中正确的有(
A.①② C.③④
)
D B.②③ D.②④
解析 结合向量的数量积运算律,只有②④正确.
解析答
1
2 3 4 5
― → ― → ― → 2.已知正方体 ABCD-A′B′C′D′的棱长为 a,设 AB =a,AD =b, AA′ ― ― → ― ― ― → =c,则〈A′B, B′D ′〉等于( A.30° C.90° B.60°
当堂训练
问题导学 知识点一 空间向量数量积的概念
思考
如图所示,在空间四边形 OABC 中,OA=8,
AB=6,AC=4,BC=5,∠OAC=45° ,∠OAB=60° , ― → ― → 类比平面向量有关运算,如何求向量 OA 与 BC 的数量 积?并总结求两个向量数量积的方法.
梳理
(1)定义:已知两个非零向量a,b,则|a||b|cos〈a,b〉叫做a,b的数量积,记作a·b.

2020年高中数学人教A版选修2-1 空间向量与立体几何 3.1.4 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.点A (-1,2,1)在x 轴上的投影点和在xOy 平面上的投影点的坐标分别为( )A .(-1,0,1),(-1,2,0)B .(-1,0,0),(-1,2,0)C .(-1,0,0),(-1,0,0)D .(-1,2,0),(-1,2,0)【解析】 点A 在x 轴上的投影点的横坐标不变,纵、竖坐标都为0,在xOy 平面上的投影点横、纵坐标不变,竖坐标为0,故应选B.【答案】 B2.在空间直角坐标系Oxyz 中,下列说法正确的是( ) A .向量AB→的坐标与点B 的坐标相同 B .向量AB→的坐标与点A 的坐标相同 C .向量AB→与向量OB →的坐标相同 D .向量AB→与向量OB →-OA →的坐标相同 【解析】 因为A 点不一定为坐标原点,所以A ,B ,C 都不对;由于AB→=OB →-OA →,故D 正确. 【答案】 D3.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A.12a +12b +c B.12a -12b +c C .-12a -12b +cD .-12a +12b +c【解析】 由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →)=-12a +12b +c ,故选D.【答案】 D4.正方体ABCD -A ′B ′C ′D ′中,O 1,O 2,O 3分别是AC ,AB ′,AD ′的中点,以{AO →1,AO →2,AO →3}为基底,AC ′→=xAO →1+yAO 2→+zAO →3,则x ,y ,z 的值是( )A .x =y =z =1B .x =y =z =12 C .x =y =z =22D .x =y =z =2【解析】 AC ′→=AA ′→+AD →+AB → =12(AB →+AD →)+12(AA ′→+AD →)+12(AA ′→+AB →) =12AC →+12AD ′→+12AB ′→=AO 1→+AO 3→+AO 2→, 由空间向量的基本定理,得x =y =z =1. 【答案】 A5.已知空间四点A (4,1,3),B (2,3,1),C (3,7,-5),D (x ,-1,3)共面,则x 的值为( ) 【导学号:18490096】A .4B .1C .10D .11【解析】 AB →=(-2,2,-2),AC →=(-1,6,-8),AD →=(x -4,-2,0),∵A ,B ,C ,D 共面, ∴AB→,AC →,AD →共面, ∴存在实数λ,μ,使AD→=λAB →+μAC →, 即(x -4,-2,0)=(-2λ-μ,2λ+6μ,-2λ-8μ), ∴⎩⎪⎨⎪⎧x -4=-2λ-μ,-2=2λ+6μ,0=-2λ-8μ,得⎩⎪⎨⎪⎧λ=-4,μ=1,x =11. 【答案】 D 二、填空题6.设{i ,j ,k }是空间向量的单位正交基底,a =3i +2j -k ,b =-2i +4j +2k ,则向量a 与b 的位置关系是________.【解析】 ∵a ·b =-6i 2+8j 2-2k 2=-6+8-2=0. ∴a ⊥b . 【答案】 a ⊥b7.如图3-1-32, 在平行六面体ABCD ­A 1B 1C 1D 1中,M 为AC 和BD 的交点,若AB →=a ,AD →=b ,AA 1→=c ,则B 1M →=________.图3-1-32【解析】 B 1M →=AM →-AB 1→=12(AB →+AD →)-(AB →+AA 1→)=-12AB →+12AD →-AA 1→=-12a +12b -c . 【答案】 -12a +12b -c8.已知点A 在基底{a ,b ,c }下的坐标为(2,1,3),其中a =4i +2j ,b =2j +3k ,c =3k -j ,则点A 在基底{i ,j ,k }下的坐标为________.【解析】 由题意知点A 对应的向量为2a +b +3c =2(4i +2j )+(2j +3k )+3(3k -j )=8i +3j +12k ,∴点A 在基底{i ,j ,k }下的坐标为(8,3,12). 【答案】 (8,3,12) 三、解答题9.已知{e 1,e 2,e 3}为空间一基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-e 3,能否以OA →,OB →,OC →作为空间的一个基底? 【导学号:18490097】【解】 假设OA→,OB →,OC →共面, 根据向量共面的充要条件有OA→=xOB →+yOC →, 即e 1+2e 2-e 3=x (-3e 1+e 2+2e 3)+y (e 1+e 2-e 3) =(-3x +y )e 1+(x +y )e 2+(2x -y )e 3.∴⎩⎪⎨⎪⎧-3x+y=1,x+y=2,2x-y=-1,此方程组无解.∴OA→,OB→,OC→不共面.∴{OA→,OB→,OC→}可作为空间的一个基底.10.如图3-1-33,在平行六面体ABCD-A1B1C1D1中,MA→=-13AC→,ND→=13A1D→,设AB→=a,AD→=b,AA1→=c,试用a,b,c表示MN→.图3-1-33【解】连接AN,则MN→=MA→+AN→.由已知可得四边形ABCD是平行四边形,从而可得AC→=AB→+AD→=a+b,MA→=-13AC→=-13(a+b),又A1D→=AD→-AA1→=b-c,故AN→=AD→+DN→=AD→-ND→=AD→-13A1D→=b-13(b-c),MN→=MA→+AN→=-13(a+b)+b-13(b-c)=13(-a +b +c ).[能力提升]1.已知空间四边形OABC ,其对角线为AC ,OB .M ,N 分别是OA ,BC 的中点,点G 是MN 的中点,则OG→等于( ) A.16OA →+13OB →+12OC → B.14(OA →+OB →+OC →) C.13(OA →+OB →+OC →) D.16OB →+13OA →+13OC → 【解析】 如图,OG →=12(OM →+ON →) =12OM →+12×12(OB →+OC →) =14OA →+14OB →+14OC → =14(OA →+OB →+OC →). 【答案】 B2.若向量MA→,MB →,MC →的起点M 和终点A ,B ,C 互不重合无三点共线,则能使向量MA→,MB →,MC →成为空间一组基底的关系是( ) A.OM →=13OA →+13OB →+13OC → B.MA→=MB →+MC → C.OM→=OA →+OB →+OC → D.MA →=2MB →-MC → 【答案】 C3.在空间四边形ABCD 中,AB→=a -2c ,CD →=5a -5b +8c ,对角线AC ,BD 的中点分别是E ,F ,则EF→=________. 【解析】 EF →=12(ED →+EB →)=14(AD →+CD →)+14(AB →+CB →)=14AB →+14BD →+14CD →+14AB →+14CD →+14DB →=12(AB →+CD →)=3a -52b +3c . 【答案】 3a -52b +3c4.在直三棱柱ABO -A 1B 1O 1中,∠AOB =π2,AO =4,BO =2,AA 1=4,D 为A 1B 1的中点,在如图3-1-34所示的空间直角坐标系中,求DO →,A 1B →的坐标.图3-1-34【解】 ∵DO →=-OD →=-(OO 1→+O 1D →)=-[OO 1→+12(OA →+OB →)]=-OO 1→-12OA →-12OB →. 又|OO 1→|=|AA 1→|=4,|OA →|=4,|OB →|=2, ∴DO→=(-2,-1,-4). ∵A 1B →=OB →-OA 1→=OB →-(OA →+AA 1→) =OB →-OA →-AA 1→. 又|OB →|=2,|OA →|=4,|AA 1→|=4, ∴A 1B →=(-4,2,-4)......................................使用本文档删除后面的即可 致力于打造全网一站式文档服务需求,为大家节约时间文档来源网络仅供参考欢迎您下载可以编辑的word文档谢谢你的下载本文档目的为企业和个人提供下载方便节省工作时间,提高工作效率,打造全网一站式精品需求!欢迎您的下载,资料仅供参考!(本文档收集于网络改编,由于文档太多,审核难免疏忽,如有侵权或雷同,告知本店马上删除)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

而A→1O=A→1A+A→O=A→1A+12A→B+A→D=c+12(a+b), B→D=A→D-A→B=b-a, O→G=O→C+C→G=12(A→B+A→D)+12C→C1=12(a+b)-12c, 所以A→1O·B→D=c+12a+12b·(b-a)=c·(b-a)+12(a+ b)·(b-a)=c·b-c·a+12(b2-a2)=12(|b|2-|a|2)=0. 所以A→1O⊥B→D,所以 A1O⊥BD.
[变式训练] 在正四棱柱 ABCD-A1B1C1D1 中,E,F 分别是 C1D1,C1B1 的中点,G 为 CC1 上任一点,tan∠ECD =4.
(1)求证:AG⊥EF; (2)在 CC1 上是否存在点 G,使 AG⊥平面 CEF,并说 明理由. 解:因为 ABCD-A1B1C1D1 是正四棱柱,所以 ABCD 是正方形,设其边长为 2a,∠ECD 是 EC 与底面所成的 角,tan∠ECD=4, 而∠ECD=∠CEC1,所以 CC1=4EC1=4a.
|a|=|b|=|c|=1,a·c=b·c=0, A→B1=a+c,A→M=12(a+b), A→N=b+14c,M→N=A→N-A→M=-12a+12b+14c, 所以A→B1·M→N=(a+c)·-12a+12b+14c= -12+12cos 60°+14=0. 所以A→B1⊥M→N,所以 AB1⊥MN.
[变式训练] 三棱锥被平行于底面 ABC 的平面所截 得的几何体如图所示,截面为三角形 A1B1C1,∠BAC= 90°,A1A⊥平面 ABC.A1A= 3,AB=AC=2A1C1=2,D 为 BC 中点.
证明:平面 A1AD⊥平面 BCC1B1. 证明:如图,建立空间直角坐标系,则 A(0,0,0), B(2,0,0),C(0,2,0),A1(0,0, 3),C1(0,1, 3),
归纳升华 用向量法证明线面垂直的方法与步骤
1.基向量法,具体步骤如下: (1)确定基向量作为空间的一个基底,用基向量表示 有关直线的方向向量; (2)找出平面内两条相交直线的方向向量,并分别用 基向量表示; (3)分别计算有关直线的方向向量与平面内相交直线 的向量的数量积,根据数量积为 0,证得线线垂直,然后 由线面垂直的判定定理得出结论.
法二(坐标法) 设 AB 中点为 O,作 OO1∥AA1. 以 O 为坐标原点,OB 为 x 轴,OC 为 y 轴, OO1 为 z 轴建立如图所示的空间直角坐标系.由已知得 A-12,0,0,B12,0,0, C0, 23,0,N0, 23,14, B112,0,1,
因为 M 为 BC 中点,所以 M14, 43,0. 所以M→N=-14, 43,14,A→B1=(1,0,1), 所以M→N·A→B1=-14+0+14=0. 所以M→N⊥A→B1,所以 AB1⊥MN.
2.如图所示,在长方体 ABCD-A1B1C1D1 中,AB=2, AA1= 3,AD=2 2,P 为 C1D1 的中点,M 为 BC 的中 点.则 AM 与 PM 的位置关系为( )
A.平行 C.垂直 答案:C
B.异面 D.以上都不对
3.若直线 l 的方向向量为 a=(-1,0,2),平面 α
解析:因为A→B=(1,-1,1),又 u1·A→B=(1,3,2)·(1, -1,1)=0,故两直线的位置关系为垂直.
答案:垂直 5.已知两平面 α,β 的法向量分别为 u1=(1,0,1), u2=(0,2,0),则平面 α,β 的位置关系为________. 解析:因为 u1·u2=(1,0,1)·(0,2,0)=0,所以两 平面的法向量垂直,即两平面垂直.
B→C=(0,2,0).因此E→F·B→C=0,从而E→F⊥B→C, 所以 EF⊥BC.
类型 2 证明线面垂直 [典例 2] 如图所示,在正方体 ABCD-A1B1C1D1 中, O 为 AC 与 BD 的交点,G 为 CC1 的中点,求证:A1O⊥ 平面 GBD.
证明:法一 设A→1B1=a,A→1D1=b,A→1A=c, 则 a·b=0,b·c=0,a·c=0.
以 A 为原点,AB,AD,AA1 所在的直线 分别为 x 轴,y 轴,z 轴,建立如图所示的空 间直角坐标系.
则 A(0,0,0),B(2a,0,0),C(2a,2a,0),D(0, 2a,0),A1(0,0,4a),B1(2a,0,4a),C1(2a,2a,4a), D1(0,2a,4a),E(a,2a,4a),F(2a,a,4a).
类型 3 证明面面垂直 [典例 3] 如图所示,在四棱锥 E-ABCD 中,AB⊥平 面 BCE,CD⊥平面 BCE,AB=BC=CE=2CD=2,∠ BCE=120°. 求证:平面 ADE⊥平面 ABE.
证明:取 BE 的中点 O,连接 OC,则 OC⊥EB, 又 AB⊥平面 BCE,
所以以 O 为原点建立空间直角坐标系 O-xyz,如图所示.
第三章 空间向量与立体几何
第 2 课时 空间向量与垂直关系 [学习目标] 1.求直线的方向向量和平面的法向量 (重点). 2.利用方向向量和法向量处理线线、线面、面 面间的垂直问题(重点、难点).
[知识提炼·梳理] 1.空间垂直关系的向量表示 (1)线线垂直. 设直线 l 的方向向量为 a=(a1,a2,a3),直线 m 的方 向向量为 b=(b1,b2,b3),则 l⊥m⇔a⊥b⇔a·b=0⇔a1b1 +a2b2+a3b3=0. (2)线面垂直. 设直线 l 的方向向量是 u=(a1,b1,c1),平面 α 的法 向量是 v=(a2,b2,c2),则 l⊥α⇔u∥v⇔u=kv.
(3)面面垂直. 设平面 α 的法向量 u=(a1,b1,c1),平面 β 的法向量 v=(a2,b2,c2),则 α⊥β⇔u⊥v⇔u·v=0⇔a1a2+b1b2+c1c2 =0. 2.空间中直线、平面垂直关系的证明方法 (1)线线垂直.
(2)线面垂直. 方法一:根据线面垂直的判定定理转化为线线垂直; 方法二:证明直线的方向向量与平面的法向量平行. (3)面面垂直. 方法一:根据判定定理证明线面垂直; 方法二:证明两个平面的法向量垂直.
答案:垂直
类型 1 证明线线垂直(自主研析) [典例 1] 已知正三棱柱 ABC-A1B1C1 的各棱长都为 1,M 是底面上 BC 边的中点,N 是侧棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥MN.
解:法一(基向量法) 设A→B=a,A→C=b,A→A1=c, 则由已知条件和正三棱柱的性质,得
[思考尝试·夯基]
1.若平面 α,β 的法向量分别为 a=(-1,2,4),b
=(x,-1,-2),并且 α⊥β,则 x 的值为( )
A.10
B.-10
C.12
D.-12
解析:因为 α⊥β,则它们的法向量也互相垂直,所
以 a·b=(-1,2,4)·(x,-1,-2)=0,
解得 x=-10.
答案:B
求证:EF⊥BC. 证明:以点 B 为坐标原点,在平面 DBC 内过点 B 作垂直 BC 的直线为 x 轴,BC 所 在直线为 y 轴,在平面 ABC 内过点 B 作垂
直 BC 的直线为 z 轴,建立如图所示的空间直角坐标系, 易得 B(0,0,0),A(0,-1, 3),D( 3,-1,0),C(0, 2,0),E0,12, 23,F 23,12,0,E→F= 23,0,- 23,
法三 同法二建系后,设平面 GBD 的一个法向量为 n=(x,y,z),
则BB→→DG··nn==00,,所以--22xx+-z2=y=0,0. 令 x=1 得 z=2,y=-1, 所以平面 GBD 的一个法向量为(1,-1,2), 显然A→1O=(-1,1,-2)=-n, 所以A→1O∥n,所以 A1O⊥平面 GBD.
设 G(2a,2a,b)(0≤b≤4a). (1)A→G=(2a,2a,b),E→F=(a,-a,0),
A→G·E→F=2a2-2a2+0=0,所以 AG⊥EF. (2)C→E=(-a,0,4a),由(1)知,要使 AG⊥平面 CEF, 只需 AG⊥CE,只需A→G·C→E=(2a,2a,b)·(-a,0, 4a)=-2a2+4ab=0, 所以 b=12a,即存在点 G,当 CG=18CC1 时,AG⊥ 平面 CEF.
所以可取 n=(0,1,- 3). 又 AB⊥平面 BCE, 所以 AB⊥OC, 所以 OC⊥平面 ABE, 所以平面 ABE 的法向量可取为 m=(1,0,0). 因为 n·m=(0,1,- 3)·(1,0,0)=0, 所以 n⊥m, 所以平面 ADE⊥平面 ABE.
归纳升华 1.利用空间向量证明面面垂直的方法. (1)利用两个平面垂直的判定定理将面面垂直问题转 化为线面垂直,进而转化为线线垂直问题; (2)直接求解两个平面的法向量,证明两个法向量垂 直,从而得到两个平面垂直. 2.向量法证明面面垂直的优越性. 主要体现在不必考虑图形的位置关系,恰当建系或用 基向量表示后,只需经过向量运算就可得到要证明的结 果,方法很“公式化”.
的法向量为 n=(-2,0,4),则( )
A.l∥α
B.l⊥α
C.l⊂α
ቤተ መጻሕፍቲ ባይዱ
D.l 与 α 斜交
解析:因为 a=(-1,0,2),n=(-2,0,4),
n=2a,所以 n∥a,所以 l⊥α.
答案:B
4.若直线 l1 的方向向量为 u1=(1,3,2),直线 l2 上有两点 A(1,0,1),B(2,-1,2),则两直线的位置关 系是________.
则由已知条件有 C(1,0,0),B(0, 3, 0),E(0,- 3,0),D(1,0,1),A(0, 3,2).
设平面 ADE 的法向量为 n=(a,b,c), 则 n·E→A=(a,b,c)·(0,2 3,2)=2 3b+2c=0, n·D→A=(a,b,c)·(-1, 3,1)=-a+ 3b+c=0. 令 b=1,则 a=0,c=- 3,
同理可证,A→1O⊥O→G,所以 A1O⊥OG. 又因为 OG∩BD=O,且 A1O⊄平面 GBD, 所以 A1O⊥平面 GBD. 法二 如图所示,取 D 为坐标原点,DA、 DC、DD1 所在的直线分别作 x 轴、y 轴、z 轴建立空间直角坐标系. 设正方体棱长为 2, 则 O(1,1,0),A1(2,0,2),G(0,2,1),B(2,2, 0),D(0,0,0),
相关文档
最新文档