平稳性和单位根检验.

合集下载

平稳性和单位根检验[行业荟萃]

平稳性和单位根检验[行业荟萃]

行业借鉴
14
随机游走---
例2.2.1eviews操作实验
Wfcreate(wf=suiji,page=page1) u 1000
Smpl 1 1000
3000,5000,10000
Series u=@nrnd Series t=@trend(1)
genr x(0)=0 Smpl 2 1000 Genr x=x(-1)+u Smpl @all x.line
满足下列条件:
– 均值E(Xt)=是与时间t 无关的常数;
– 方差Var(Xt)=2是与时间t 无关的常数;
– 协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有 关,与时间t 无关的常数;
• 则称该随机时间序列是平稳的(stationary), 而该随机过程是一个平稳随机过程 (stationary stochastic process)。
• 大多数指标的时间序列是非平稳的,例如,以 当年价表示的消费额、收入等常是2阶单整的, 以不变价格表示的消费额、收入等常表现为1 阶单整。
• 大多数非平稳的时间序列一般可通过一次或多 次差分的形式变为平稳的。
• 但也有一些时间序列,无论经过多少次差分,
都不能变为平稳的。这种序列被称为非单整的
(non-integrated)。
• 如果一个时间序列是非平稳的,它常常可通过
取差分的方法而形成平稳序列。
行业借鉴
8
根据定义判断平稳性
行业借鉴
9
行业借鉴
10
行业借鉴
11
行业借鉴
12
行业借鉴
13
平稳性的图示判断
认识数据特征:
➢均值 是否随时间变化(时序图呈趋势性变化)? ➢方差 是否随时间变化(时序图呈跳跃性变化)? ➢协方差 是否随时间变化(自相关函数大幅度变化)?

学术研究中的平稳性检验

学术研究中的平稳性检验

学术研究中的平稳性检验摘要:平稳性检验是时间序列数据分析中非常重要的一步,它可以帮助我们确定时间序列数据是否具有稳定性,从而避免由于非平稳数据导致的统计误判。

本文将对平稳性检验的方法、原理和应用进行详细介绍。

一、引言在时间序列数据分析中,平稳性是一个非常重要的概念。

如果一个时间序列数据是平稳的,那么我们就可以对其进行一系列的统计分析和预测。

反之,如果一个时间序列数据是非平稳的,那么我们就需要采取一些措施来消除其非平稳性,否则会导致统计误判和预测误差。

因此,平稳性检验是时间序列数据分析中非常重要的一步。

二、平稳性检验的方法1.单位根检验(Augmented Dickey-Fuller Test)单位根检验是一种常用的平稳性检验方法,它可以通过建立时间序列数据的回归模型来检验其是否具有单位根。

如果回归模型的系数不显著,则说明该时间序列数据是平稳的;反之,如果回归模型的系数显著,则说明该时间序列数据是非平稳的。

常用的单位根检验方法有ADF检验和PP检验等。

2.协整检验(Cointegration Test)协整检验是一种用于检验两个或多个非平稳时间序列数据之间是否存在长期均衡关系的统计方法。

如果两个或多个时间序列数据之间存在协整关系,那么它们之间就可以建立回归模型进行分析和预测。

常用的协整检验方法有Kao检验和Johansen检验等。

三、平稳性检验的原理平稳性检验的原理是利用时间序列数据的特性进行分析。

在统计学中,平稳时间序列是指其均值、方差和自相关系数都是常数,也就是说,该时间序列数据具有稳定性。

如果一个时间序列数据是非平稳的,那么它的统计特性就会发生变化,从而影响统计分析和预测的准确性。

因此,在进行时间序列数据分析之前,必须对数据进行平稳性检验,以确保数据的稳定性和可靠性。

四、平稳性检验的应用1.经济领域中的应用在经济学中,平稳性检验被广泛应用于各种经济指标的时间序列数据分析中。

例如,通货膨胀率、失业率、国内生产总值等指标都是常用的经济指标,它们的变化趋势往往受到多种因素的影响。

平稳性检验——精选推荐

平稳性检验——精选推荐

时间序列平稳性的检验常见的数据类型•时间序列数据(time-series data);•截面数据(cross-sectional data)•平行/面板数据(panel data/time-series cross-section data)经典回归分析暗含着一个重要假设:数据是平稳的;数据非平稳,往往导致出现“虚假回归”故:时间序列首先遇到的问题就是平稳性的问题平稳的条件:假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{X t}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(X t)=m是与时间t无关的常数;2)方差Var(X t)=s2是与时间t无关的常数;3)协方差Cov(Xt,Xt+k)=gk是只与时期间隔k有关,与时间t无关的常数;则称该随机时间序列是平稳的,而该随机过程是一平稳随机过程。

白噪声X t=m t,m t~N(0,s2)是平稳的随机游走:Xt=Xt-1+mt mt是一个白噪声是非平稳的DXt=Xt-Xt-1=mt是平稳的故:一个时间序列是非平稳的,可以通过差分的方法变为平稳的Xt=fXt-1+mt不难验证: |f|>1时,该随机过程生成的时间序列是发散的,表现为持续上升(f>1)或持续下降(f<-1),因此是非平稳的;f=1时,是一个随机游走过程,也是非平稳的。

平稳性的检验:方法1;时间路径图来粗略地判断它是否是平稳的。

一个平稳的时间序列在图形上往往表现出一种围绕其均值不断波动的过程;而非平稳序列则往往表现出在不同的时间段具有不同的均值(如持续上升或持续下降)。

单位根检验、协整检验和格兰杰因果关系检验三者之间的关系实证检验步骤:1,做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析

面板数据分析简要步骤与注意事项面板单位根—面板协整—回归分析 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#面板数据分析简要步骤与注意事项(面板单位根—面板协整—回归分析)步骤一:分析数据的平稳性(单位根检验)按照正规程序,面板数据模型在回归前需检验数据的平稳性。

李子奈曾指出,一些非平稳的经济时间序列往往表现出共同的变化趋势,而这些序列间本身不一定有直接的关联,此时,对这些数据进行回归,尽管有较高的R平方,但其结果是没有任何实际意义的。

这种情况称为称为虚假回归或伪回归(spurious regression)。

他认为平稳的真正含义是:一个时间序列剔除了不变的均值(可视为截距)和时间趋势以后,剩余的序列为零均值,同方差,即白噪声。

因此单位根检验时有三种检验模式:既有趋势又有截距、只有截距、以上都无。

因此为了避免伪回归,确保估计结果的有效性,我们必须对各面板序列的平稳性进行检验。

而检验数据平稳性最常用的办法就是单位根检验。

首先,我们可以先对面板序列绘制时序图,以粗略观测时序图中由各个观测值描出代表变量的折线是否含有趋势项和(或)截距项,从而为进一步的单位根检验的检验模式做准备。

单位根检验方法的文献综述:在非平稳的面板数据渐进过程中,LevinandLin(1993) 很早就发现这些估计量的极限分布是高斯分布,这些结果也被应用在有异方差的面板数据中,并建立了对面板单位根进行检验的早期版本。

后来经过Levin et al. (2002)的改进,提出了检验面板单位根的LLC 法。

Levin et al. (2002) 指出,该方法允许不同截距和时间趋势,异方差和高阶序列相关,适合于中等维度(时间序列介于25~250 之间,截面数介于10~250 之间) 的面板单位根检验。

Im et al. (1997) 还提出了检验面板单位根的IPS 法,但Breitung(2000) 发现IPS 法对限定性趋势的设定极为敏感,并提出了面板单位根检验的Breitung 法。

第九章 序列的平稳性及其检验

第九章 序列的平稳性及其检验
可以通过最小二乘法得到 的估计值,并对其进行
显著性检验的方法,构造检验显著性水平的 t 统计量。
但是,Dickey-Fuller研究了这个t 统计量在原假设下 已经不再服从 t 分布,它依赖于回归的形式(是否引进了 常数项和趋势项) 和样本长度T 。
5
Mackinnon进行了大规模的模拟,给出了不同回归模
原假设和备选假设同ADF检验一致,为
H 0 : 0 H1 : 0 Elliott,Rothenberg和Stock (1996)给出了不同置信水
平下的临界值,DFGLS检验同一般的ADF检验一样是左侧
单边检验。
14
EViews软件中单位根检验操作说明: 双击序列名,打开序列窗口,选择View/unit Root Test, 得到下图:
型、不同样本数以及不同显著性水平下的临界值。这样, 就可以根据需要,选择适当的显著性水平,通过 t 统计量 来决定是否接受或拒绝原假设。这一检验被称为 DickeyFuller检验(DF检验)。
上面描述的单位根检验只有当序列为AR(1)时才有效。
如果序列存在高阶滞后相关,这就违背了扰动项是独立同 分布的假设。在这种情况下,可以使用增广的 DF 检验方 法(augmented Dickey-Fuller test )来检验含有高阶序列 相关的序列的单位根。
19
例5.7 检验居民消费价格指数序列的平稳性
图5.9 中国1983年1月~2007年8月的CPI(上年=100)序列
20
例5.7用AR(1) 模型模拟1983年1月~2007年8月
前,需要设定序列的是否含有 常数项或者时间趋势项。我们可以通过画出原序列 的图形来判断是否要加入常数项或者时间趋势项。 从图5.7的CPI图形可以看出不含有线性趋势项。CPI

时间序列平稳性和单位根检验教材

时间序列平稳性和单位根检验教材

时间序列平稳性和单位根检验教材时间序列平稳性是时间序列分析中的重要概念。

在时间序列中,平稳性意味着序列的统计性质在时间上是不变的,不受时间趋势、周期性和季节性等因素的影响。

单位根检验是一种用于检验时间序列是否平稳的方法。

它的原理是通过检验序列中的单位根是否存在来判断序列的平稳性。

在时间序列分析中,平稳性是进行预测和建模的基础。

如果序列是平稳的,我们可以使用很多传统的统计方法进行分析,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。

而如果序列不是平稳的,那么我们需要对其进行差分或其他预处理方法,以使其变为平稳序列。

单位根检验的方法有很多种,常用的有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。

这些方法都是基于对序列中单位根的存在与否进行统计检验的。

ADF检验是单位根检验中最常用的方法之一。

它的原理是对序列的自回归系数进行估计,并检验这些系数是否在单位根周围波动。

如果系数波动在单位根周围,则说明序列存在单位根,即不是平稳序列。

反之,如果系数波动在一个常数附近,则说明序列不存在单位根,即是平稳序列。

KPSS检验则是另一种常用的单位根检验方法。

它的原理是对序列进行单位根的最小二乘估计,并检验估计值与实际值之间的差异。

如果估计值与实际值之间存在显著的差异,则说明序列存在单位根,即不是平稳序列。

反之,如果差异不显著,则说明序列不存在单位根,即是平稳序列。

总结起来,时间序列平稳性和单位根检验是时间序列分析的重要概念和方法。

平稳性是进行预测和建模的前提,而单位根检验是判断序列是否平稳的重要工具。

通过对序列平稳性和单位根的检验,可以帮助我们选择合适的建模方法,提高时间序列分析的准确性和可靠性。

时间序列分析是一种用于研究时间变化规律的统计方法,广泛应用于经济学、金融学、气象学、社会学等领域。

什么是协整关系如何检验两个时间序列之间的协整关系

什么是协整关系如何检验两个时间序列之间的协整关系协整关系是指两个或多个时间序列之间的长期关系,当两个时间序列之间存在协整关系时,它们之间的差值序列是稳定的。

协整关系的发现对于金融、经济学和其他领域的研究具有重要意义。

本文将讨论协整关系的概念,并介绍如何进行协整关系的检验。

一、协整关系的概念协整关系是通过对两个或多个时间序列的统计分析而得出的。

它涉及到平稳性和长期关系两个概念。

1. 平稳性:平稳性是指序列的均值和方差不随时间的推移而发生显著变化。

在时间序列分析中,平稳性是一个重要的前提条件。

2. 长期关系:长期关系是指时间序列之间存在一个稳定的关系,即它们相对稳定地变动,而不是在短期内出现随机波动。

当两个时间序列同时是平稳的,并且它们之间存在长期关系时,就可以认为它们之间存在协整关系。

二、协整关系的检验方法为了检验两个时间序列之间是否存在协整关系,常用的方法有单位根检验和Engle-Granger检验。

1. 单位根检验:单位根检验用于判断一个时间序列是否为平稳序列。

常用的单位根检验方法有ADF检验和KPSS检验。

如果两个时间序列都是单位根非平稳序列,则它们之间可能不存在协整关系,需要进行后续检验;如果两个时间序列都是单位根平稳序列,则它们之间可能存在协整关系。

2. Engle-Granger检验:Engle-Granger检验用于判断两个时间序列之间是否存在协整关系。

该方法首先对两个时间序列进行回归分析,得到残差序列。

然后对残差序列进行单位根检验,如果残差序列是平稳的,则可以认为两个时间序列之间存在协整关系。

三、应用举例为了更好地理解协整关系,我们举一个实际的例子。

假设有两个股票价格的时间序列,分别是股票A和股票B。

我们想要检验股票A和股票B之间是否存在协整关系。

首先,我们对两个时间序列进行单位根检验。

假设经过ADF检验和KPSS检验后,股票A和股票B的价格序列均为平稳序列。

接下来,我们进行Engle-Granger检验,通过对股票A和股票B的价格序列进行回归分析得到残差序列。

平稳性检验公式学习平稳性检验的关键公式

平稳性检验公式学习平稳性检验的关键公式在统计学和经济学中,平稳性检验是一个重要的概念。

它用于确定时间序列数据是否表现出平稳性,即是否存在趋势、季节性或周期性。

本文将介绍平稳性检验的关键公式,帮助读者深入了解并应用这一方法。

1. 单位根检验公式单位根检验是最常用的平稳性检验方法之一。

它的核心思想是检验时间序列数据中是否存在单位根,若存在,则表明数据不具备平稳性。

单位根检验常用的公式是ADF(Augmented Dickey-Fuller)检验公式。

ADF检验基于以下模型:△Y_t = α + β t + γ Y_(t-1) + ∑_(i=1)^(p-1) θ_i △Y_(t-i) + ε_t其中,△表示差分操作,Y_t表示原始时间序列数据,α、β和γ分别是常数项、时间趋势项和滞后值系数,ε_t是误差项。

ADF检验的原假设是存在单位根,备择假设是不存在单位根。

通过对检验统计量的显著性检验,可以判断时间序列数据是否平稳。

2. 平稳性检验的拓展公式除了ADF检验,还有其他拓展的平稳性检验公式可以应用。

其中,KPSS(Kwiatkowski–Phillips–Schmidt–Shin)检验是另一个常用的方法。

KPSS检验模型可以表示为:Y_t = μ_t + ε_t其中,Y_t是时间序列数据,μ_t是趋势项,ε_t是误差项。

KPSS检验的原假设是数据是平稳的,备择假设是数据存在单位根。

通过对检验统计量的显著性检验,可以判断时间序列数据是否平稳。

3. 平稳性检验的实例为了更好地理解平稳性检验的应用,以下是一个实例:假设我们有一组月度销售额数据,我们想要判断这组数据是否表现出平稳性。

我们可以运用ADF检验和KPSS检验来进行判断。

首先,我们可以使用ADF检验公式来计算ADF统计量。

根据计算结果,如果ADF统计量的值显著小于某个临界值,我们可以拒绝原假设,即数据不具备单位根,从而表明数据是平稳的。

而对于KPSS检验,如果检验统计量的值显著小于某个临界值,我们可以拒绝备择假设,即数据存在单位根,从而表明数据是平稳的。

统计学中的平稳性检验方法

统计学中的平稳性检验方法统计学是一门研究数据收集、分析和解释的学科,而平稳性检验是其中的一个重要概念和方法。

平稳性检验用于确定时间序列数据是否具有平稳性,即数据的统计特性在时间上是否保持不变。

本文将介绍统计学中常用的平稳性检验方法,并探讨其应用和局限性。

一、平稳性的概念和意义平稳性是时间序列分析的基本假设之一,它指的是数据的统计特性在时间上保持不变,即数据的均值、方差和自协方差不随时间的推移而发生显著变化。

平稳性的检验是为了确保时间序列数据的可靠性和有效性,因为只有具有平稳性的数据才能进行可靠的预测和建模。

二、单位根检验单位根检验是最常用的平稳性检验方法之一,它基于时间序列数据中是否存在单位根的假设。

单位根是指时间序列数据中存在一个根为1的特征根,即数据具有非平稳性。

常用的单位根检验方法包括ADF检验(Augmented Dickey-Fuller test)和KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)。

ADF检验是一种基于单位根存在的假设进行的统计检验,它通过计算单位根的统计量来判断数据是否具有平稳性。

ADF检验的原假设是存在单位根,即数据具有非平稳性。

如果ADF检验的统计量小于临界值,就可以拒绝原假设,认为数据具有平稳性。

KPSS检验则是一种基于单位根不存在的假设进行的统计检验,它通过计算单位根的统计量来判断数据是否具有平稳性。

KPSS检验的原假设是不存在单位根,即数据具有平稳性。

如果KPSS检验的统计量大于临界值,就可以拒绝原假设,认为数据具有非平稳性。

三、滚动统计量除了传统的单位根检验方法,滚动统计量也是一种常用的平稳性检验方法。

滚动统计量是在时间序列数据中使用移动窗口的方法进行计算,它可以检测数据在不同时间段内的平稳性。

常见的滚动统计量包括滚动平均、滚动方差和滚动自相关系数。

滚动平均是指在时间序列数据中计算移动窗口内数据的平均值,然后将窗口向前移动一个时间单位,再计算平均值。

计量统计学各项检验

计量统计学各项检验1、Person相关性分析判断数据(变量)间的相关程度。

当Sig(显著性)<0.05时,表示显著相关,否则不相关2、平稳性检验(单根检验,ADF检验)只有模型中的变量满足平稳性要求时,传统的计量经济分析方法才是有效的。

或者Prob小于0.053、协整性检验协整即存在共同的随机性趋势,目的是决定一组非平稳序列的线性组合是否具有稳定的长期均衡关系。

优先从none开始看4、因果关系检验如果Prob的值大于0.05(或者0.1),则说明其两者之间存在因果关系,否则则不存在因果关系5、VAR模型做VAR模型有两种:1、平稳,过即原序列平稳或所有变量一阶差分后平稳,可以做VAR;2、不平稳,即不同阶单整,此时对原序列做协整,若存在协整关系,则可做VAR。

满足以上两个条件之一即可。

主要用于相互有影响的时间序列系统的建模。

用来分析某个冲击对这个系统的影响。

特征根都在单位圆内,说明VAR模型稳定(有一个不再圈内都是不稳定的)。

脉冲响应函数反映了施加变量一个单位标准差的冲击对其他变量的动态影响,因此是一种相对短期的变量之间动态变化6、误差修正模型如果是三个或者三个以上变量,就比较简单,直接在EVIEWS 中点击VEC的菜单就可以了如果是两个变量,则需要用协整的残差项和变量的差分进行0LS回归。

Prob值大于0.05不能取,这个是估计结果,选择view,然后选择re开头的那个就能看到模型的具体形式啦其他单位根检验、协整检验和格兰杰因果关系检验三者之间的关系实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。

若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
–表现为两个本来没有任何因果关系的变量,却有很高的 相关性。
–例如:如果有两列时间序列数据表现出一致的变化趋势 (非平稳的),即使它们没有任何有意义的关系,但进 行回归也可表现出较高的可决系数。
2、平稳性的定义
• 假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …) 的每一个数值都是从一个概率分布中随机得到,如果 满足下列条件:
随机性趋势(stochastic trend) 差分平稳过程
趋势平稳过程
• 差分平稳过程和趋势平稳过程 – 具有随机性趋势的时间序列通过差分的方法消除随 机性趋势。该时间序列称为差分平稳过程( difference stationary process); – 具有确定性趋势的时间序列通过除去趋势项消除确 定性趋势。该时间序列称为趋势平稳过程(trend stationary process)。
宽平稳、广义平稳
白噪声(white noise)过程是平稳的:
Xt=t ,
2 t~N(0, )
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2 • 随机游走的一阶差分(first difference)是平 稳的: Xt=Xt-Xt-1=t ,t~N(0,2)
– 分析时间序列之间的结构关系 – 单位根检验、协整检验是核心内容 – 现代宏观计量经济学的主要内容
一、时间序列的平稳性 Stationary Time Series
⒈问题的提出
• 经典计量经济模型常用到的数据有:
– 时间序列数据(time-series data); – 截面数据(cross-sectional data)
• 判断一个非平稳时间序列的趋势是随机性的还是确定 性的,可通过ADF检验中所用的第3个模型进行。 – 该模型中已引入了表示确定性趋势的时间变量,即 分离出了确定性趋势的影响。 – 如果检验结果表明所给时间序列有单位根,且时间 变量前的参数显著为零,则该序列显示出随机性趋 势; – 如果没有单位根,且时间变量前的参数显著地异于 零,则该序列显示出确定性趋势。
– 平行/面板数据(panel data/time-series cross-section data)
• 时间序列数据是最常见,也是最常用到的数据。 • 经典回归分析暗含着一个重要假设:数据是平稳的。
• 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
• 数据非平稳,往往导致出现“虚假回归” (Spurious Regression)问题。
• 如果一个时间序列是非平稳的,它常常可通过 取差分的方法而形成平稳序列。
根据定义判断平稳性
平稳性的图示判断认识数据源自征:均值 是否随时间变化(时序图呈趋势性变化)? 方差 是否随时间变化(时序图呈跳跃性变化)? 协方差
是否随时间变化(自相关函数大幅度变化)?
Wfcreate(wf=suiji,page=page1) u 1000 3000,5000,10000 Smpl 1 1000 Series u=@nrnd Series t=@trend(1) genr x(0)=0 Smpl 2 1000 扩展实验 ① x=0.5*x(-1)+u Genr x=x(-1)+u ② x=1+0.5*x(-1)+u Smpl @all ③ x=1.5*x(-1)+u x.line ④ x=1+1.5*x(-1)+u ⑤ x=1+t+1.5*x(-1)+u
§2.2 时间序列平稳性和单位根检验
Stationary Time Serial and Unit Root Test
一、时间序列的平稳性
二、单整序列
三、单位根检验
• 经典时间序列分析模型:
– 包括MA、AR、ARMA模型 – 平稳时间序列模型 – 分析时间序列自身的变化规律
• 现代时间序列分析模型:
–例如上述带截距项的随机游走序列,即为I(1)序列。
• I(0)代表一平稳时间序列。
• 现实经济生活中只有少数经济指标的时间序列 表现为平稳的,如利率等; • 大多数指标的时间序列是非平稳的,例如,以 当年价表示的消费额、收入等常是 2 阶单整的, 以不变价格表示的消费额、收入等常表现为 1 阶单整。 • 大多数非平稳的时间序列一般可通过一次或多 次差分的形式变为平稳的。 • 但也有一些时间序列,无论经过多少次差分, 都不能变为平稳的。这种序列被称为非单整的 (non-integrated)。
– 均值E(Xt)=是与时间t 无关的常数; – 方差Var(Xt)=2是与时间t 无关的常数; – 协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有 关,与时间t 无关的常数; • 则称该随机时间序列是平稳的(stationary), 而该随机过程是一个平稳随机过程 (stationary stochastic process)。
2、趋势平稳与差分平稳随机过程
X t t X t 1 t
• 含有一阶自回归的随机过程:
– 如果ρ=1,β=0,Xt成为一带位移的随机游走过程。根据α的正 负, Xt表现出明显的上升或下降趋势。这种趋势称为随机性 趋势(stochastic trend)。
– 如果ρ=0,β≠0, Xt成为一带时间趋势的随机变化过程。根据 β的正负, Xt表现出明显的上升或下降趋势。这种趋势称为确 定性趋势(deterministic trend)。 – 如果ρ=1,β≠0 ,则Xt包含有确定性与随机性两种趋势。
随机游走--例2.2.1eviews操作实验
二、单整、趋势平稳与差分平稳
1、单整(integrated Serial)
• 如果一个时间序列经过一次差分变成平稳的, 就称原序列是一阶单整(integrated of 1)序列, 记为I(1)。 • 一般地,如果一个时间序列经过d次差分后变 成平稳序列,则称原序列是d 阶单整 (integrated of d)序列,记为I(d)。
相关文档
最新文档