单位根检验的EViews操作
合集下载
单位根检验的EViews操作课件

感谢您的观看
如何进一步学习时间序列分析的相关知识
01
阅读时间序列分析相关的专业书籍和学术论文,深入理解时间 序列分析的基本原理和方法。
02
学习EViews软件的使用方法,掌握各种时间序列分析工具和命
令。
参加时间序列分析相关的课程和培训,与专业人士交流学习,
03
提高自己的分析能力。
THANKS FOR WATCHING
设,认为数据不存在单位根。
03
根据单位根检验结果,可以进一步进行其他相关分析和建 模。
04
单位根检验的EViews操 作实例
单个时间序列数据的单位根检验
01
打开EViews软件,选择 “File”菜单中的“New”选 项,创建一个新的工作文件。
02
在工作文件中,选择 “Quick”菜单中的“Empty Group”选项,创建一个空的 工作组。
单位根检验的原理
单位根检验基于ADF(Augmented Dickey-Fuller)检验和PP(Phillips-Perron )检验等统计方法,通过构建适当的回归模型并检验其残差是否具有单位根来确 定时间序列数据是否平稳。
如果残差存在单位根,则说明时间序列数据是非平稳的,即存在一个单位根;如 果残差不存在单位根,则说明时间序列数据是平稳的。
02
EViews软件介绍
EViews软件的特点
界面友好
01
EViews软件采用直观的图形界面,方便用户进行数据处理和统
计分析。
功能强大
02
EViews提供了丰富的数据处理、模型估计、统计分析和预测功
能,满足各种研究需求。
兼容性好
03
EViews支持多种数据格式和软件接口,方便与其他软件进行数
如何进一步学习时间序列分析的相关知识
01
阅读时间序列分析相关的专业书籍和学术论文,深入理解时间 序列分析的基本原理和方法。
02
学习EViews软件的使用方法,掌握各种时间序列分析工具和命
令。
参加时间序列分析相关的课程和培训,与专业人士交流学习,
03
提高自己的分析能力。
THANKS FOR WATCHING
设,认为数据不存在单位根。
03
根据单位根检验结果,可以进一步进行其他相关分析和建 模。
04
单位根检验的EViews操 作实例
单个时间序列数据的单位根检验
01
打开EViews软件,选择 “File”菜单中的“New”选 项,创建一个新的工作文件。
02
在工作文件中,选择 “Quick”菜单中的“Empty Group”选项,创建一个空的 工作组。
单位根检验的原理
单位根检验基于ADF(Augmented Dickey-Fuller)检验和PP(Phillips-Perron )检验等统计方法,通过构建适当的回归模型并检验其残差是否具有单位根来确 定时间序列数据是否平稳。
如果残差存在单位根,则说明时间序列数据是非平稳的,即存在一个单位根;如 果残差不存在单位根,则说明时间序列数据是平稳的。
02
EViews软件介绍
EViews软件的特点
界面友好
01
EViews软件采用直观的图形界面,方便用户进行数据处理和统
计分析。
功能强大
02
EViews提供了丰富的数据处理、模型估计、统计分析和预测功
能,满足各种研究需求。
兼容性好
03
EViews支持多种数据格式和软件接口,方便与其他软件进行数
单位根检验的EViews操作

继续讨论:
对GDP的一阶差分进行检验
在10%的显著性水平下,单位根检验的临界值为 -3.2602,上述检验统计量值-3.62511小于相应DW临界值, 从而拒绝H0,表明我国1978——2003年D(GDP)序 列是平稳序列.
年度数据一般选择1或2年,月度数据一般选择6个月、12个月或者18个月, 季度数据一般4或者8。
单位根检验的 EViews操作
利用EViews进行单位根检验
(ADF、DF检验的操作步骤基本相同)
在主菜单选择Quick / Series Statistics / Unit Root Test 输入待检验的序列名/单击OK / 出现单位根检验对话框 单位根检验对话框(由三部分构成) (1)检验类型(Test Type) (A)DF检验 PP检验 (2)检验对象 Level(水平序列) 1st difference(一阶差分序列)
• 我们老师说样本较大时,选用bic ,较小 时用aic • 先找出最小的AIC和SIC(不是绝对值), 在此基础上看ADF检验是否通过,即判 断是否是平稳序列。 • 我一般是根据VAR模型的最优滞后阶 数-1作为协整的最优滞后阶数
• 根据赤池信息准则或舒瓦茨信息准则 • adf检验是在残差存在自相关时用的,滞 后阶数可以根据序列自相关和偏自相关 图确定
方法3: 单位根检验
Quick
Series Statistics
Unit Root Test
输入变量名(本例:GDP)
选择ADF检验 / Level(水平序列)/ Trend and Intercept (趋势项和漂移项)/ 滞后期数:2
在原假设 H 0 : 1或 H 0 : =0 下,单位根的t检验统计量的值为:
eviews讲解单位根检验

单位根检验
第一节 单序列单位根检验 第二节 面板数据单位根检验
可编辑ppt
1
第一节 单序列单位根检验
一 序列单位根检验在时间序列分析中的地位 二 序列单位根检验软件相关操作
三 不同检验结果后续分析思路
四 协整检验
可编辑ppt
2
一 序列单位根检验在时间序列分析中的地位
时间序列总体分析思路
可编辑ppt
6
势项
单位根检验窗口
序列平稳性检验(单位根检验)结果
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:大于临界值则接受原假设 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
若两次差分平稳则为二阶单整I(2)。
可编辑ppt
10
四 序列间协整检验 (方程的残差平稳检验)
◎同阶单整序列(同阶非平稳序列)构 建 回归方程,获得残差
◎检验残差项的平稳性,若平稳,则称非
平稳序列间存在协整关系(长期稳定
关系)
可编辑pt
11
第二节 面板数据的平稳性(单位根检验)
请点 说明 请点 软件操作 结果 点检验结果1 结果2
中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。
可编辑ppt
13
分析数据的平稳性软 件 操 作
在Pool对象,View/Unit Root Test,输入相应的Pool序列名
填写序列 名
选择检验 方法
填写秩序
右边 所有 栏目 软件
自动 填写 无需 更改
填写模式,先做 序列图再选择
第一节 单序列单位根检验 第二节 面板数据单位根检验
可编辑ppt
1
第一节 单序列单位根检验
一 序列单位根检验在时间序列分析中的地位 二 序列单位根检验软件相关操作
三 不同检验结果后续分析思路
四 协整检验
可编辑ppt
2
一 序列单位根检验在时间序列分析中的地位
时间序列总体分析思路
可编辑ppt
6
势项
单位根检验窗口
序列平稳性检验(单位根检验)结果
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:大于临界值则接受原假设 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
若两次差分平稳则为二阶单整I(2)。
可编辑ppt
10
四 序列间协整检验 (方程的残差平稳检验)
◎同阶单整序列(同阶非平稳序列)构 建 回归方程,获得残差
◎检验残差项的平稳性,若平稳,则称非
平稳序列间存在协整关系(长期稳定
关系)
可编辑pt
11
第二节 面板数据的平稳性(单位根检验)
请点 说明 请点 软件操作 结果 点检验结果1 结果2
中有一个模型的检验结果拒绝了零假设,就可认为时间序列是平稳的。
可编辑ppt
13
分析数据的平稳性软 件 操 作
在Pool对象,View/Unit Root Test,输入相应的Pool序列名
填写序列 名
选择检验 方法
填写秩序
右边 所有 栏目 软件
自动 填写 无需 更改
填写模式,先做 序列图再选择
eviews讲解单位根检验

单位根检验
第一节 单序列单位根检验 第二节 面板数据单位根检验
1
本文档后面有精心整理的常用PPT编辑图标,以提高工作效率
第一节 单序列单位根检验
一 序列单位根检验在时间序列分析中的地位 二 序列单位根检验软件相关操作
三 不同检验结果后续分析思路
四 协整检验
3
一 序列单位根检验在时间序列分析中的地位
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:小于临界值则接受H1 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
备注:只要软件提供了P值就直接按P规则 做判定;除非没有提供的情况 下 才动用临界值法
势项
单位根检验窗口
序列平稳性检验(单位根检验)结果
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:大于临界值则接受原假设 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
只有此处小于 0.05,说明除此 法外都认为非
平稳
各种方法的结果(除Breitung检验 外)都接受原假设, I
存在单位根,是非平稳的。
16
例10.4中I的一阶差分变量的所有方法的单位根检验结果:
所有P值均小于 0.05,说明平稳
各种方法的结果都拒绝原假设,所以可
以得出结论: I是I(1)的。
17
序图做出模式选择)。
秩序:水平(level)、一阶差分、二阶甚至高阶差分直至序列平稳为止。
第一节 单序列单位根检验 第二节 面板数据单位根检验
1
本文档后面有精心整理的常用PPT编辑图标,以提高工作效率
第一节 单序列单位根检验
一 序列单位根检验在时间序列分析中的地位 二 序列单位根检验软件相关操作
三 不同检验结果后续分析思路
四 协整检验
3
一 序列单位根检验在时间序列分析中的地位
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:小于临界值则接受H1 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
备注:只要软件提供了P值就直接按P规则 做判定;除非没有提供的情况 下 才动用临界值法
势项
单位根检验窗口
序列平稳性检验(单位根检验)结果
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:大于临界值则接受原假设 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
只有此处小于 0.05,说明除此 法外都认为非
平稳
各种方法的结果(除Breitung检验 外)都接受原假设, I
存在单位根,是非平稳的。
16
例10.4中I的一阶差分变量的所有方法的单位根检验结果:
所有P值均小于 0.05,说明平稳
各种方法的结果都拒绝原假设,所以可
以得出结论: I是I(1)的。
17
序图做出模式选择)。
秩序:水平(level)、一阶差分、二阶甚至高阶差分直至序列平稳为止。
eviews讲解单位根检验文稿演示

若是平稳序列
非平稳序列
单序列 多序列
考虑差分平稳
ARMA 多元回归分析 差分平稳I(d) 不平稳
单序列 多序列(同阶) 无规律分析终止
ARIMA
协整检验 原:不协整
协整 不协整
长期关系模型 分析终止
进一步考虑ECM(误差修正模型)
二 序列单位根检验软件相关操作
说明 操作 结果
序列平稳性检验(单位根检验)说明
单位根检验窗口
序列平稳性检验(单位根检验)结果
◎原假设:6种方法中除KPSS外是:不稳定(存在单位根) ◎判定规则
P规则:大于临界值则接受原假设 临界值法
具体:左则单边: ①ADF② DFGLS ③ PP⑥ NP 接受(原假设)域 统计值大于临界值
右则单边: ④ KPSS ⑤ ERS 接受(原假设)域 统计值小于临界值
单序列 多序列(同阶) 无规律分析终止
ARIMA
协整检验 原:不协整
协整 不协整
长期关系模型 分析终止
进一步考虑ECM(误差修正模型)
序列差分检验(单整平稳检验)
◎Test for unit root in中确定序列在水平值、一阶差
分、二阶差分下进行单位根检验。
◎若一次差分平稳则为一阶单整I(1);
备注:只要软件提供了P值就直接按P规则
做判定;除非没有提供的情况下 才动用 临界值法
三 不同检验结果后续分析思路
分析思路 差分平稳
不同检验结果后续分析思路
时间序列总体分析思路
时间序列
平稳性检验 原:不平稳
若是平稳序列
非平稳序列
单序列 多序列
考虑差分平稳
ARMA 多元回归分析 差分平稳I(d) 不平稳
使用Eviews进行面板数据操作(有详图,包括Hausman检验,单位根检验)

GLS权重,通过加 权可以克服异方差
每个个体有共
同的参数 bi
bi 随个体不
同而发生
变
变化
参
数
bi 随个体不 同而发生
模 型
变化
下面为个体固定效应的结果。 点击view——representation可以显示具体的回归方程式。
2. 面板数据的检验
① Hausman检验(要在随机效应结果窗口中进行) 对数据进行随机效应模型估计,在估计结果窗口点击view——Fixed/Random Effects testing——Correlated Random Effect-Hausman Test(6.0以上的 版本才可以)
⑤ 在打开的数据组中点击view——graph——scatter——simple scatter, 便可得到不同时间的散点图。
⑥ 同理,按ctrl键,分别选择ip_i, ip_ah,I p_bj, ip_hb…便可得到不同个体 的散点图。
由于是用同一组数据画出的图形,所以虽然采用的 是不同的方法,但是绘出的两个图形一样。
在估计结果中点击proc——Make Model可以出现估计结果的联立方 程形式,进一步点击Solve键可以 在弹出的对话框中进行动态和静态 预测。
在估计结果或原始的面包数据窗口中点击view——unit root test
这里默认为 Schwarz检 验,因为在 小样本情况 下Schwarz 检验效果最 好。
注意:只有在随机效应估计窗口中才能 进行Hausman检验,只有在固定效应估 计窗口中才能进行似然比检验
Hausman检验的原假设是个体效 应与回归变量无关,应建立随机效 应模型,因此当Hausman值较大, 其对应的P值远小于0.05时,拒绝
每个个体有共
同的参数 bi
bi 随个体不
同而发生
变
变化
参
数
bi 随个体不 同而发生
模 型
变化
下面为个体固定效应的结果。 点击view——representation可以显示具体的回归方程式。
2. 面板数据的检验
① Hausman检验(要在随机效应结果窗口中进行) 对数据进行随机效应模型估计,在估计结果窗口点击view——Fixed/Random Effects testing——Correlated Random Effect-Hausman Test(6.0以上的 版本才可以)
⑤ 在打开的数据组中点击view——graph——scatter——simple scatter, 便可得到不同时间的散点图。
⑥ 同理,按ctrl键,分别选择ip_i, ip_ah,I p_bj, ip_hb…便可得到不同个体 的散点图。
由于是用同一组数据画出的图形,所以虽然采用的 是不同的方法,但是绘出的两个图形一样。
在估计结果中点击proc——Make Model可以出现估计结果的联立方 程形式,进一步点击Solve键可以 在弹出的对话框中进行动态和静态 预测。
在估计结果或原始的面包数据窗口中点击view——unit root test
这里默认为 Schwarz检 验,因为在 小样本情况 下Schwarz 检验效果最 好。
注意:只有在随机效应估计窗口中才能 进行Hausman检验,只有在固定效应估 计窗口中才能进行似然比检验
Hausman检验的原假设是个体效 应与回归变量无关,应建立随机效 应模型,因此当Hausman值较大, 其对应的P值远小于0.05时,拒绝
单位根检验的EViews操作

序列存在单位根,是非平稳序列。
继续讨论:
对GDP的一阶差验的临界值为 -3.2602,上述检验统计量值-3.62511小于相应DW临界值, 从而拒绝H0,表明我国1978——2003年D(GDP)序 列是平稳序列.
ˆ ˆ 或 . . . 0 . 7 8 6 0 1 1 ˆ ˆ ˆ ˆ
别为- 4.4167、-3.6219、-3.2474,显然,上述
相应DW临界值,从而接受 H
0
在1%、5%、10%三个显著性水平下,单位根检验的临界值分
检验统计量值大于
,表明我国1978——2003年度GDP
GDP序列,检验其是否为平稳序列。
方法1: 用时序图判断
由GDP的时序图初步判断序列是不平稳的(可以看出该序列可能 存在趋势项,若需用ADF检验则选择第三种模型进行检验)。
方法2: 用自相关系数图判断
中国GDP时间序列的自相关系数不是很快地(如滞后期K=2,3
趋于零,即缓慢下降,再次表明序列是非平稳的.
单位根检验的 EViews操作
利用EViews进行单位根检验
(ADF、DF检验的操作步骤基本相同)
在主菜单选择Quick / Series Statistics / Unit Root Test 输入待检验的序列名/单击OK / 出现单位根检验对话框 单位根检验对话框(由三部分构成) (1)检验类型(Test Type) (A)DF检验 PP检验 (2)检验对象 Level(水平序列) 1st difference(一阶差分序列)
方法3: 单位根检验
Quick
Series Statistics
Unit Root Test
输入变量名(本例:GDP)
eviews讲解单位根检验.

不平稳
多序列(同阶) 无规律分析终止
协整检验 原:不协整
不协整
长期关系模型
分析终止
9
进一步考虑ECM(误差修正模型)
序列差分检验(单整平稳检验)
◎Test for unit root in中确定序列在水平值、一阶差
分、二阶差分下进行单位根检验。
◎若一次差分平稳则为一阶单整I(1);
若两次差分平稳则为二阶单整I(2)。
备注
:只要软件提供了P值就直接按P规则
做判定;除非没有提供的情况下 才动用 临界值法
7
三 不同检验结果后续分析思路
分析思路 差分平稳
8
不同检验结果后续分析思路
时间序列总体分析思路
时间序列
平稳性检验 原:不平稳
若是平稳序列
非平稳序列
考虑差分平稳
单序列
ARMA
多序列
多元回归分析 差分平稳I(d) 单序列 ARIMA 协整
各种方法的结果(除Breitung检验 外)都接受原假设, I? 存在单位根,是非平稳的。
15
例10.4中I?的一阶差分变量的所有方法的单位根检验结果:
所有P值均小于 0.05,说明平稳
各种方法的结果都拒绝原假设,所以可 以得出结论: I?是I(1)的。
16
◎检验的目的:
(1)非平稳序列在各个时点上随机规律不同,因此,难以用已知信息掌握序列总体的随机性 (2)用序列做回归分析可防止伪回归
◎检验方法:
方法有①ADF② DFGLS ③ PP与 ④ KPSS ⑤ ERS⑥ NP 前三种有有关常数与趋势项假设,应用不方便,建议少用 后三种是软件 是去除原序列趋势后进行检验,应用方便 ◎原假设:6种方法中除KPSS外是:不稳定(存在单位根)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 单位根是否应该包括常数项和趋势项可 以通过观察序列图确定,通过Quickgraph-line操作观察你的数据,若数据随 时间变化有明显的上升或下降趋势,则 有趋势项,若围绕0值上下波动,则没有 趋势项;其二,关于是否包括常数项有
两种观点,一种是其截距为非零值,则
取常数项,另一种是序列均值不为零则 取常数项。
• 我们老师说样本较大时,选用bic ,较小 时用aic
• 先找出最小的AIC和SIC(不是绝对值), 在此基础上看ADF检验是否通过,即判 断是否是平稳序列。
• 我一般是根据VAR模型的最优滞后阶 数-1作为协整的最优滞后阶数
• 根据赤池信息准则或舒瓦茨信息准则
• adf检验是在残差存在自相关时用的,滞 后阶数可以根据序列自相关和偏自相关 图确定
序列存在单位根,是非平稳序列。
继续讨论: 对GDP的一阶差分进行检验
在10%的显著性水平下,单位根检验的临界值为 -3.2602,上述检验统计量值-3.62511小于相应DW临界值, 从而拒绝H0,表明我国1978——2003年D(GDP)序 列是平稳序列.
年度数据一般选择1或2年,月度数据一般选择6个月、12个月或者18个月, 季度数据一般4或者8。
中国GDP时间序列的自相关系数不是很快地(如滞后期K=2,3
趋于零,即缓慢下降,再次表明序列是非平稳的.
方法3: 单位根检验
Quick Series Statistics
Unit Root Test
输入变量名(本:GDP)
选择ADF检验 / Level(水平序列)/ Trend and Intercept (趋势项和漂移项)/ 滞后期数:2
(A)DF检验 PP检验 (2)检验对象 Level(水平序列) 1st difference(一阶差分序列) 2nd difference(二阶差分序列)
(3)检验式中应包括的附加项 Intercept(漂移项) Trend and Intercept(趋势项和漂移项) None(无附加项)
(4)检验式中因变量的滞后差分项的个数。
• 判断用不用常数项和趋势项一般做法是:
• 先画原序列的曲线图,根据图形可以看出是否应该包含截距项(常数项) 或者趋势项(这种方法是比较常用、有效和易行的);
• 对于生成过程比较复杂的时间序列数据,比较难直观地判断其是否含有 时间趋势或常数项,而需要对常数项、时间趋势项及单位根项的系数进 行反复检验,以及它们之间较为复杂的联合检验,以确定具体被检验时 间序列的具体生成过程等,比较复杂。
例 根据《中国统计年鉴2004》,得到我国1978—2003年的 GDP序列,检验其是否为平稳序列。
中国1978—2003年度GDP序列
方法1: 用时序图判断
由GDP的时序图初步判断序列是不平稳的(可以看出该序列可能 存在趋势项,若需用ADF检验则选择第三种模型进行检验)。
方法2: 用自相关系数图判断
• 滞后阶数的问题。最佳滞后阶数主要根 据AIC SC准则判定,当你选择好检验方 式,确定好常数项、趋势项选择后,在 lagged differences栏里可以从0开始尝试, 最大可以尝试到7。你一个个打开去观察, 看哪个滞后阶数使得结论最下方一栏中 的AIC 和SC值最小,那么该滞后阶数则 为最佳滞后阶数。
单位根检验的 EViews操作
利用EViews进行单位根检验 (ADF、DF检验的操作步骤基本相同)
在主菜单选择Quick / Series Statistics / Unit Root Test 输入待检验的序列名/单击OK / 出现单位根检验对话框
单位根检验对话框(由三部分构成) (1)检验类型(Test Type)
• 所以,对于一般的序列,采用画图的方法就可以了。
• 至于你检验出现的这种情况则是正常现象,因为检验序列显著性水平的T 统计量在原假设下的渐进分布依赖于单位根检验的不同形式。
在原假设 H0:1或 H0:=0下,单位根的t检验统计量的值为:
ˆˆˆ
或ˆ ˆˆ
...0.786011
在1%、5%、10%三个显著性水平下,单位根检验的临界值分
别为- 4.4167、-3.6219、-3.2474,显然,上述 检验统计量值大于
相应DW临界值,从而接受 H 0 ,表明我国1978——2003年度GDP