清华大学2016年微积分A期中考试A卷
【清华】2013年大一下微积分A2期中样卷答案

14. 设 F (x) 2x esin(xy)dy ,则 F(x) x
答案: F (x) 2x y cos(xy)esin(xy)dy 2esin(2x2 ) esin x2 x
。
。 。 。
1 ey
11
e1
15. 交换积分次序: dy f (x, y)dx = dx f (x, y)dy dx f (x, y)dy 。
证毕。
2 . ( 8 分 ) 设 f (u) 是 连 续 函 数 , 证 明 :
D (x, y) x y 1 。
1
f (x y)d f (u)du , 其 中
D
1
x y u
证:做变换
x
y
v
……………………………………………………………………..3 分
3. 设函数 f (u, v) 可微,函数 z z(x, y) 由方程 f (x y z, x2 y2 z2 ) 0 确定,则偏
导数 z x
。答案: fu 2xfv fu 2zf v
4. 函数 x 2 2 y 2 3z 2 在点 (1,1,1) 处函数值递增最快的方向为
x y z 0
7.
y
y(x), z z(x)
为由方程组 xຫໍສະໝຸດ 2y2
z2
1
确定的隐函数,
y
z
,则
dy
。答案: dy z x
dx
dx z y
8. 函数 f (x, y) x y 在点 (x, y) (1,1) 处带 Peano 余项的二阶 Taylor 展式为
2016-2017海淀高三期中练习数学理科试题及答案

海淀区高三年级第一学期期中练习数 学(理科) 2016.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上 作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1. 已知集合{2}A x x =>,{(1)(3)0}B x x x =--<,则AB =A. {1}x x >B. {23}x x <<C. {13}x x <<D. {2x x >或1}x < 2. 已知向量(1,2),(2,4)=-=-a b ,则a 与b A. 垂直B. 不垂直也不平行C. 平行且同向D. 平行且反向3. 函数222x xy =+的最小值为 A. 1B. 2C. D. 44. 已知命题:p 0c ∃>,方程20x x c -+= 有解,则p ⌝为 A. 0c ∀>,方程20x x c -+=无解 B. c ∀≤0,方程20x x c -+=有解 C. 0c ∃>,方程20x x c -+=无解 D. c ∃≤0,方程20x x c -+=有解5. 已知函数,,log x b c y a y x y x ===的图象如图所示,则 A. a b c >> B. a c b >> C. c a b >> D. c b a >>6. 设,a b 是两个向量,则“+>-a b a b ”是“0⋅>a b ”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件7. 已知函数42()cos sin f x x x =+,下列结论中错误..的是A. ()f x 是偶函数B. 函数()f x 最小值为34C.π2是函数()f x 的一个周期 D. 函数()f x 在π0,2()内是减函数 8.如图所示,A 是函数()2x f x =的图象上的动点,过点A 作直线平行于x 轴,交函数2()2x g x +=的图象于点B ,若函数()2x f x =的图象上存在点C 使得ABC ∆为等边三角形,则称A 为函数()2x f x =上的好位置点. 函数()2x f x =上的好位置点的个数为A. 0B. 1C. 2D. 大于2第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
清华大学微积分A(1)期中考试样题

一元微积分期中考试答案 一.填空题(每空3分,共15题) 1. e 1 2。
21 3. 31 4。
34 5. 1 6.第一类间断点 7。
()dx x x x ln 1+ 8。
22sin(1)2cos(1)x x x e++ 9。
0 10。
11−⎟⎠⎞⎜⎝⎛+x e x 11.x x ne xe + 12。
13 13。
0 14。
)1(223+−=x y 15. 13y x =+二. 计算题1. 解:,)(lim ,0)(lim 00b x f x f x x ==+−→→故0=b 。
…………………3分a xf x f f x =−=′−→−)0()(lim )0(0 …………………3分 1)0()(lim )0(0=−=′+→+xf x f f x …………………3分 1=a 故当1=a ,0=b 时,)(x f 在),(+∞−∞内可导。
…………………1分2. 解:=−+∞→])arctan ln[(lim ln /12x x x πx x x ln )arctan ln(lim 2−+∞→π = xx x x /1arctan )1/(1lim 22−+−+∞→π …………罗比达法则…………4分 =xx x x arctan )1/(lim 22+−++∞→π = )1/(1)1/()1(lim 2222x x x x ++−+∞→ = 2211lim x x x +−+∞→ = 1− ………………………4分所以,原极限=1−e ………………………………………………………………………2分3. 解:)'1)((''y y x f y ++= ,故 1)('11)('1)(''−+−=+−+=y x f y x f y x f y ;……4分 32)]('1[)('')]('1[)'1)((''''y x f y x f y x f y y x f y +−+=+−++=…………………………………………6分4.解:⎩⎨⎧≥+−<+−−=020)2()(2323x xx x x x x x x f 记x x x x g +−=232)(,则143)(2+−=′x x x g ,46)(−=′′x x g , 1,0,02)(2123===+−=x x x x x x g1,31,0143)(432===+−=′x x x x x g 32,046)(52==−=′′x x x g 故)(x f 在)0,(−∞及⎟⎠⎞⎜⎝⎛1,31单调减,在⎟⎠⎞⎜⎝⎛31,0及),1(+∞单调增; …………………2分 在)0,(−∞及⎟⎠⎞⎜⎝⎛+∞,32下凸,在⎟⎠⎞⎜⎝⎛32,0上凸; …………………2分 极大值点为31=x ,极小值点为1,0=x 。
2015-2016第一学期微积分IV期末试卷答案(A卷)

一、求下列数列的极限(每题5分,共10分):1.21lim(1)n n n -→∞+解:2222111lim(1)lim[(1)][lim(1)]n n n n n n e n n n----→∞→∞→∞+=+=+=2.2222lim()123n n n n nn n n n n→∞+++⋅⋅⋅++++ 解:222222221231n n n n n n n n n n n n n n ≤+++⋅⋅⋅≤++++++ , 又2222211lim lim 1,lim lim 111111n n n n n n n n n n n→∞→∞→∞→∞====++++ 所以由夹逼准则知,2222lim()1123n n n n nn n n n n→∞+++⋅⋅⋅=++++二、求下列函数的极限:(每小题5分,共20分).1. x →解:23x →==厦门大学《微积分IV 》课程期末试卷试卷类型:(A 卷) 考试日期 2016.01.122. 2211lim x x x x→--解:221111lim lim 2x x x x x x x →→-+==-或者用洛必达法则,2211122lim lim 22121x x x x x x x →→-===---3.30lim sin x x x x →-解:3200036limlim lim 6sin 1cos sin x x x x x xx x x x→→→===--4. lim )x x x →+∞解:lim )limlimlimx x x x x x →+∞===12==。
三、求函数的微分或导数:(每小题5分,共20分)1. 已知2sin y x x =,求dy .解:2(2sin cos )dydy dx x x x x dx dx==+2.已知sin xy x =,求y '. 解:y '=22(sin )()sin cos sin x x x x x x xx x''⋅--=3.已知32cos (1)y x =-,求(1)y '解:22222223cos (1)[cos(1)]3cos (1)(sin(1))(1)y x x x x x '''=-⋅-=-⋅--⋅-2222223cos (1)sin(1)(2)6cos (1)sin(1)x x x x x x =--⋅-⋅-=⋅-⋅-所以222(1)61cos (11)sin(11)0y '=⋅⋅-⋅-=4. 设()y y x =由方程y e xy e +=所确定,求(0)y '.解:方程ye xy e +=两边对x 求导,得0y e y y x y ''++⋅=,从而y y y e x -'=+,又(0)1y =,因此(0)(0)1(0)0y y y e e-'==-+。
清华 微积分A期中考试

3.
设数列{an
}
满足条件
lim
n
a2n
a,
lim
n
a2 n 1
b ,求极限 lim a1 a2 n
an n
。
4.用极限的“
”定义直接验证 lim x2
1 x2 1
1 3
。
三.证明题(请写出详细的证明过程!)
1.(8 分)设 0 x 1 ,证明不等式 (1 x)ln 2 (1 x) x2 。
4.
n
设 an
k 1
1 n2 k
,极限
lim
n
an
1
1
n
5.
设 a,b
均为正数, lim
n
an
2b n 31来自6. lim(1 cos x)ln x
。
x0
。 。
7. x 0 时, 1 tan x 1 sin x 无穷小的阶为
。
8.
函数
f
(x)
x2 1 x 1
,
x 1 在 x 1处间断点的类型为
2, x 1
9.
设
f
(x)
1 ex x
x 0 ,则 f (0)
。
1 x 0
10.
设
f
可导,函数 y
f
dx (sin x) 存在可导的反函数,则
dy
11.
函数
y
y( x)
由参数方程
x
y
t t
sin t cos t
给出,其微分
dy
。
。 。
12. 设 f (x) x(x 1)(x 2)(x 100) ,则 f '(0)
第一学期第二次微积分期中考试参考答案

北 京 交 通 大 学2011-2012学年第一学期《微积分》第二次期中考试试卷学院_____________ 专业___________________ 班级____________ 学号_______________ 姓名_____________请注意:本卷共十道大题,如有不对,请与监考老师调换试卷!一、()()ln 101.arcsin x x x+<<<证明:设()()ln 1f x x x =-+,则()00f =。
又因为()()'11001f x x xx x =+=<<<所以01x <<时,()()ln 10,f x x x =-+<()ln 1.arcsin x x+< 二、设0x >时方程211kx x +=有且仅有一个解,求k 的范围。
解:设()()2110f x kx x x =+->,则()'32.f x k x=-(1)0k <时,()()()'0,,0,f f f x +=+∞+∞=-∞<所以0x >时方程211kx x +=有且仅有一个解;(2)0k =时,显然0x >时方程211kx x+=有且仅有一个解; (3)0k >时,()()0,,f f +=+∞+∞=+∞当x ⎛∈ ⎝时,()'0,f x <当x ⎫∈+∞⎪⎪⎭时,()'0,f x >所以1f =为其最小值,只有当其为零时方程211kx x +=有且仅有一个解;此时得k = 总之,k 的范围为(]23,0.⎧⎫⎪⎪-∞⎨⎬⎪⎪⎩⎭ 三、设函数32,1x y x =-求(1)y 的定义域;(2)y 的单调区间和极值,图形的凹凸区间及拐点;(3)y 图形的渐近线方程。
解:(1)y 的定义域为 1.x ≠± (2)()()()()222'"2322323,.11x x xx y y xx-+==--所以(,-∞为单增区间,()1-为单减区间,()1,1-为单减区间,(为单减区间,)+∞为单增区间。
清华大学微积分习题(有答案版)

第十二周习题课一.关于积分的不等式 1. 离散变量的不等式 (1)Jensen不等式:设)(x f 为],[b a 上的下凸函数,则1),,,2,1),1,0(],,[1==∈∀∈∀∑=nk k k k n k b a x λλ ,有2),(11≥≤⎪⎭⎫ ⎝⎛∑∑==n x f x f k nk k k n k k λλ (2)广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得1),,,2,1),1,0(,01==∈∀>∑=nk k k k n k x λλ ,有∑==≤∏nk k k k nk x x k11λλ当),2,1(1n k nk ==λ时,就是AG 不等式。
(3)Young 不等式:由(2)可得设111,1,,0,=+>>q p q p y x ,qyp x y x q p +≤11.(4)Holder 不等式:设111,1,),,,2,1(0,=+>=≥qp q p n k y x k k ,则有 qnk q k pn k p k n k k k y x y x 11111⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===在(3)中,令∑∑======nk qk n k p k p k p k y Y x X Y y y X x x 11,,,即可。
(5) Schwarz 不等式:211221121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛≤∑∑∑===nk k nk k n k k k y x y x 。
(6)Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k ,则有()pnk p k pnk p k pnk p k k y x y x 111111⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛≤⎥⎦⎤⎢⎣⎡+∑∑∑=== 证明:()()()()()∑∑∑∑=-=-=-=+++=+⋅+=+nk p k k k nk p k k k nk p k k k k nk pk ky x y y x x y x y x y x1111111记111,11=+>-=qp p p q ,由Holder 不等式 ()()()qnk p q k k pnk p k qnk p q k k pnk p k nk p k ky x y y x x y x11)1(1111)1(111⎥⎦⎤⎢⎣⎡+⋅⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡+⋅⎪⎭⎫ ⎝⎛≤+∑∑∑∑∑=-==-==()q n k p k k p n k p k p n k p k y x y x 111111⎥⎦⎤⎢⎣⎡+⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑=== 即:()pnk p k pnk p k pnk p k ky x y x 111111⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛≤⎥⎦⎤⎢⎣⎡+∑∑∑===。
微积分试卷及规范标准答案6套

微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A │< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。