液压传动第二章液压传动的流体力学基础

合集下载

第2章 液压流体力学基础

第2章  液压流体力学基础

1bar=1×105Pa=0.1MPa
1at(工程大气压)=1kgf/cm2=9.8×104Pa 1mH2O(米水柱)=9.8×103Pa 1mmHg(毫米汞柱)=1.33×102Pa 1个标准大气压力=1.013×105Pa=10.336米水柱=760mmHg 1psi(磅力/英寸2)=6.895×103Pa
第2章 液压流体力学基础
2.2 液压静力学 (3)液体静压力对固体壁面的作用力 固体壁面是平面:如右上图,作用力为
固体壁面是曲面:如右中、下图,作用力为
d为承压部分曲面投影圆的直径
第2章 液压流体力学基础
2.2 液压静力学 二、液体静压力基本方程 1、任意质点受力分析: 取研究对象:任取如右图微圆柱体。 受力分析: 2、静力学基本方程: 能量守恒表达式:建立坐标系
第2章 液压流体力学基础
2.1 液压系统的工作介质 5、机械稳定性: 液体在长时间的高压作用下,保持原有物理性质的能力。液压油 应具有良好的机械稳定性。 6、氧化稳定性: 主要指抗氧化的能力。油液中含有一定的氧气,使用中油液必然 会逐渐氧化。随着温度的升高,氧化作用加剧,油液会变质沉淀、 产生腐蚀性物质,使系统出现故障。 7、其它性质: 相容性、水解稳定性、剪切稳定性、抗泡沫性、抗乳化性、防锈 性、润滑性。 以上性质对液压油的选用有重要影响。抗燃性、稳定性等都可以 通过加入适当的添加剂来获得。
是不呈现粘性的。 (3)粘度的表示方法: 动力粘度: 运动粘度:


/
相对粘度:恩氏粘度、赛氏粘度、雷氏粘度
第2章 液压流体力学基础
2.1 液压系统的工作介质
du F A dy
du dy
根据实验结论可知: F与液层面积、速度 梯度成正比 液体粘性示意图

第二章.液压流体力学基础

第二章.液压流体力学基础

等值传递。
压力传递的应用
图示是应用帕斯卡原理的实例,假设作用在小活塞上
施加压力F1时,则在小活塞下液体受的压力为p= F1/A1 根据帕斯卡原理,压力p等值的 传 递到液体内部各点,即大活塞下面 受到的压力也为p,这时,大活 塞 受力为F2= pA2。为防止大活塞下 降,则在小活塞上应施加的力为:
6.3 液体流经缝隙的流量
环形缝隙流量
活塞与缸体的内孔之间、阀芯与阀孔之间都存在环形缝隙。
πdh qV p 12 l
同心环形缝隙
3
6.3 液体流经缝隙的流量
环形缝隙流量
流过偏心圆环缝隙的流量, 当e = 0时,它就是同心圆环缝 隙的流量公式;当e =1时,即 在最大偏心情况下,其压差流 量为同心圆环缝隙压差流量的
压力有两部分:液面压力p0及自重形成的压力ρgh;
静压力基本方程式 p=p0+ρgh
3.3 重力作用下静止液体压力分布特征
液体内的压力与液体深度成正比;
离液面深度相同处各点的压力相等,压力相等的 所有点组成等压面,重力作用下静止液体的等压 面为水平面; 压力由两部分组成:液面压力p0,自重形成的压
6.1 液体流经薄壁小孔的流量
当小孔的长径比 l /d < 0.5时,称为薄壁孔 。
qV Cq K
2

p
6.3 液体流经缝隙的流量
平面缝隙流量
在液压装置的各零件之间,特别是有相对运动的各 零件之间,一般都存在缝隙(或称间隙)。油液流过缝 隙就会产生泄漏,这就是缝隙流量。由于缝隙通道狭窄, 液流受壁面的影响较大,故缝隙液流的流态均为层流。 压差流动:由缝隙两端的压力差造成的流动。 剪切流动:形成缝隙的两壁面作相对运动所造成的流动。

第二章 液压传动流体力学基础

第二章  液压传动流体力学基础

第12张/共91张
11:55
2.2 液体动力学
实验
第13张/共91张
11:55
2.2 液体动力学
一维流动
当液体整个作线形流动时,称为一维流动;当作平面或 空间流动时,称为二维或三维流动。一维流动最简单,但是 严格意义上的一维流动要求液流截面上各点处的速度矢量完 全相同,这种情况在现实中极为少见。通常把封闭容器内液 体的流动按一维流动处理,再用实验数据来修正其结果,液 压传动中对工作介质流动的分析讨论就是这样进行的。
静止液体中的压力分布
例:如图所示,有一直径为d, 解:对活塞进行受力分析, 活塞受到向下的力: 重量为G的活塞侵在液体中, 并在力F的作用下处于静止状 F下 =F+G 态,若液体的密度为ρ,活 活塞受到向上的力: 塞侵入深度为h,试确定液体 d 2 在测量管内的上升高度x。 F上=g h x 4 F 由于活塞在F作用下受力平衡, d 则:F下=F上,所以:
第16张/共91张 11:55
2.2 液体动力学
通流截面、流量和平均流速
流束中与所有流线正交的截面称为通流截面,如图c中的A面 和B面,通流截面上每点处的流动速度都垂直于这个面。 单位时间内流过某通流截面的液体体积称 为流量,常用q表示 ,即:
q V t
式中
q —流量,在液压传动中流量
常用单位L/min; V —液体的体积; t —流过液体体积V 所需的时间。
1mmHg(毫米汞柱)=1.33×102N/m2
1at(工程大气压,即Kgf/cm2)=1.01972×105帕 1atm(标准大气压)=0.986923×105帕。
第9张/共91张 11:55
2.1 液体静力学
帕斯卡原理

液压流体力学基础

液压流体力学基础
第二章 液压流体力学基础
学习要点: 1、液压油(流体)的基本性质。 2、流体静力学基本规律。 3、流体动力学基本概念。 4、流体流量连续方程、流体能量平衡方程 (伯努利方程)方程、动量方程。 5、小孔及缝隙流量计算。 6、压力损失、液压冲击与空穴现象。
第一节 液压系统的工作介质
液压工作介质
第一节 液压系统的工作介质
第一节 液压系统的工作介质
二、液压工作介质的主要性能(续)
4、液体的热容量、比热
热容量: 液体与外界发生热量交换而使流体的温度变化,
热量交换对温度的变化率称为流体的热容量。 比 热: 单位质量液体的热容量成为比热。
第一节 液压系统的工作介质
5、液体的含气量、空气分离压和汽化压
◎ 含气量: 液体中所含空气的体积百分比数量叫含气量。两种形式:
温度高时选用粘度较高的液压油,减少容积损失。
第一节 液压系统的工作介质
5、液压油的污染与保养
液压油使用一段时间后会受到污染,常使阀内的阀芯 卡死,并使油封加速磨耗及液压缸内壁磨损。造成液压油 污染的原因有三方面:
1)污染: a 外部侵入的污物;b 外部生成的不纯物。
2)恶化: 液压油的恶化速度与含水量、气泡、压力、油温、金属
※ 液体的粘度会随温度、压力变化而变化。 液体的粘度对温度变化十分敏感,对液压系统的性能
有明显影响。温度升高,粘度将显著下降,造成泄漏、磨 损增加、效率降低等问题;温度下降,粘度增加,造成流 动困难及泵转动不易等问题,液压系统工作时发热较严重。 所以,一般控制系统中均要设计冷却装置,尽量保持油液 工作温度的稳定。 ※ 液体承受的压力增大,液体内聚力增大,粘度也随之增 大,但变化幅度不大,低压时一般不考虑。
二、液压工作介质的主要性能(续)

第二章 流体力学基础

第二章 流体力学基础
第二章 液压流体力学基础
本章是学习液压传动理论基础的章节,集中了学 习本课程的基本概念、基本原理和基本定律(方程)。
重点:
1. 静压力基本方程、连续性方程和伯努利方程; 2. 层流状态下的沿程压力损失、局部压力损失; 3. 流经薄壁小孔的流量公式。
难点:
1. 实际液体的伯努利方程及压力损失计算; 2. 真空度的概念。
第四节 液体流经小孔及缝隙的特性
• 概述:液压传动中常利用液体流经阀的 小孔或间隙来控制流量和压力,达到调速 和调压的目的,它也涉及液压元件的密 性,因此,小孔虽小,间隙虽窄,但其 作用却不可等闲视之。
一、孔口流量 特性 薄壁小孔 l/d ≤ 0.5
孔口分类: 细长小孔 l/d > 4 短孔 0.5 < l/d ≤4
量守恒定律,在单位时间内流过两个截面的液体流量相等,即:
v1 /A1 = v2/A2
不考虑液体的压缩性, 则得 :
q = v A = 常量
• 流量连续性方程说明了恒定 流动中流过各截面的不可压 缩流体的流量是不变的。因而流速与通流截面的面积成反 比。
三 伯努利方程 (Bernoulli Equation)
附加摩擦 — 只有紊流时才有,是由于 分子作横向运动时产生的 摩擦,即速度分布规律改 变,造成液体 的附加摩擦。
1. 局部压力损失公式 △pζ = ζ·ρv2/2 2. 标准阀类元件局部压力损失
△pF = △pn(Q/Qn)2
四 管路系统的总压力损失
∑△p = ∑△pλ + △pζ +∑△pF
=∑λ·l/d·ρv 2/2+∑ζρv2/2 + ∑△pn(Q/Qn)2
能量守恒定律在流体力学中的应用
能量守恒定律:理想液体在管道中稳定流 动时,根据能量守恒定律, 同一管道内任 一截面上的总能量应该相等。 或:外力对物体所做的功应该等

液压第二章液压流体力学基础

液压第二章液压流体力学基础
液压传动
主讲教师:张凡
第二章液压流体力学基础
液体是液压传动的工作介质。因此,了 解液体的基本性质,研究液体的静力 学、运动学和动力学规律;对于正确 理解液压传动原理,合理设计并使用 液压传动系统都是非常必要的。
教学目的
了解液压油的性质及作用 领会液体静力学的有关知识 综合应用三个方程解决液体动力学相关
——动量方程
应用动量方程解题的步骤:
a. 建立坐标系,一般坐标轴的方向与所 求的力的方向一致
b. 列方程、投影 c. 求解
例:P20求滑阀阀心所受的轴向稳态液动力。
课堂练习: P30 2-5 2-6 作业: P33 2-15 2-19
第四节液体流动时的压力损失
由于粘性摩擦而产生的能量
Pw
损失——沿程压力损失
由于管道形状、尺寸突变而产 生的能量损失——局部压力损 失
1.沿程压力损失(与液体的流动状态有关) 层流时沿程压力损失
p

l d
2
2
— 沿程阻力系数
金属圆管: 75
Re
橡胶圆管: 80
Re
紊流时沿程压力损失
p

l d
2
2
0.3164Re0.25
2.局部压力损失(与管道形状有关)
q CAT p
c—是由孔的形状、尺寸和液体性质决定
的系数
细长孔
c d2
32l
薄壁孔 短孔
c cq 2 /
—由孔的长度决定的指数
细长孔 1
薄壁孔
短孔 0.5
3. 结论: 1) 流过小孔的流量与孔径、和压力有关 2) 油液流经小孔时会产生压降(即两端
v22 )

9.17第2章 液压传动的流体力学基础

9.17第2章  液压传动的流体力学基础
m
kg
V
一、液压油的性质
(二)可压缩性
《液压与气动》电子课件 第二章 液压传动基础
定义:液体受压力作用而发生体积减小的性质。 压缩系数: 1 V
K
1 体积弹性模量: T k
p V
m
2
N
一般液压系统认为油液不可压缩。研究液压系 统动态特性、高压情况,尤其液压油中混入空 气,考虑油液的可压缩性。
《液压与气动》电子课件 第二章 液压传动基础
图中是运用帕斯卡原理寻找推力和负载间关 系的实例。图中垂直、水平液压缸截面积为A1、 A2;活塞上负载为F1、F2。两缸互相连通,构成 一个密闭容器,则按帕斯卡原理,缸内压力到处 相等,p1=p2,于是F2=F1 . A2/A1,如果垂直液缸 活塞上没负载,则在略 去活塞重量及其它阻力 时,不论怎样推动水平 液压缸活塞,不能在液 体中形成压力。
第一节 液压传动工作介质 一、液压油的性质 密度、压缩性、粘性
二、对液压油的要求与选用 要求、种类和选用
一、液压油的性质
(一)密度
《液压与气动》电子课件 第二章 液压传动基础
定义:单位体积液体的质量。以 表示。 定义式: m 单位: 3 m 密度随温度升高而下降,随压力升高而增大。 常用温度、压力范围,变化很小,视为常数。 15℃液压油密度900 kg 3
F=p.A=p.D2/4
式中 p-油液的压力; D-活塞的直径。
《液压与气动》电子课件 第二章 液压传动基础
2、当固体壁面为曲面时
当承受压力作用的表面是曲面时,作用在曲面上的 所有压力的方向均垂直于曲面(如图所示),图中将曲面 分成若干微小面积dA,将作用力dF分解为x、y两个方向上 的分力,即 Fx=p.dAsin=p.Ax FY= p.dAcos=p.Ay 式中,Ax、Ay分别是 曲面在x 和y方向上的投影面积。

液压传动3-流体力学基础

液压传动3-流体力学基础


解:此流量计处于重力场的作用下,故 应用能量方程,按题意应有h=0,忽略 损失,h=0。
以过轴心0-0的水平面为基准面,取断面Ⅰ 和Ⅱ,此二断面均为缓变过流断面,对此 二断面与轴心线的交点1和2列出能量方 程,可得
p1
v p2 v 2g 2g
2 1
2 2

而根据连续性方程式应有:
以过4点之水平面0-0为基准 面,管轴上的3点和4点列出 能量方程
p3 v pa v 0 (h1 h2 ) g 2 g g 2 g
2 3 2 4

由连续性方程可得:
v3 v 4
p3 pa (h1 h2 ) g g

pa 对水, =10米水柱高,于是 g
2、静压力方程式的物理意义
p=p0+γh=p0+γ(z0-z) 整理后得 p/γ+z=p0/γ+z0=常数 z称位置水头或称位能,表示A点单 位重量液体的位能

升的高度,称压力水头,或称压能。

p r 是该点在压力作用下沿测压管所能上
p z r
两水头相加( )称测压管水头,它 表示测压管液面相对于基准面的高度, 或称势能。
2 2
2、伯努利方程 式中每一项的量纲都是长度单位,分别称为 水头、位置水头和速度水头。 物理意义:稳定流动的理想液体具有压力 能、位能和动能三种形式的能量。在任意截 面上这三种能量都可以相互转换,但其总和 保持不变。
3、实际液体的泊努利方程 实际液体具有粘性,在管中流动时,需 要消耗一部分能量,所以实际液体的伯努利 方程为:
1 2 Q A1v1 d1 4
2 9.81 0.8(13.6 1) 1 2 3.14 0.25 39 4 1 1 3 0.112米 /秒 112升/秒
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.3 液压油的污染和防污措施
(1)污染的危害 (a)固体颗粒和胶状生成物堵塞过滤器,使液压泵吸油 不畅,运转困难,产生噪声。 (b)微小固体颗粒会加速有相对滑动零件表面的磨损, 使液压元件不能正常工作。 (c)水分和空气的混入会降低液压油液的润滑性,并加 速其氧化变质。
(2)污染原因 (a)残留物的污染 (b)侵入物的污染(空气中的尘埃) (c)生成物的污染
液体在外力作用流动(或有流动趋势)时,分子间的内聚力要阻止分 子间的相对运动而产生一种内摩擦力,这种现象叫做液体的粘性。 液体只 有在流动(或有流动趋势)时才会呈现出粘性,静止液体是不呈现粘性的。 如图所示为液体的粘度示意图。
图2-1
实验结果表明:
Ff
A du
dy

Ff du
A dy
μ为比例常数,有时称为粘性系数或动力粘度。
(1)密度
单位体积液体所具有的质量叫做该液体的密度。
m V
密度随压力和温度的变化而变化,但其变化很小,可以忽略。一般工
程上取 900kg/m3。
(2)可压缩性
液体压力增高而发生体积缩小的性质称为可压缩性。 k 1 V p V
k 称为体积压缩系数。当压力增大时,体积减小,故在式前加一负号,以使 k 为正值。
2.1.2 液压油的选用
❖ 对液压油的使用要求
(1)合适的粘度和良好的粘度-温度特性,一般液压系统 所选用的液 压油,其 运动粘度大多为(13~68 cSt)(40℃下)或2~8°E50。
(2)良好的化学稳定性。
(3)良好的润滑性能,以减小元件中相对运动表面的磨损。 (4)质地纯净,不含或含有极少量的杂质、水分和水溶性酸碱等。 (5)对金属和密封件有良好的相容性。 (6)抗泡沫性好,抗乳化性好,腐蚀性小,抗锈性好。 (7)体积膨胀系数低,比热容高。 (8)流动点和凝固点低,闪点和燃点高。 (9)对人体无害、成本低。
(a)动力粘度
牛顿内摩擦定律中μ为由液体种类和温度决定的比例系数, 它是表征液体粘性的内摩擦系数。如果用它来表示液体粘度的 大小,就称为动力粘度,或称绝对粘度。
动力粘度μ的物理意义是:液体在单位速度梯度下流动时 液层间单位面积上产生的内摩擦力。
动力粘度的单位为Pa·s(帕·秒,N•s/m2 )。
以前沿用的单位为P(泊,dyne•s/cm2)。单位换算关系为
体积压缩系数的倒数称为体积弹性模量,用K表示。
K
1 k
pVV
体积弹性模量越大表明该液体抵抗压缩的能力越强。工程上取液压油
的体积弹性模量
K(1.4~2)103MPFra bibliotek 。由于液压油中混有空气,实际计算中常取 K(0.7~1.4)10 3MP 。 a
一般情况下认为液压油是不可压缩的。
(3)粘性 ❖ 粘性的物理本质
❖ 液压油的选用
液压油在选用时最主要的依据就是粘度。 选择液压油时,首先考虑其粘度是否满足要求, 同时兼顾其它方面。选择时应考虑如下因素: (1) 液压泵的类型 (2) 液压系统的工作压力 (3) 运动速度 (4) 环境温度 (5) 防污染的要求 (6) 综合经济性
总之,选择液压油时一是考虑液压油的品种,二是考虑 液压油的粘度。
τ表示切应力,即单位面积上的内摩擦力
这就是牛顿的液体内摩擦定律。
公式分析:
在静止液体中,速度梯度du/dy=0,所以内摩擦力为零, 即静止液体不产生粘性,也就是说液体的静摩擦力是不存在的。
(3)粘性 ❖ 粘度的表示方法及影响因素
液体的粘性大小可用粘度来表示。粘度的表示方法有动力 粘度μ、运动粘度ν、相对粘度。
请继续学习第二章
第二章 液压传动的流体力学基础
液压系统中的工作液体既是传递功率的介质,又是液压元件的冷却、
防锈和润滑剂。在工作中产生的磨粒和来自外界的污染物,也要靠工作 液体带走。工作液体的粘性,对减少间隙的泄漏、保证液压元件的密封 性能都起着重要作用。
2.1 液压油的主要性质与选用
2.1.1 液压油的主要性质
1Pa·s = 10P(泊)= 1000 cP(厘泊)
(b) 运动粘度ν
液体的动力粘度μ与其密度ρ的比值,为液体的运动粘
度ν, 即:
运动粘度的单位为 m2/s 。 以前沿用的单位为St(斯)。单
位换算关系为
1 m2/s =104 St(斯)=106 cSt(厘斯)
就物理意义来说,ν不是一个粘度的量,但习惯上常用它来 标志液体粘度,液压油液的粘度等级是以40℃时运动粘度值 (mm2/s)为其粘度等级标号,即油的牌号
2.2.1 静压力及其特性
静压力是指液体处于静止状态时,其单位面积上所受的法向 作用力。静压力在液压传动中简称为压力,而在物理学中则称为 压强。
若静止液体某点处微元面积ΔA上作用有法向力ΔF,则该
点压力定义为:
F
lim p
A0 A
可表示为: p=F/A
我国法定的压力单位为牛顿/米2(N/m2),称为帕斯卡,简称帕 (Pa)。在液压技术中,目前还采用的压力单位有巴(bar)和工程大 气压、千克力每平方米(kgf/cm2 )等。
(3)防污措施 (a)减少外来的污染 (b)滤除系统产生的杂质 (c)控制液压油液的工作温度 (d)定期检查更换液压油液
2.2 液体静力学 液体静力学研究静止液体的力学规律和这些规律的实际应
用。这里所说的静力液体是指液体处于内部质点间无相对运动的 状态,因此液体不显示粘性,液体内部无剪切应力,只有法向应 力即压力。
液体静压力有两个重要特性:
(1)液体
静压力的方向总是沿着作用面的法线方向。
例如,牌号为L—HL22的普通液压油在40℃时运动粘度的中心值 为22 mm2/s(L表示润滑剂类,H表示液压油,L表示防锈抗氧 型)。
(c) 相对粘度
相对粘度又称条件粘度,它是按一定的测量条件制定的。 根据测量的方法不同,可分为恩氏粘度°E、赛氏粘度SSU、 雷氏粘度Re等。我国和德国等国家采用恩氏粘度。
(d) 温度对粘度的影响
液压油的粘度对温度变化十分敏感。温度升高时,粘度 下降。在液压技术中,希望工作液体的粘度随温度变化越小 越好。 粘度随温度变化特性,可以用粘度-温度曲线表示。
(e) 压力对粘度的影响
对液压油来说,压力增大时,粘度增大,但影响很小, 通常将中低压系统中的压力变化对油液粘度的影响忽略不计。
相关文档
最新文档