谐波的危害

合集下载

谐波的危害

谐波的危害

谐波的危害与影响谐波的危害与影响 1 造成电网电压的严重畸变(用电量大大增加);2电缆电线过热,绝缘老化加速,易损坏并导致线间短路和接地故障引起电气火灾和人身电击事故;3 变压器和马达的过热,损坏甚至于烧毁;4 补偿功率因数的电容器过热,易损坏,寿命短;5 供电系统损耗增加;6 系统的功率因数降低;7 断路器及漏电保护装置、接触器、热继电器等电气保护元件过热,失灵,误动作,接地保护装置功能失常;8 中性线过负荷、发热,甚至于烧毁、着火;9 过零噪音;10 集肤效应显著;11计算机死机,锁住;12浪费系统容量,降低保护功能;13通讯与影像设备失误;14给供电系统带来难题;15对多租户大型商用办公大楼配电系统的谐波问题纠纷越来越突出。

(其原因有二:其一,办公设备效率,节能以及调速驱动(ASD),高效荧光照明和电子设备等,引起系统的谐波畸变水平不断升高;其二,由于这种系统的多用户特点和谐波源的小功率,分散性特征带来责任区分上的困难,因此,当谐波问题发生时,容易引起供用电各方之间的纠纷);16医疗设备误动作,带来医疗事故,甚至于电源系统遭到破坏;17机场难以正常运行,国防设施受到影响;18金融、证券交易中心,电源误动作,失灵,停电,将会造成重大经济损失;19地铁、轻轨、电气机车、停电、停运造成交通事故。

从国外的电能质量分析比如英国电源质量问题出现的频率统计:方面谐波对地泄漏电流电压扰动发生频率高中低高中低高中低商业的71% 20% 9% 20% 31% 49% 51% 27% 22% 公共事业的60% 20% 20% 31% 31% 39% 31% 49% 20% 60% 31% 9% 40% 31% 29% 40% 31% 29% 高:一年造成的停机事故在12次以上;中:一年造成的停机事故在2-12次之间;低:一年造成的停机事故在1次以下;从表中可以看出谐波造成停机事故频率很高,在所有三个方面每年事故的报告在12次以上的均在60%以上,而每年至少1次事故的报告为80%以上。

谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些 谐波的抑制方法

谐波的产生和危害有哪些谐波的抑制方法谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

关于“谐波的产生和危害有哪些谐波的抑制方法”的详细说明。

1.谐波的产生和危害有哪些1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。

2.谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。

3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。

4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。

2.谐波的抑制方法(一)降低谐波源的谐波含量在谐波源上采取治理措施,从源头上最大限度地避免谐波的产生。

这就需要在设计、制造和使用谐波源设备时,要注意谐波对供电系统及其供用电设备的影响,采取切实可行的治理措施。

用电业务管理部门要严格把关,对于没有采取治理措施的谐波源用户,要禁止其入网运行。

(二)在谐波源处吸收谐波电流这种方法是对已有谐波进行有效抑制的方法,也是目前电力系统使用最为广泛地抑制谐波的方法。

其主要方法有以下几种:1.无源滤波器无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。

这种方法由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,是目前采用的抑制谐波及无功补偿的主要手段。

2.有源滤波器有源滤波器即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。

3.防止并联电容器组对谐波的放大在电网中并联电容器组起改善功率因数和调节电压的作用。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波是指频率是电力系统基波频率的整数倍的电压或电流波形,其频率通常为50Hz或60Hz。

谐波是电力系统中的一种电磁干扰,可能引起许多问题和危害,包括设备的过热、降低效率、产生故障以及影响电力网络的稳定性。

谐波的产生主要是由于非线性负载和电源引起的,下面将详细讨论谐波的危害与产生。

谐波的危害:1. 电力设备过热:谐波会导致设备内部的电压和电流波形畸变,造成设备的过载和过热。

设备过热会导致设备寿命缩短,甚至发生火灾等危险。

2. 降低设备效率:设备在谐波环境下工作时,可能会发生电流滞后和电压损失,导致设备的效率降低。

例如,变压器在谐波环境下由于电流滞后而产生降温,这会导致能量损失和电力供应的不稳定。

3. 产生设备故障:谐波会导致设备的电压和电流波形失真,从而损坏设备的绝缘性能和电线连接,引发故障。

例如,变频器引起的谐波可能导致电机绝缘击穿,造成电机损坏。

4. 影响电力网络的稳定性:谐波会改变电力系统的频谱特性,降低系统的稳定性。

谐波的存在可能导致电力网络中的共振现象,引起电压和电流的不稳定性,进一步导致电力系统的故障。

谐波的产生:1. 非线性负载:非线性负载是指对电压和电流响应非线性的负载设备。

这些设备通常包括整流器、变频器、电弧炉、放电灯等。

非线性负载会引起谐波电流的产生,造成电力系统的谐波问题。

2. 电源:电源本身也可能产生谐波。

例如,由于电力系统中存在电压降低和电压暂降,电源系统中的设备可能引入谐波频率。

3. 并联谐波滤波器:并联谐波滤波器通常用于减少负载设备引起的谐波,但滤波器本身可能引入谐波频率。

4. 反射和谐波:电力系统中的传输线上的谐波可能会反射,并返回到电源系统中,从而产生额外的谐波。

为减少谐波的危害,可以采取以下措施:1. 负载侧的措施:使用非线性负载时,可以采取滤波器、谐波限制器等措施来减少谐波的产生。

2. 电源侧的措施:电源系统应具备良好的谐波抑制能力,可以采用对称三相电源供应、提高电源的电压和频率稳定性等措施。

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法谐波是指频率高于基波的电磁波,它们会频繁出现在我们的电力系统和其他电力设备中。

虽然谐波在一些应用中可产生有益效果,但在大多数情况下,它们都是一种电力质量问题,会给电力系统和其他设备带来一系列危害。

1.设备损坏:谐波会增加设备内的电流和电压,导致设备发热加剧,并可能引起设备元件过热、熔断或焚毁。

此外,频繁的谐波还会引起设备的机械振动,造成设备损坏。

2.电力系统不稳定:谐波引起系统的电流和电压的波形失真,导致电力系统不稳定。

此外,谐波会导致电力系统中的谐振现象,这些谐振可以引起电力系统中的电流和电压急剧增加,可能破坏设备。

3.通信干扰:谐波会产生大量的高频干扰信号,这些信号可能干扰无线通信和其他电磁波设备的正常运行。

在高度电子化的社会中,这种通信干扰可能会带来严重的问题。

为了抑制谐波带来的危害,可以采取以下方法:1.装置谐波滤波器:谐波滤波器用于减小电力系统中的谐波。

滤波器通常会将谐波通过处理电路转化成其他形式,或者将它们绕过电力系统,以防止它们对设备和系统产生影响。

2.使用变压器:变压器可以用来减小谐波的影响。

通过在电力系统中安装特定的谐波抑制变压器,可以将谐波电流限制在合理的范围内,从而降低谐波的危害。

3.电源滤波器:为敏感设备提供干净的电力供应也是一种有效的抑制谐波的方法。

电源滤波器可以滤除电力供应中的谐波元素,从而降低谐波对设备的危害。

4.合理的电源设计:在电力系统设计阶段,可以采取一些措施来减小谐波的生成。

例如,选择适当的线路,减小高谐波的产生,或者选择低谐波的电力设备。

5.故障检测和维护:及时发现和处理设备和系统中的谐波问题至关重要。

定期进行电力设备的检查和维护,可以发现并消除谐波带来的潜在危害。

总而言之,谐波在电力系统和其他电力设备中的存在可能带来很多危害。

为了抑制这些危害,我们可以采取各种措施,包括使用谐波滤波器、变压器、电源滤波器、合理的电源设计以及进行定期的检查和维护。

谐波的产生原因危害与治理

谐波的产生原因危害与治理

谐波的产生原因危害与治理谐波是指信号在传输过程中产生的频率是原有信号频率的整数倍的现象。

谐波一般是由于信号源产生幅度非线性特性、信号传输线路的不完美特性以及外界干扰等多种因素共同作用所导致的。

1.非线性特性:当信号源的输入电压超过其线性范围时,信号源会产生非线性失真。

这种非线性特性会使得原信号分解成包含各种谐波成分的信号,即产生谐波。

2.传输线路的不完美:在电力传输和通信线路中,由于电导率不一致、绝缘材料的不均匀性以及线路的接地等因素,会引起谐波的产生。

这些因素使得线路对于不同频率的信号具有不同的传输特性,从而造成信号的失真和谐波的产生。

3.外界干扰:外界电磁辐射的干扰也会引起谐波的产生。

当外界电磁波与系统内的信号相互作用时,可能会产生共振现象,从而导致谐波信号的产生。

谐波的存在会带来一系列的危害,包括以下几个方面:1.信号失真:谐波信号会改变原信号的波形和频谱特性,导致信号失真。

这会影响到电力传输系统和通信系统中的信号传输质量,降低系统的可靠性和稳定性。

2.设备损坏:谐波会导致电流和电压的波形变形,产生大量的电磁干扰。

这些干扰会对设备的正常工作造成影响,甚至会导致设备损坏和故障。

谐波还可能引起设备内部电子元件的过热现象,加速设备老化和损坏。

3.电力系统能源浪费:谐波会引起电力系统中电流和电压的非功率信号,造成能量损耗。

这不仅会浪费能源,还会导致电力系统的效率降低。

为了治理谐波对系统的危害,可以采取以下几种方法:1.模拟电路设计中采用线性器件:选择线性器件作为信号源和信号传输线路中的关键部件,减少非线性特性对信号的影响。

2.使用滤波器:在信号源和负载之间加入合适的滤波器,可以有效地滤除谐波成分,保证原信号的传输质量。

3.优化供电系统:针对供电系统中频繁出现谐波问题的设备,进行电源选择、接线方式和接地设计的优化,减少谐波产生。

4.电源质量改进:加强对供电设备的质量管理,采用高质量的电源设备,减少谐波对电力系统的影响。

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生

电力系统中谐波的危害与产生电力系统中谐波的危害与产生谐波指的是频率为基波频率的倍数的电信号成分,在电力系统中的原因有很多,比如电力设备的非线性负载、电子设备的交流-直流变换等。

虽然谐波信号的功率一般较低,但由于其具有频率较高、波形失真的特点,对电力系统和电力设备的运行安全和电能质量造成了一定的影响和危害。

一、对电力设备的危害1.导致设备过热:谐波信号导致电流和电压波形失真,使电力设备的磁路饱和,导致设备出现额外的损耗,产生额外的热量,从而导致设备过热、老化、性能降低。

2.损害设备绝缘:谐波会提高设备绝缘材料的介质损耗角正切值,使设备的绝缘等级下降,从而导致电气设备的绝缘性能降低。

3.损伤电动机:谐波信号会使电动机的转矩波形失真,加剧机械振动,引起转子的加速损伤或者负载不平衡问题,从而降低电动机的性能。

4.降低电力设备的寿命:谐波会使电力设备的运行稳定性降低,电力设备的寿命也随之降低。

二、对电能质量的危害1.导致电能损耗:谐波会使电能的传输损耗增大,电能的利用效率降低,从而造成电能浪费。

2.引起电压波动:谐波会使电源电压的总谐波畸变THD值增大,从而导致电源电压的变化、波动明显。

3.引起电流不平衡:谐波信号会加剧相间电流之间的差异,导致电流的不平衡问题,从而影响电力系统的运行稳定性和性能。

4.影响电力系统的稳定性:谐波会使电力系统的总谐波畸变THD值较大,从而影响电力系统的稳定性和电能质量。

为减小谐波的危害,可采取以下措施:1.选择适当的电力设备,如交流电动机、逆变器、电子变压器等,以减小非线性负载对电力系统产生的谐波。

2.配置滤波器装置,用于消除电力系统中的谐波信号。

3.加强电力设备的维护与管理,延长设备的寿命,减少谐波产生的数量。

4.优化电力系统的运行参数,如改善电力系统的谐波阻抗,减小电力系统的谐波电流等。

谐波的危害与治理

谐波的危害与治理

谐波的危害与治理谐波是指工业、农业及其他领域电器设备产生的不同频率的电流或电压的干扰信号。

谐波的产生对人类的健康和设备的正常运行产生了相当大的危害。

在以下的几个方面,我们将详细介绍谐波的危害性以及相应的治理方法。

首先,谐波对人类的健康造成了威胁。

在人体组织中,脑、肌肉、神经等都是通过电信号进行传递和控制的。

而谐波的存在会使得这些电信号被扭曲、失真甚至干扰,从而导致血液循环、神经传导、肌肉运动等功能受到影响。

长期暴露在谐波环境下,人们可能会出现头痛、疲劳、失眠、注意力不集中、神经衰弱等症状。

其次,谐波对电力系统的稳定性和设备的正常运行产生了影响。

谐波信号会加大电网中的负荷,降低系统的功率因数,导致电网负荷不均衡、频率偏移等问题。

同时,谐波还会增加电力设备的损耗,缩短使用寿命,引发电力设备故障和事故。

特别是对于高精度的仪器设备和敏感的电子设备来说,谐波的存在会严重影响其正常运行和测量结果的准确性。

另外,谐波还会影响到公共环境和通信系统。

在城市中,电网中的谐波信号可能会通过建筑物和地下管道传播到附近的电子设备或通信系统中,导致通信信号的干扰和传输中断。

在无线通信领域,谐波会引起频谱污染,减少频谱资源的利用效率。

针对谐波的治理,有以下几个主要方法:1.滤波器:通过引入滤波器来削弱或消除谐波信号。

滤波器可以根据谐波的频率特性进行设计,将谐波信号从电力系统中分离出来,保证电力系统的正常运行。

2.接地:正确接地可以有效降低谐波信号的存在。

接地系统的设计和维护需要严格按照相关标准进行,确保接地电阻的有效连接和在线监测,减少谐波的传播。

3.变压器改进:采用带低谐波的高效变压器,可以有效削弱变压器内部的谐波产生和传播。

例如,采用三脉动焊接变压器可以避免谐波的产生和增强Transformer(SVPWM)技术等。

4.现代电气设备:使用具有谐波抑制功能的现代电气设备,可以降低谐波产生和传播的风险。

例如,使用高效节能的电子节能灯、电力电容器、有源滤波器等。

电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生(三篇)

电力系统中谐波的危害与产生电力系统中的谐波是由于电力设备的非线性特性引起的。

在电力系统中,谐波的危害包括对电力设备的损坏、电能质量的恶化以及对用户的影响等方面。

谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。

谐波对电力设备的损坏是谐波危害的主要方面之一。

谐波会引起设备的绝缘老化、过热、机械振动等问题。

尤其是对于变压器和电动机等设备来说,由于谐波的存在会引起电流和电压的畸变,导致设备的工作效率下降,甚至引发设备的故障和停机。

此外,谐波还会引起电容器的谐振和过电压问题,增加电力设备的工作负荷,缩短其使用寿命。

谐波对电能质量的恶化也是谐波危害的重要方面之一。

谐波会导致电能质量的下降,主要表现为电压和电流的畸变,波形失真,功率因数的下降等。

这不仅会影响电力设备的正常工作,还会对电力系统的稳定性和可靠性造成影响。

谐波还会引起电力设备的谐振现象,导致设备振动,造成噪音污染,影响人们的生活质量。

谐波对用户的影响主要体现在电力质量的下降和对电子设备的损坏。

谐波会引起电压的波动和电流的畸变,导致电子设备的正常工作受到干扰,增加设备的故障率,降低设备的使用寿命。

尤其是对于一些对电力质量要求较高的用户来说,如计算机、通讯设备、医疗设备等,谐波对其正常工作的影响更为显著。

此外,谐波还会导致电能的浪费,增加用户的用电成本。

谐波的产生与非线性负载、电力设备的设计及运行、电网接地等因素有关。

非线性负载是产生谐波的主要原因之一。

非线性负载如电子设备、电力电子器件等在工作过程中会产生非线性电流,其含有大量谐波成分。

此外,电力设备的设计及运行也会引起谐波的产生,如电容器的谐振,变压器的匝间谐振等。

而电网的接地情况也会影响谐波的产生和传播,如电网的接地方式不当会引起谐波回流和间接接触问题。

为了减少谐波的危害,需要采取一系列的措施。

首先,可以通过合理选择电力设备和设备的工作参数来降低其谐波产生的概率。

其次,可以采用滤波器等设备对谐波进行抑制和补偿。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谐波
一、谐波的危害:
以前由于接入供电系统的非线性设备较小,帮在系统中引起的谐波电流也很小,所以对电力质量的影响不大。

随着电子技术的发展,使用大功率半导体开关器件以及各类开关电源的产品,如电视机、空调器、节能灯、调光器、洗衣机、微波炉,信息技术设备等迅速涌入居民家庭,虽然每台设备向电网注入的谐波电流不大,但这些设备数量大、分布广。

有些家用电器如电视机、空调器等在使用时具有集中的特点,在某些时段会使注入到电网的谐波电流对公用电网造成的谐波问题
特别突出,这不但使接入该电网的设备无法正常工作,甚至造成故障,而且还会使供电系统中性线承受的电流超载,影响供电系统的电力输送。

因此谐波问题得到各有关方面的高度重视。

供电系统中的谐波危害主要表现在以下几个方面。

1.增加了发、输、供和用电设备的附加损耗,使设备过热,降低设备的效率和利用率。

由于谐波电流的频率为基波频率的整数倍,高频电流流过导体时,因集肤效应的作用,使导体对谐波电流的有效电阻增加,从而增加了设备的功率损耗、电能损耗,使导体的发热严重。

(1)对旋转电机的影响
谐波对旋转电机的危害主要是产生附加的损耗和转矩。

由于集肤效应、磁滞、涡流等随着频率的增高而使在旋转电机的铁心和绕组中产生的附加损耗增加。

在供电系统中,用户的电动机负荷约占整个负
荷的85%左右。

因此,谐波使电力用户电动机总的附加损耗增加的影响最为显著。

由于电动机的出力一般不能按发热情况进行调整,由谐波引起电动机的发热效应是按它能承受的谐波电压折算成等值的基波负序电压来考虑的。

试验表明,在额定出力下持续承受为3%额定电压的负序电压时,电动机的绝缘寿命要减少一半。

因此,国际上一般建议在持续工作的条件下,电动机承受的负序电压不宜超过额定电压的2%。

谐波电流产生的谐波转矩对电动机的平均转矩的影响不大,但谐波会产生显著的脉冲转矩,可能出现电机转轴扭曲振动的问题。

这种振荡力矩使汽轮发电机的转子元件发生扭振,并使汽轮机叶片产生疲劳循环。

(2)对变压器的影响
谐波电流使变压器的铜耗增加,特别是3次及其倍数次谐波对三角形连接的变压器,会在其绕组中形成环流,使绕组过热;对全星形连接的变压器,当绕组中性点按地,而该侧电网中分布电容较大或者装有中性点接地的并联电容器时,可能形成3次谐波谐振,使变压器附加损耗增加。

(3)对输电线路的影响
由于输电线路阻抗的频率特性,线路电阻随着频率的升高而增加。

在集肤效应的作用下,谐波电流使输电线路的附加损耗增加。

在供应电网的损耗中,变压器和输电线路的损耗占了大部分,所以谐波使电网网损增大。

谐波还使三相供电系统中的中性线的电流增大,导
致中性线过载。

输电线路存在着分布的线路电感和对地电容,它们与产生谐波的设备组成串联回路或并联回路时,在一定的参数配合条件下,会发生串联谐振或并联谐振。

一般情况下,并联谐波谐振所产生的谐波过电压和过电流对相关设备的危害性较大。

当注入电网的谐波的频率位于在网络谐振点附近的谐振区内时,会激励电感、电容产生部分谐振,形成谐波放大。

在这种情况下,谐波电压升高、谐波电流增大将会引起继电保护装置出现误动,以至损坏设备,与此同时还可产生相当大的谐波网损。

对于电力电缆线路,由于电缆的对地电容比架空线路约大10-20倍,而感抗约为架空线路的1/2-1/3,因此更容易激励出较大的谐波谐振和谐波放大,造成绝缘击穿的事故。

(4)对电力电容器的影响
随着谐波电压的增高,会加速电容器的老化,使电容器的损耗系数增大、附加损耗增加,从而容易发生故障和缩短电容器的寿命。

另一方面,电容器的电容与电网的感抗组成的谐振回路的谐振频率等于或接近于某次谐波分量的频率时,就会产生谐波电流放大,使得电容器因过热、过电压等而不能正常运行。

2.影响继电保护和自动装置的工作和可靠性
谐波对电力系统中以负序(基波)量为基础的继电保护和自动装置的影响十分严重,这是由于这些按负序(基波)量整定的保护装置,整定值小、灵敏度高。

如果在负序基础上再叠加上谐波的干扰(如电气化铁道、电弧炉等谐波源还是负序源)则会引起发电机负序电流保护误动(若误动引起跳闸,则后果严重)、变电站主变的复合电压启动
过电流保护装置负序电压元件误动,母线差动保护的负序电压闭锁元件误动以及线路各种型号的距离保护、高频保护、故障录波器、自动准同期装置等发生误动,严重威胁电力系统的安全运行。

相关文档
最新文档