扫描隧道显微镜stm分析原理与方法
扫描隧道显微镜分析STM

Ni板氙原子排成IBM
Ag on Ag(111)
Cu on Cu(111)
CeO2(111)和 CeO2(100) 纳米粒子在被氧化的Cu(111) 基体上的生长
5.参考文献
【1】纳米材料分析 2003 黄惠忠 【2】扫描探针显微镜在材料表征的应用 2010褚宏祥 【3】CeO2 T CuOx Interactions and the Controlled Assembly of CeO2(111) and CeO2(100) Nanoparticles on an Oxidized Cu(111) Substrate 2011 《PHYSICAL CHEMISTRY》
(Vb是加在针尖和样品之间的偏置电压,平均功函数 , Φ 1和Φ 2分别为针尖和样品的功函数,A为常数,在真空 条件下约等于1)
3、样品表面的扫描
隧道电流 I 对针尖与样品表面之间的距离 S极为敏 感,如果 S 减小0.1nm,隧道电流就会增加一个数量级。 当针尖在样品表面上方扫描时,即使其表面只有原子尺度 的起伏,也将通过其隧道电流显示出来。借助于电子仪器 和计算机,在屏幕上即显示出与样品表面结构相关的信息。
图2 金属表面与针尖的电子云图
2、隧道电流的产生
当样品与针尖的距离非常小(通常小于1nm)时,在外 加电场的作用下,电子会穿过两个电极之间的势垒流向 另一电极,隧道电流I是针尖的电子波函数与样品的电子 波函数重叠的量度,与针尖和样品之间距离S和平均功函 数Φ有关
1
I V b exp( A Φ 2 S )
In Touch with Atoms
Gerd Binnig Heinrich Rohrer
2.STM的原理
扫描隧道显微镜原理与制备技术介绍

扫描隧道显微镜原理与制备技术介绍扫描隧道显微镜(Scanning Tunneling Microscope,STM)是一种基于量子隧道效应的高分辨率显微镜,用于观察固体表面的原子及分子结构。
本文将详细介绍扫描隧道显微镜的原理和制备技术。
扫描隧道显微镜通过利用尖端和样品表面之间的量子隧道效应,实现对表面形貌和电子结构的观察。
其原理可以简单描述为:在一个真空中,尖端电极和样品表面之间加上一个微小的直流电压,当尖端和样品非常接近时(约 1 nm),由于量子隧道效应的存在,电子会从尖端隧道穿过真空障垒,进入样品表面或从样品表面进入尖端。
通过测量电流的强度和偏置电压的变化,就可以对表面的电子结构和拓扑形貌进行分析和显微观察。
扫描隧道显微镜的制备技术涉及到多个方面,包括尖端制备、样品制备和探测系统的搭建。
首先,尖端制备是制备扫描隧道显微镜不可或缺的一步。
常用的方法有机械断裂法和电化学腐蚀法。
机械断裂法是将一根金属丝折断,使其末端形成尖端结构,常用的金属有铂铱合金。
电化学腐蚀法则是通过在电解液中腐蚀尖端材料来制备尖端。
这两种方法制备出的尖端直径一般为1-10纳米,且需要在真空条件下进行。
其次,样品的制备也是扫描隧道显微镜研究中的重要步骤。
制备样品需要考虑到其几何形状和电导特性。
通常,我们可以使用化学气相沉积、物理气相沉积、溅射沉积等方法制备样品。
这些方法可以制备出晶体、薄膜和纳米颗粒等不同形式的样品。
最后,搭建扫描隧道显微镜的探测系统是整个研究的核心。
探测系统主要包括扫描器、样品台和信号采集与处理系统。
扫描器用于控制尖端在样品表面的位置,实现对样品进行扫描。
样品台则用于固定样品并提供电流给样品。
信号采集与处理系统用于测量和处理电流信号,并通过计算机进行数据的可视化和分析。
总结起来,扫描隧道显微镜的原理是基于量子隧道效应,利用电流强度和偏置电压的变化来观察固体表面的原子和分子结构。
其制备技术包括尖端制备、样品制备和探测系统搭建。
扫描隧道显微镜STM

STM的工作环境
溶液条件
化学反应大多是在溶液里进行的。图是化学溶液中液/固界面上原子和分子之间发生化 学反应的示意。它是化学反应的重要过程。为了探讨这种发生在液/固界面上原子和分 子尺度的反应机理,可以工作在溶液中的STM就成为一个极为重要的观察工具。近年 来,专用于溶液中的高分辨STM已经研制成功,并得到了极大的应用。
利用STM针尖与吸附在材料表面的分子之间的吸引或排斥作用, 使吸附分子在材料表面发生横向移动,具体又可分为“牵引”、 “滑动”、“推动”三种方式。通过某些外界作用将吸附分子转 移到针尖上,然后移动到新的位置,再将分子沉积在材料表面。 通过外加一电场,改变分子的形状,但却不破坏它的化学键。
5.STM的应用
STM的工作模式
恒高模式 x,y方向仍起着扫描的 作用,而Z方向则保持 水平高度不变,由于隧 道电流随距离有着明显 的变化,只要记录电流 变化的曲线,就可以给 出高度的变化
3.STM的工作环境
大气和室温条件
在大气的条件下,STM可以用来观察无氧化层的干净样品表面。图(a)和 (b)分别是在大气条件下用STM得到的Au (111) (金)2nm×2nm 和 MS2(二硫化钼) 3nm×3nm表面的原子图像。对于在大气中容易被氧化 的半导体或金属材料样品,将不可能在大气中用STM得到它们的表面原 子结构图像,而超高真空的环境是必要的。
(a)
(b)
STM的工作环境
超高真空和室温条件
在超高真空的条件下,STM可以用来观 察所有半导体和金属样品表面的原子图。 在超高真空腔内,可以用多种方法将样 品表面清洁干净,如常用于金属表面清 洁处理的离子枪轰击和常用于半导体表 面清洁处理的直接电流预热处理等。在 超高真空中,清洁处理后的样品可以保 持长时间干净,不被氧化。对样品表面 原子结构进行重构后,就可以用STM观 察样品表面的原子结构图像。 图是Si(111)7x 7(硅)表面的原子图像。 其中,它的扫描偏压为+2V;扫描电流 为0.6nA。
扫描隧道显微镜的工作原理与应用

扫描隧道显微镜的工作原理与应用扫描隧道显微镜(Scanning Tunneling Microscope,简称STM)是一种利用量子隧穿效应的高分辨率显微镜。
它采用的是一根极细的金属探头和样品之间的隧穿电流来获取样品表面的信息。
STM具有非常高的分辨率,能够在原子尺度下的样品表面进行观测和操纵,因此在材料科学、表面物理、纳米技术等领域有着广泛的应用。
一、工作原理STM的工作基于量子力学中的隧穿效应。
隧穿效应是一种粒子从一个区域超越到另一个区域的现象。
在STM中,金属探头和样品之间形成一个电势差,并使用一个反馈电路来保持电流恒定。
隧穿电流是通过探头和样品之间的隧穿效应产生的。
探头与样品之间的距离非常小,约为几个纳米,隧穿电流的大小取决于两者之间的距离。
当探头在样品表面上移动时,由于样品表面具有不同的高度和电性特征,因此隧穿电流的大小也会发生变化。
这种变化通过反馈电路测量并转换为高度和电性的信息,然后通过计算机处理并呈现出来。
样品表面的信息在计算机中显示为一个图像。
二、应用A.材料科学STM被广泛应用于材料科学领域,如表征材料表面和分析材料电子结构等。
在纳米材料研究中,STM可以检测材料中的特定原子和分子,并且可以通过组装单个原子或分子来设计新的材料。
B.表面物理STM是表面物理学中非常有用的工具。
它可以研究各种表面效应,例如表面扭转、重排和易于惯性传输的晶格振动模式。
此外,STM还可以用于表面缺陷和缺失等杂质的检测和定位。
C.纳米技术STM在纳米技术领域具有广泛应用。
纳米材料、纳米结构的制备和表征在纳米技术领域是非常重要的。
通过STM可以定量地观察单个原子和分子,这对于设计和制备纳米材料和纳米器件非常有帮助。
D.生物学STM可以在原子和分子的尺度上进行生物学实验。
在生物领域,STM可用于研究DNA分子的结构和功能,以及在膜结构中的蛋白质微区域中检测生物分子等。
E.电子学STM还可以用作电子学中的电极,例如调制电流分布、表征器件中的界面和自旋极化等方法。
扫描隧道显微镜STM

3. 结构及关键技术 (振动隔离及样品移动等与 STM相同)
(1)AFM 微悬臂位移的检测方法 要求: 有纳米量级的检测灵敏度 测量对悬臂产生的作用力小到可忽略 方法: 隧道电流法(用STM) 光学检测法:干涉法 光束反射法 电容检测法
隧道电流法(用 STM)
1986年获诺贝尔物理奖(G.Binnig and H.Rohrer)
二、基本原理
1.隧道电流 隧道结电流密度(对两平行金属)
s:有效隧道距离 VT:所加电压 ko:ko = φ:有效势垒高度
φ=1/2 (φ1+φ2)eV 对于真空是几个电子伏 对氧化物小于1电子伏
I-s有指数关系: I ∝ exp[-2kos]
△ 弹性和塑性测量 △ 表面原子间力的测量
扫描探针显微镜(SPM )
在STM 基础上发展起来
AFM 与样品有轻微接触(斥力状态),使样品有损伤。
SPM :压电陶瓷驱使微悬臂在接近共振频率处作强
迫振动,利用样品与针尖在10-100 nm 范围内的长程
力(如吸引的范德瓦尔力、磁力、静电力等 ),改变微
隧道电流在10-9-10-6 A量级
当s增加Δs时: I ∝ exp[-2kos]·exp[-2koΔs]
设 Δs =1 ? ,ko≈1 ? -1 (φ~5eV) 则 exp[-2koΔs] = e-2 ≈ 1/8 即:当s增加 1? 时,I将减少一个数量级。
2.工作模式 △ 恒高模式 用隧道电流的大小来调制显象管的亮度 △ 恒电流模式 用电子学反馈的方法控制针尖与样品间 距离不变(保持隧道电流不变),用反馈调 制电压控制显象管亮度或画出表面形貌三 维图象。
STM △ 水平分辨率: 0.1 nm
扫描隧道显微镜(STM)的原理和应用

扫描隧道显微镜(STM)的原理和应用【摘要】:本实验主要学习扫描隧道显微镜的工作原理,了解STM的基本仪器结构,掌握用电化学腐蚀方法制作STM探针,熟悉STM的数据采集并获取石墨的原子分辨像,分析所得扫描图像计算x、y方向压电陶瓷的电压灵敏度分别为14.53、15.6。
关键词:扫描隧道显微镜隧道效应石墨晶体一、实验引言:随着材料科学的不断进步,人们能够复制改良设计合成很多种材料。
为了能够探测到一些材料的表面形态,在20世纪80年代基于量子隧道效应,IBM公司的Binning博士、Rohrer博士及其同事研制成功了扫描隧道显微镜(scanning tunneling microscopy,简称STM)。
两位发明者因此于1986年获得诺贝尔物理学奖。
STM技术的诞生使在纳米尺度范围探测材料的表面特性成为可能,这是因为STM 能够一个原子一个原子地将表面的几何结构和电子结构联系起来,实时地观察单个原子在物质表面的排列状态及与表面电子行为有关的物理、化学性质。
STM技术的最大优势在于可获得原子级的分辨率,通常它的分辨率在平行于表面的方向可达0.1纳米,在垂直于表面的方向可达0.01纳米,此外,STM还可实时地获得材料表面实空间的三维图像;可以观察单个原子层的局部表面结构,而不是整个表面的平均性质;配合扫描隧道谱STS可以得到有关表面电子结构的信息,例如表面不同层次的态密度、表面电子势阱等。
在STM之后衍生出了原子力显微镜、磁力显微镜、近场光学显微镜等一系列新型非接触表面探针技术显微镜,使探针显微镜技术日趋完善,并在纳米科技领域中得到越来越广泛的应用。
二、实验原理:1、量子隧道效应在量子力学里,如果势能不是无限大,则在)(r V >E 的区域,薛定谔方程的解不一定为零,即一个入射粒子穿透一个)(r V >E 的有限区域的几率是非零的,这就是隧道效应。
利用图1可以说明隧道效应的物理意义,设图1(上)中为矩形势垒的高度,E 为粒子动能,如图1(下)所示,则势垒穿透厚度为z 的势垒去的几率P 可用下式表示:P (z )k x 2-e ∝,其中k=)(E -0m 21ϕ(1)图1(上)高度为的矩阵势垒 图1(下)典型的矩形势垒的遂穿几率P (z )隧道效应,就是指在两片金属间夹有极薄的绝缘层,当两端施加势能形成势垒V 时,导体中有动能E 的部分微粒子在E <V 的条件下,可以从绝缘层一侧通过势垒V 而达到另一侧的物理现象。
扫描隧道显微镜的使用教程

扫描隧道显微镜的使用教程随着科学技术的进步,扫描隧道显微镜(Scanning Tunneling Microscope,STM)作为一种高分辨率的显微技术,被广泛应用于材料科学、纳米技术等领域。
本文将介绍扫描隧道显微镜的基本原理和使用教程,帮助读者了解并正确运用这一先进的显微镜技术。
一、基本原理扫描隧道显微镜基于一种称为隧道效应的物理原理。
当一根尖端针的尖端与被测物体非常接近时,由于电子的波动性,电子会发生隧道穿越现象,从尖端流向被测物体表面。
通过测量流经尖端的电流大小,我们可以得到被测物体表面的形貌信息。
二、准备工作在使用扫描隧道显微镜之前,首先需要准备相关的实验设备和样品。
实验室中应该配备一台高精度的扫描隧道显微镜系统,以及适量的样品和导电性良好的探针。
确保实验环境干净、无尘,以避免尘埃影响显微镜的观察效果。
三、样品制备与安装选择合适的样品,并进行必要的表面处理,以保证样品表面的平整度和干净度。
常见的处理方式包括超声清洗、化学溶液浸泡等。
待处理好的样品需要被固定在扫描隧道显微镜样品台上,可以使用夹具、胶带或其他固定装置。
确保样品的稳定性,以免在扫描过程中发生移动或变形。
四、扫描参数设定在开始实验之前,需要根据样品的性质和实验需求来设定扫描参数。
这些参数包括扫描区域的大小、扫描速度、扫描模式等。
通常情况下,较小的扫描区域能够提供更高的分辨率,但同时需花费更长的扫描时间。
根据实际需要进行权衡,并进行相应的设定。
五、开始扫描确认样品和参数设定后,即可开始实际的扫描操作。
在扫描过程中,需要特别注意显微镜头与样品的距离。
通过微调装置,逐渐将尖端针靠近样品表面,直到隧道电流能够经过,并稳定在合适的范围内。
同时,需要根据实际情况进行针尖的横向和纵向调整,以使得扫描过程中的信号稳定和清晰。
六、结果分析与处理扫描完成后,可以得到样品表面的形貌信息。
使用相应的软件工具,可以对获得的数据进行图像重建、三维重建和分析处理等操作。
扫描隧道显微镜(STM)

图9-4
返回
图9-5
返回
二、原子力显微镜的微悬臂及其变形的检测 方法
(一)微悬臂(力传感器) (二)微悬臂变形的检测方法
返回
(一)微悬臂(力传感器)
原子力显微镜所研究的力其数值很小。要实现力的高灵敏度测量,首 先要求力的感知件——微悬臂对微小力的变化具有足够高的灵敏度。
(1)弹性系数k值应在10 -2~10 2 N/m范围。极低的弹性系数 可满足极其灵敏地检测出零点几个nN
品表面之间的作用力,一般针尖曲率半径为30 nm
下一页 返回
(二)微悬臂变形的检测方法
原子力显微镜的图像是通过扫描时测量微悬臂受力后弯曲形变的程度 获得的,并利用Hooke定律来确定操作时的样品与针尖的作用力。
1 2 3 4
上一页 返回
三、原子力显微镜的成像模式
(一)接触成像模式 (二)非接触成像模式 (三)轻敲成像模式
返回
一、扫描隧道显微镜的基本原理
与光学显微镜和电子显微镜不同,STM不采用任何光学或电子透镜 成像,而是当尖锐金属探针在样品表面扫描时,利用针尖〖CD*2〗 样品间纳米间隙的量子隧道效应引起隧道电流与间隙大小呈指数关系, 获得原子级样品表面形貌特征图像,其基本原理如图9-1所示。
顶部有一直径约50~100 nm的极细金属探针(通常是金属钨制作 的针尖),功能是在其与样品互相作用时,可根据样品性质的不同 (如表面原子的几何结构和电子结构)产生变化的隧道电流。在扫描 隧道显微镜工作时,针尖与样品表面距离一般约为0.3~1.0 nm, 此时针尖和样品之间的电子云互相重叠。当在它们之间施加一偏压时, 电子就因量子隧道效应由针尖(或样品)转移到样品(或针尖);金 属探针安置在三个相互垂直的压电陶瓷〖WTBX〗(P x、P y、 P z)架上,当在压电陶瓷器件上施加一定电压时,由于压电陶瓷 器件产生变形,便可驱动针尖在样品表面实现三维扫描;控制器是用 STM
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Double or Multiple Tips Double or multiple tip images are formed with a tip with two or more end points which contact the sample while imaging. The above imagesm
高真空
室温
小
10mm (10倍时) 1m(10 00倍时) 原子厚度
原子级
超高真 空
30~ 80k
有
扫描隧道显微镜 (1981)
tip
A
tunneling current
10A
sample
隧道电流
A=3
分辨率
=A +)
I e2d
0.05nm
(nm) 0.1 eff
•可离线处理 •可改变色阶
GdC82- Peapod
具有空间分辨的局域电子态
dI/dV (A.U.)
dI/dV
0.3 eV
(A.U.)
0.5 eV
-0.4
-0.2 0 0.2 Sample Bias (V)
0.4
-0.4
-0.2 0 0.2 Sample Bias (V)
0.4
Khang et al., Korea Univ.
HL-II 型扫描探针显微镜 •长度定标功能
•高度定标功能
HL-II 型扫描探针显微镜
局限性与发展:局限
不能准确探测微粒间的某些沟槽 要求样品必须是导体、半导体
局限性与发展:发展
AFM (Atomic Force Microscope) LFM (Laser Force Microscope) MFM (Magnetic Force Microscope) EFM (Electrostatic Force Microscope) BEEM (Ballistic-Electron-Emission Microscope) SICM (Scanning Ion-Conductance Microscope) STP (Scanning Tunneling Potentiometry) PSTM (Photon Scanning Tunneling Microscope) SNOM (Scanning Near-Field Optical Microscope)
压电陶瓷:压电现象
l d 31V (l / t )
t d 33V
隧道针尖:
隧道针尖结构的影响 制备针尖的方法:电化学腐蚀法、机械 成型法
STM仪器:隧道针尖结构的影响
Schematics and Image Profiles of Spheres Scanned with a Sharp (left) and Dull (right) Probe
谢 谢!
In Touch with Atoms
• The accumulation of debris on the end of the tip can also dull the tip and result in image distortion, as shown below.
Schematic and Image Profile of Trenches Scanned with a Dirty Tip
原理:
I V b exp( A S )
1 2
STM仪器:
电子反馈系统控制隧 道电流 计算机控制针尖扫描 针尖将随样品表面起 伏而起伏 得到表面的第三维信 息
STM仪器:
振动隔绝系统
合成橡胶缓冲垫 弹簧悬挂 磁性涡流阻尼 压电陶瓷
机械设计
隧道针尖 计算机控制系统
Dull or Dirty Tip If the tip becomes worn or if debris attaches itself to the end of the tip, the features in the image may all have the same shape. What is really being imaged is the worn shape of the tip or the shape of the debris, not the morphology of the surface features.
扫描隧道显微镜 分析原理及方法
Scanning Tunneling Microscope STM
概述 优点与应用 原理 STM仪器 局限性与发展
概述:
1933年,德国和等人在柏林制成第一台电 子显微镜后,几十年来,有许多用于表面结构分 析的现代仪器先后问世。如:TEM、SEM、FEM、 FIM、LEED、AES等。1982.年,国际商业机器公 司苏黎世实验室的Gerd Binnig博士和 Heinrich Rohrer博士及其同事共同研制成功了世界上第一 台新型的表面分析仪器——STM。它的出现使人 类第一次能够实时地观察单个原子在物质表面的 排列状态和与表面电子行为有关的物理、化学性 质,在表面科学、材料科学、生命科学等领域的 研究中有着重广阔的前景,被国际科学界认为八 十年代世界十大科技成就之一。
硬件 软件
机械设计:
在理想的机械设计中应满足如下要求:
在z方向的伸缩范围至少为1m,精度约为0。 01nm 在x和y方向的扫描范围至少为1mx1m, 精度应在左右0。01nm 在z方向机械调节的精度应高于0。1 m, 其精度至少应在压电陶瓷驱动器方向长度变化 范围内,这个变化范围由驱动点压和压电陶瓷 材料的压电系数所决定。机械调节的范围应在 1mm以上 能在较大的范围内选择感兴趣的区域扫描 针尖与样品之间的间隙尽可能具有较高的稳定 性,即具有较高的机械振动频率
Loose debris on the sample surface can cause loss of image resolution and can produce streaking in the image. The image on the left is an example of the loss of resolution due to the build up of contamination on the tip when scanning from bottom-to-top. The image on the right is an example of skips and streaking caused by loose debris on the sample
DNA双螺旋结构
红细胞三维图像
细胞膜的表面结构
细胞生长
STM与EM、FIM的各项性能指标比较
分辨率 工作环 境 样品环 境温度 对样品破 坏程度 无 检测深度
S T M T E M S E M F I M
原子级 实环境、 室温或 (垂直0。01nm)大气、 低温 (横向0。1nm) 溶液、 真空 点分辨(0。3~ 0。5nm) 晶格分辨(0。 1~0。2nm) 6~10nm 高真空 室温
AFM
HL-II 型扫描探针显微镜
探头
•集STM, AFM为一体 •扫描范围可
手工粗调
•样品厚度可 达10mm 演示文稿3.ppt
我国扫描探针显微镜开发和生产
1987年依托在中国科学院北京科仪中心的 中国科学院北京电子显微镜实验室和化学所研 制完成了我国第一台扫描隧道显微镜。此后, 化学所,北京大学,上海原子核研究所等十余个 单位也制成了各种STM;化学所又研制成我国第 一台原子力显微镜;中科院北京电镜室和大连 理工大学开发了我国第一台光子扫描隧道显微 镜。中国科学院化学所本原显微仪器开发中心, 中科院电工所中科机电设备公司和上海爱建纳 米科技发展有限公司等正在生产扫描探针显微 镜。估计全国至今生产了一百余台扫描探针显 微镜。
优点与应用:
具有原子级高分辨率。表面原子结构的研究:表 面缺陷、表面重构、表面吸附体的形态和位置等 可实时地得到在实空间中表面的三维图象。可实 时观测性可用与表面扩散等动态过程的研究 工作环境范围广。真空、大气、常温。水或其它 溶液。因此特别适用于研究生物样品和在不同实 验条件下对样品表面的评价,如对多相催化机理、 超导机制、电化学反应过程中电极表面的监测等 配合STS 可以得到有关表面电子结构的信息。 表面态的研究:表面电子态密度、表面电子阱、 电荷密度波、表面势垒变化和能隙结构等
计算机控制系统:硬件
计算机控制系统:软件
扫描
表面扫描 扫描隧道谱 功函数谱 定标视图 滤波 对比度拉伸 三维表面显示
定标
图象处理
纳米加工
HL-II 型扫描探针显微镜
•操作界面 for windows 9x
•使用方便 •帮助系统完善 •参数实时调节 •多通 道采集
•参数自动保存