圆周运动中的临界问题

合集下载

第五讲:圆周运动临界问题

第五讲:圆周运动临界问题

第五讲:圆周运动临界问题物体做圆周运动时,若物体的速度、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态,分析圆周运动临界问题的方法是让角速度或线速度从小逐渐增大,分析各量的变化,找出临界状态.1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=m v2 r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.例、如图所示,质量相等的A、B物体置于粗糙的圆盘上,圆盘的摩擦因数为μ,A、B通过轻绳相连,随圆盘一起做圆周运动且转动的角速度ω由0逐渐增大,A的转动半径为r,B的转动半径为2r,重力加速度为g,分析:①A、B滑动的临界角速度大小;①此时若A、B间轻绳被拉断,分析A、B的运动情况.【解析】①方法一:整体法:2μmg=mrω2+m·2r·ω2方法二:等效质点法:质心在AB的中点处【例题】如图所示,A、B、C三个物体放在旋转的水平圆盘面上,物体与盘面间的最大静摩擦力均是其重力的k倍,三物体的质量分别为2m、m、m,它们离转轴的距离分别为R、R、2R.当圆盘旋转时,若A、B、C三物体均相对圆盘静止,则下列说法正确的是()A.A的向心加速度最大B.B和C所受摩擦力大小相等C.当圆盘转速缓慢增大时,C比A先滑动D.当圆盘转速缓慢增大时,B比A先滑最大静摩擦力提供向心力:2μmg =2m·32r·ω2,故临界角速度:ω=μg 3r. ①绳断瞬间:A 的向心力小于最大静摩擦力,故仍做圆周运动;B 的向心力大于最大静摩擦力,B 做离心运动.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零. (2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.例、如图所示,用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,重力加速度为g ,分析:F T 随ω2变化的图像.【解析】情况一:a ≤g tan θ,小球与锥面接触,对小球受力分析,将向心加速度分解到沿绳方向和垂直绳方向.则有:T =m g cos θ+ml sin 2θω2,N =mg sin θ-12ml sin2θω2情况二:a >g tan θ,小球离开锥面,绳力T =mlω2 故T 与ω2的函数图像如图所示.【例题】一转动轴垂直于一光滑水平面,交点O 的上方h 处固定一细绳的一端,细绳的另一端固定一质量为m 的小球B ,绳长AB =l >h ,小球可随转动轴转动,并在光滑水平面上做匀速圆周运动,如图所示,要使小球不离开水平面,转动轴的转速的最大值是(重力加速度为g )( )A.12πg hB.πghC.12πg l针对训练题型1:摩擦力有关的临界问题1.如图,细绳一端系着质量M=0.6kg的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3kg的物体,M的中点与圆孔距离为0.2m,并知M和水平面的最大静摩擦力为2N,现使此平面绕中心轴线转动,问角速度ω在什么范围m会处于静止状态?(g 取10m/s2)(多选)2.如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω<时,绳子没有弹力B.当ω>时,A、B仍相对于转盘静止C.ω在<ω<范围内时,B所受摩擦力大小不变D.ω在0<ω<范围内增大时,A所受摩擦力大小先不变后增大(多选)3.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmgB.此时A所受摩擦力方向沿半径指向圆外C.此时圆盘的角速度为D.此时烧断绳子,A仍相对盘静止,B将做离心运动4.如图所示,表面粗糙的水平圆盘上叠放着质量相等的两物块A、B,两物块到圆心O的距离r=0.2m,圆盘绕圆心旋转的角速度ω缓慢增加,两物块相对圆盘静止可看成质点.已知物块A与B间的动摩擦因数μ1=0.2,物块B与圆盘间的动摩擦因数μ2=0.1,最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,则下列说法正确的是()A.根据f=μF N可知,B对A的摩擦力大小始终等于圆盘对B的摩擦力大小B.圆盘对B的摩擦力大小始终等于B对A的摩擦力大小的2倍C.圆盘旋转的角速度最大值ωmax=rad/sD.如果增加物体A、B的质量,圆盘旋转的角速度最大值增大(多选)5.如图所示,水平转盘可绕竖直中心轴转动,盘上叠放着质量均为1kg的A、B两个物块,B物块用长为0.25m的细线与固定在转盘中心处的力传感器相连,两个物块和传感器的大小均可不计。

圆周运动中的临界问题

圆周运动中的临界问题
的角速度ω满足什么条件,物体M才能随转台转动? (2)物体M随转台一起以角速度ω匀速转动时,物体离转台中心的最大距 离和最小距离。 M
向心力最小时,角速度最小
向心力最大时,角速度最大
m
四、实例分析
例4:如图,长为L的绳子,下端连着质量为m的小球,上端接于天花 板上,当把绳子拉直时,绳与竖直方向夹角θ=60°。此时小球静止于光
三、解决圆周运动中临界问题的一般方法
1、对物体进行受力分析 2、找到其中可以变化的力以及它的临界值 3、求出向心力(合力或沿半径方向的合力)的临界值
4、用向心力公式求出运动学量(线速度、角速度、周期、 半径等)的临界值
四、实例分析
例1:如图,在质量为M的电动机的飞轮上,固定着一个 质量为m的重物(m的体积和大小可忽略),重物m到飞 轮中心距离为R,飞轮匀速转动时,为了使电动机的底 座不离开地面,转动的角速度ω最大为多少?
B A
O’
四、实例分析
例3:在以角速度ω匀速转动的转台上放着一质量为M的物体,通过一 条光滑的细绳,由转台中央小孔穿下,连接着一m的物体,如图所示。 设M与转台平面间的最大静摩擦力为压力的k倍,且转台不转时M不能 相对转台静止。求:
(1)如果物体M离转台中心的距离保持R不变,其他条件相同,则转台转动
A A
30°
30°
B
45°Biblioteka B 45°CCO
A
O’
水平转盘上放有质量为m的物快,当物块到转 轴的距离为r时,若物块始终相对转盘静止,物 块和转盘间最大静摩擦力是正压力的μ倍,求 转盘转动的最大角速度是多大?
物体与圆筒壁的动摩擦因数为μ ,圆筒的半 径为R,若要物体不滑下,圆筒的角速度至少 为多少?

圆周运动_临界问题

圆周运动_临界问题

当v=v0,对轨道刚好无压力,小球刚好能够通过最高点;
当v>v0,对轨道有压力,小球能够通过最高点; 当v<v0,小球偏离原运动轨道,不能通过最高点。
要保证过山车在最高点不掉下来,此时的速度必须满足:v gr
规律总结:无支持物
物体在圆周运动过最高点时,轻绳对物体只能产生沿绳收 缩方向向下的拉力,或轨道对物体只能产生向下的弹力; 若速度太小物体会脱离圆轨道——无支持物模型
①临界条件:绳子或轨道对小球恰好没有弹力的 作用,重力提供向心力,即 mg=mvR2临界, 解得小球恰能通过最高点的临界速度为: v = 临界 Rg. ②能过最高点的条件:v≥ gR,当 v> gR时,绳对 球产生拉力,轨道对球产生压力.
③不能过最高点的条件:V<V临界(实际上小球尚未到达 最高点时就脱离了轨道).
能使小球在管内做完整的圆周运动?
临界速度:F 0,v0 gR
当v<v0,内壁对球有向上的支持力;
当v>v0,外壁对球有向下的压力。
使小球能做完整的圆周运动在最低点的速度:
vA>2
gr
过最高 点的临 界条件 最低点 的临界
速度
轻绳模型 由 mg=mvr2 得 v 临= gr 由机械能守恒可得
,v2

gL
由牛顿第三定律,B球对O轴的L 拉力 T v24mg ,竖直向下。 ⑵杆对B球无作用力,对A球:T mg m ,T mg
由牛顿第三定律,A球对O轴的拉力 T 2Lmg ,竖直向下。
⑶在杆的转速逐渐变化的过程中,能否出现O轴不 受力的情况?请计算说明。
v2
若B球在上端A球在下端,对B球:T 2mg 2mg
(1)若m在最高点时突然与电机脱离, 它将如何运动? (2)当角速度ω为何值时,铁块在最高 点与电机恰无作用力? (3)本题也可认为是一电动打夯机的原 理示意图。若电机的质量为M,则ω多大 图3-5 时,电机可以“跳”起来?此情况下,对 地面的最大压力是多少?

圆周运动模型中临界问题和功与能--2024年高考物理二轮热点模型及参考答案

圆周运动模型中临界问题和功与能--2024年高考物理二轮热点模型及参考答案

圆周运动模型中临界问题和功与能目录1.圆周运动的三种临界情况2.常见的圆周运动及临界条件3.竖直面内圆周运动常见问题与二级结论1.圆周运动的三种临界情况(1)接触面滑动临界:F f=F max。

(2)接触面分离临界:F N=0。

(3)绳恰好绷紧:F T=0;绳恰好断裂:F T达到绳子可承受的最大拉力。

2.常见的圆周运动及临界条件(1)水平面内的圆周运动水平面内动力学方程临界情况示例水平转盘上的物体F f=mω2r恰好发生滑动圆锥摆模型mg tanθ=mrω2恰好离开接触面(2)竖直面及倾斜面内的圆周运动轻绳模型最高点:F T+mg=m v2r恰好通过最高点,绳的拉力恰好为0轻杆模型最高点:mg±F=m v2r恰好通过最高点,杆对小球的力等于小球的重力带电小球在叠加场中的圆周运动等效法关注六个位置的动力学方程,最高点、最低点、等效最高点、等效最低点,最左边和最右边位置恰好通过等效最高点,恰好做完整的圆周运动倾斜转盘上的物体最高点:mg sin θ±F f =mω2r 最低点F f -mg sin θ=mω2r恰好通过最低点3.竖直面内圆周运动常见问题与二级结论【问题1】一个小球沿一竖直放置的光滑圆轨道内侧做完整的圆周运动,轨道的最高点记为A 和最低点记为C ,与原点等高的位置记为B 。

圆周的半径为R要使小球做完整的圆周运动,当在最高点A 的向心力恰好等于重力时,由mg =m v 2R可得v =gR ①对应C 点的速度有机械能守恒mg2R =12mv 2C −12mv 2A 得v C =5gR ②当小球在C 点时给小球一个水平向左的速度若小球恰能到达与O 点等高的D 位置则由机械能守恒mgR =12mv 2c 得v c =2gR ③小结:(1).当v c >5gR 时小球能通过最高点A 小球在A 点受轨道向内的支持力由牛顿第二定律F A +mg =m v 2A R④(2).当v c =5gR 时小球恰能通过最高点A 小球在A 点受轨道的支持力为0由牛顿第二定律mg =m v 2A R。

圆周运动的临界问题

圆周运动的临界问题
√D.汽车能安全转弯的向心加速度不超过7.0 m/s2
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题

圆周运动中的临界问题(全)

圆周运动中的临界问题(全)

圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。

类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。

设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。

求在圆形轨道最高点B 时的速度大小。

巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。

(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。

如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。

①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。

V= 是“杆”模型中杆对小球是“推”“拉”的临界。

类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。

圆周运动中的临界问题

圆周运动中的临界问题
m gmR 2 v临界 Rg (2)小球能过最高点条件: v rg
(当 v rg 时,绳对球产生拉力,轨道对球产生压力)
(3)不能过最高点条件: v rg
(实际上球还没有到最高点时,就脱离了轨道)
如图所示,固定在竖直平点为轨道最高点,DB为竖
特点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
圆周运动的临界问题
1.竖直平面内的圆周运动 ①轻绳模型 :
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
m gmR 2 v临界 Rg
轻绳模型
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没 有力的作用:
B、的压力 D、24N的压力
例3:长L=,质量可以忽略的的杆,其下端
固定于O点,上端连接着一个质量m=2kg的小 球A,A绕O点做圆周运动(同图5),在A通过 最高点,试讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时:
②当A的速率v2=4m/s时:
变式训练
.一轻杆下端固定一质量为M的小球,上端连在轴 上,并可绕轴在竖直平面内运动,不计轴和空气阻 力,在最低点给小球水平速度v0时,刚好能到达最 高点,若小球在最低点的瞬时速度从v0不断增大,
2
双体转动模型
如图所示,轻细杆可绕光滑的水平轴O在竖直 面内转动,杆的两端固定有质量均为m=1kg的 小球A和B,球心到轴O的距离分别为,。已知 A球转到最低点时速度为vA=4m/s,问此时A、B 球对杆的作用力的大小和方向?
B
vB
vA
A
谢谢观赏
N
fA AB mg
变式训练

圆周运动中的临界问题

圆周运动中的临界问题

3 rad/s 1.0 rad/s
0.5 rad/s
• 在质量为M的电动机的飞轮上,固定 着一个质量为m的重物,重物到转轴 的距离为r,如图所示,为了使放在地 面上的电动机不会跳起,电动机飞轮 的角速度不能超过( )
A. C.
M m g mr M m g mr
B. D. Mg
mr
M m g mr
m R O
v0 N
M
如图所示,质量为m的物体随水平传送带 一起匀速运动,A为传送带的终端皮带轮, 皮带轮半径为r,要使物体通过终端时, 能水平抛出,皮带轮的转速至少为:( )
A
如图所示,一倾斜的匀质圆盘绕垂直于盘面的固 定对称轴以恒定的角速度ω转动,盘面上离转轴 距离2.5m处有一小物体与圆盘始终保持相对静 止。物体与盘面间的动摩擦因数为 /2(设最 大静摩擦力等于滑动摩擦力),盘面与水平面的 夹角为30°,g取10m/s2。则ω的最大值是 A 5 rad/s B C D
gr
N=0
v2 mg m r
v gr
在最高点时速 度应不小于
gr
V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn
在最高点速度 应大于等于0 在最高点速度 应大于等于0
临界问题:由于物体在竖直平面内做圆周运动 的依托物(绳、轨道、轻杆、管道等)不同, 所以物体恰好能通过最高点的临界条件也不同。
3.如图所示,竖直圆筒内壁光滑,半径 为R,顶部有一个入口,在的正下方 处 有一个出口,一质量为 m的小球沿切线 方向的水平槽射入圆筒内,要使小球从 B处飞出,小球射入入口的速度 满足什 么条件? 在运动过程中球对筒的压力 多大?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。

1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为o 30与o 45,问球的角速度在什么范围内,两绳始终张紧,当角速度为s rad /3时,上、下两绳拉力分别为多大2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。

(2/10s m g =)3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。

1、轻绳模型过最高点C图1图2如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。

临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力)刚好等于零,小球的重力单独提供其做圆周运动的向心力,即rvm mg 20=,gr v =0,式中的0v 是小球过最高点的最小速度,即过最高点的临界速度。

(1)0v v = (刚好到最高点,轻绳无拉力)(2)0v v > (能过最高点,且轻绳产生拉力的作用) (3)0v v < (实际上小球还没有到最高点就已经脱离了轨道) 例4、如图4所示,一根轻绳末端系一个质量为kg m 1=的小球, 绳的长度m l 4.0=, 轻绳能够承受的最大拉力为N F 100max =, 现在最低点给小球一个水平初速度,让小球以轻绳的一端O 为 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件(/10s m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。

临界条件:由分析可知,小球在最高点的向心力是由重力和轻杆(管壁)的作用力的合力提供的,如果在最高点轻杆(管壁)对小球的作用力与重力刚好平衡,那么此时外界提供的向心力为零,即小球过最高点的瞬时速度可以为零,所以小球过最高点的临界速度为00=v 。

(1)0=v ,轻杆(管壁)对小球有向上的支持力N F ,且mg F N =(2)gr v <<0,轻杆(管壁)对小球有向上的支持力N F ,由rv m F mg N 2=-,可得rv m mg F N 2-=,N F 随v 的增大而减小,mg F N <<0(3)gr v =,重力单独提供向心力,轻杆(管壁)对小球没有力的作用(4)gr v >,轻杆(管壁)对小球施加向下的拉力(压力),由rv m F mg 2=+拉,可得mg rv m F -=2拉,且拉F 随着v 的增大而增大例5、如图5所示,半径为R ,内径很小的光滑半圆管竖直放置,AB 段平直,质量为m 的小球以水平初速度0v 射入圆管。

(1)若要小球能从C 端出来,初速度0v 多大(2)在小球从C 端出来瞬间,对管壁的压力有哪几种典型情况,初速度0v 各应满足什么条件3、汽车过拱桥如图所示,汽车过拱形桥顶时,由汽车的重力和桥面对汽车的支持力的合力提供其最高点的向心力,由r v m F mg N 2=-,可得rv m mg F N 2-=,由此可见,桥面对汽车的支持力随着汽车速度的增大而减小,如果速度增大到某一个值0v ,会出现桥面对汽车的支持力为零,即gr v =0是汽车安全过拱桥顶的临界速度。

(1)gr v <<0,汽车不会脱离拱形桥且能过最高点(2)gr v =,因桥面对汽车的支持力为零,此时汽车刚好脱离桥面做平抛运动 (3)gr v >,汽车将脱离桥面,非常危险例6、如图6所示,汽车质量为kg m 4105.1⨯=,以不变的A图5速率通过凸形路面,路面半径为m R 15=,若要让汽车安全 行驶,则汽车在最高点的临界速度是多少如果汽车通过最 高点的速度刚好为临界速度,那么接下来汽车做什么运动, 水平运动的位移是多少(2/10s m g =)例题1.解析:(1)当角速度ω很小时,AC 和BC 与轴的夹角都很小,BC 并不张紧。

当ω逐渐增大到o 30时,BC 才被拉直(这是一个临界状态),但BC 绳中的张力仍然为零。

设这时的角速度为1ω,则有: mg T oAC =30cos o o AC l m T 30sin 30sin 21ω=将已知条件代入上式解得 s rad /4.21=ω(2)当角速度ω继续增大时AC T 减小,BC T 增大。

设角速度达到2ω时,0=AC T (这又是一个临界状态),则有: mg T oBC =45cos o o BC l m T 30sin 45sin 22ω=将已知条件代入上式解得 s rad /16.32=ω所以当ω满足 s rad s rad /16.3/4.2≤≤ω,BC AC 、两绳始终张紧。

本题所给条件s rad /3=ω,说明此时两绳拉力BC AC T T 、都存在。

则有:o o BC o AC l m T T 30sin 45sin 30sin 2ω=+ mg T T oBC o AC =+45cos 30cos将数据代入上面两式解得 N T AC 27.0=, N T BC 09.1= 注意:解题时注意圆心的位置(半径的大小)。

如果s rad /4.2<ω时,0=C B T ,AC 与轴的夹角小于o30。

如果s rad /16.3>ω时,0=C A T ,BC 与轴的夹角大于o45。

例题2解析:由分析可知,如果平面不转动,M 会被拉向圆孔,即m 不能处于静止状态。

当平面转动的角速度ω较小时,M 与水平面保持相对静止但有着向圆心运动的趋势,此时水平面对M 的静摩擦力方向背向圆心,根据牛顿第二定律,对于M 有:r M f F 21ω=-静拉,可见随着静摩擦力的增大,角速度逐渐减小,当静摩擦力增大到最大值时,角速度减小到最小,即当静摩擦力背向圆心且最大,此时的角速度1ω是最小的临界角速度,s rad Mr f F /9.2)()(max 1≈-=拉ω;当平面转动的角速度ω较大时,M 与水平面保持相对静止但有着远离圆心运动的趋势,此时水平面对M 的静摩擦力方向指向圆心,根据牛顿第二定律,对于M 有:r M f F 22ω=+静拉,可见随着静摩擦力的增大,角速度逐渐增大,当静摩擦力增大到最大值时,角速度增大到最大,即当静摩擦力指向圆心且最大,此时的角速度2ω是最大的临界角速度,s rad Mr f F /5.6)()(max 2≈+=拉ω。

故要让m 保持静止状态,平面转动的角速度满足:s rad s rad /5.6/9.2≤≤ω 例题3解析:物体在光滑锥面上绕轴线做匀速圆周运动,通常情况下受重力、绳的拉力和锥面的支持力,正交分解各个力。

水平方向:θθθsin cos sin 2l v m F F N T =- ①竖直方向:mg F F N T =+θθsin cos ②由①②得θθθsin cos sin 2l v m mg F N -= ③由③式可以看出,当m l 、、θ一定时,v 越大,N F 越小,当线速度增大到某一个值0v 时,能使0=N F ,此时物体与锥面接触又恰好没有相互作用,那么0v 就是锥面对物体有无支持力的临界速度,令③式等于零,得630glv =(1)因为01v v <,物体在锥面上且锥面对物体有支持力,联立①②两式得mg lvm mg F T 03.1sin 211=+=θ(2)因为02v v >,物体已离开锥面,但仍绕轴线做水平面内的匀速圆周运动,设此时绳与轴线间的夹角为)(θαα>,物体仅受重力和拉力的作用,这时有ααsin sin 222l vm F T = ④ mg F T =αcos 2 ⑤由④⑤两式得o60=α,mg F T 22=解析:题目中给出了两个条件,首先要让小球能够做完整的圆周运动,这个条件的实质是要求小球能够过最高点,这是无支撑的类型,小球过最高点的临界条件是重力提供向心力,此时绳子没有拉力的作用,即lv m mg 2=,∴s m gl v /2==,再从最高点到最低点列动能定理方程,则有220121212mv mv mgl -=, 得s m v /5201=,此即小球在最低点的初速度的最小值。

第二个条件是绳子不断,通过分析很容易知道,绳子在最低点最容易断,只要最低点不断,其它点都不会断。

所以在最低点有202max mv mg F =- 得s m v /602=所以小球的初速度满足的条件是s m v s m /6/520≤≤ 例题5解析:(1)小球恰好能达到最高点的条件是0=临v ,此时需要的初速度为0v 满足的条件是,由机械能守恒定律得 :22021221临mv mgR mv +=,得gR v 40=, 因此要使小球能从C 端出来需0>c v ,故入射速度gR v 40>。

(2)小球从C 出来端出来瞬间,对管壁压力可以有三种典型情况:①刚好对管壁无压力,此时重力恰好提供向心力,由圆周运动知识Rvm mg c 2=由机械能守恒定律:22021221c mv mgR mv += 联立解得gR v 50= ②对下管壁有压力,此时应有R vm mg c 2>,相应的入射速度0v 应满足gR v gR 540<<③对上管壁有压力,此时应有Rvm mg c 2<,相应的入射速度0v 应满足gR v 50>例题6解析:此题实际上属于轻杆模型,即轨道只能沿某一方向对物体施加作用力,临界条件为汽车在最高点时对轨道的压力为零,汽车不脱离轨道的临界速度为临v ,则有Rv mmg 2临=,可得s m gR v /65==临,此即汽车在最高点的最大速度,超过了这个速度汽车将飞离桥面,出现危险。

当gR v =临时,汽车在轨道最高点只受重力,且速度沿水平方向,所以接下来汽车将做平抛运动,则有 221gt R =,t v x 临= 可得R x 2=。

相关文档
最新文档