3.1.3空间向量的基本定理

合集下载

高中数学选修一第3章3.1~3.3空间向量运算-知识点

高中数学选修一第3章3.1~3.3空间向量运算-知识点

小初高个性化辅导,助你提升学习力! 1 高中数学选修一第3章3.1~3.3空间向量运算-知识点1、空间向量的加法、减法、数乘及运算律都是平面向量的对应推广,规则没有变,既可以用平行四边形法则,也可以用包含目标向量的封闭图形各边依次构成的向量之和为零向量得到相关式子。

2、因为向量可以平移 ,所以,任意两个向量都是共面 向量。

3、向量的数量积:a ·bba4、5、a 与b 平行(共线)的充要条件:存在实数λ,使得b =λa ;a ⊥b 的充要条件:a ·b =0。

6、三角形ABC 中,D 是BC 中点,则AD =21AB +21AC 。

7、给定四点O,P,A,B ,其中,O,A,B 为不共线的三点,且OP =x OA +y OB ,则A,P,B 三点共线 的充要条件是 x+y=1 .8、空间向量基本定理:如果1e 、2e 与3e 是不共面的向量,那么对空间中任意一个向量a ,存在唯一的实数λ,μ,ν,使得a =λ1e +μ2e +ν3e 。

9、对于空间任意一点O 和不共线的三点A,B,C ,都有OP =x OA +y OB +z OC 。

则点P 与A,B,C 四点共面 的充要条件是 x+y+z=1 .10、空间向量的坐标表示:a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),则①a ±b =(x 1±x 2,y 1±y 2,z 1±z 2);②λa =(λx 1,λy 1,λz 1);③a ·b = x 1x 2+y 1y 2+z 1z 2 ;④ 11、空间直角坐标系中,x 轴,y 轴,z 轴两两互相垂直 。

通过每两个坐标轴的平面叫做坐标平面 ,分别为xOy 平面,yOz 平面,zOx 平面,三个坐标平面把空间划分成八 个部分。

3.1.3空间向量的数量积

3.1.3空间向量的数量积

由a b a c能得到b c吗?如果不能,请举出 反例? k k a b k ,能不能写成a (或b ) ?向量有除法吗? b a
向量的数量积满足结合 律吗?即( a b) c a (b c)吗?
2 1.已知 a 2 2 , b , a b 2 2 则a , b所夹的角为________ .
例1、已知:PO, PA分别是平面的垂线,斜线, OA是PA 在内的射影,a , 且a OA 求证: a PA
P
三垂线定理
a

O
A
例2:已知m,n是平面内的两条相交直线, 如果l⊥m,l⊥n,求证:l⊥
l
l
g
m
n
g
m
n
例3 如图,已知线段 AB 在平面 内,线段 AC
| AC | 85
A'
B'
D
C
A
B
BD AB ,线段 AC 1.已知线段 AB 、BD在平面 内,
,如果 AB a , BD b , AC c ,求 C 、D 之间的距离.
C
解:∵
| CD |2 (CA AB BD)2
D a b B
c

| CA |2 | AB |2 | BD |2 a 2 b2 c 2
AB MA AB AD AB DN 1 2 1 2 1 2 a a a 0 2 4 4
M
D B N C
MN AB
同理,MN CD
3.已知空间四边形 OABC , OB OC , AOB AOC
OA BC。 ,求证:
O
证明:∵

3.1.3 空间向量基本定理

3.1.3 空间向量基本定理

存在惟一的三个有序实数x,y,z,使 OP=xOA+yOB+zOC .
数学应用
例1 如图,在正方体OADB -CA' D' B'中,点E是AB与OD的交点, M 是OD与CE的交点,试分别用向量OA,OB,OC表示OD '和OM .
B’
D’
解:OD=OA+OB+OC C
A’
OM=1 OA+1 OB+1 OC
3
23
O
=1 OA+ 2 [1 (OB+OC)-1 OA]
2 32
2
=1 OA+1 (OB+OC)-1 OA
M
23
3
=1 OA+1 OB+1 OC
A
633
C
G N
OG=1 OA+1 OB+1 OC
B
633
练一练
如图,空间平移△ABC到△A1B1C1,连接对应顶点,已知
AA1=a, AB=b, AC=c ,且M是BC1的中点,N在AC1上,
底 e1, e2,e3 叫做基向量.
((45))空如间果任空意间三一个个不基共底面的的三向个量基都向可量以两构两成互空相间垂的直一,个那基么底这.个基
底叫做正交基底,特别地,当一个正交基底的三个基向量都是单位
向量时,称这个基底为单位正交基底,通常用 { , , } 表示

i jk
(6)推论:设O,A,B,C是不共面的四点,则对空间任一点P,都
与x轴、y轴、z轴方向相同的单位向量 i, j, k
作为基向量,对于空间任意一个向量 a,
根据空间向量基本定理,存在惟一的有序实数组
(x,y,z ),使 a=xi+y j+zk.
有序实数组(x,y,z )叫做向量 a在空间直角

3.1.4空间向量的正交分解及其坐标表示

3.1.4空间向量的正交分解及其坐标表示
a,b, c都叫做基向量
空间任何三个不共面的向量 都可构成空间的一个基底
c 共面
推论:设点O、A、B、C是不共面的四点,则对 空间任一点P,都存在唯一的有序实数组 x、y、 z ,使
OP xOA yOB zOC
O
PC APBFra bibliotekP红对勾 5.若向量M→A,M→B,M→C的起点与终点互不重合且无三 点共线,则下列关系(O 是空间任一点)中,能使向量M→A,M→B,M→C 成为空间的一个基底的是( C )
[分析] 若向量 a 可以用基向量 e1、 e2、e3 表示为 a=xe1+ye2+ze3,则(x,y, z)就是 a 在基底{e1,e2,e3}下的坐标.
[= AA=解=AA=→→→→[=AA=解→→解GFGFGFA(:A(→→=A(=析= 12=1→=析=12DD,D,,AA]+ A+A→A→]+A→→A1→1ABB(→A1B12,112,′′+12,1+1(′+1A)A(1A))A1)→.+A→.→+)ABB.+A→→)→BAE→→′A′G→G′G=EAAAE=== ′==′==′=A→→→→AA→AD→D((DA→→AD(0→0BB0DB′+′,D,′+,1+1+1++,,D++,→+121212DE→AD12A12D→→→DA12D→E=))DDE)→D,→′,′→,=′===A=→FFAFD→(A(=→=(1D1=+1D,,,+AA+12A12A→A→12,DA→1212,12′′,D′→DD0D→ 0+)′+D→0+,)′),′A,A→→A→DDD+++12112AAA→→A→BBBB, AD, AA
∴∴∴ zxxxxz= + - xxz= + -=+ -3yy3yy3.= = yy.= =.= =121212, ,, ,, ,

高中数学A版3.1.3空间向量的数量积运算优秀课件

高中数学A版3.1.3空间向量的数量积运算优秀课件
(1)证明两直线垂直; (2)求两点之间的距离或线段长度; (3)证明线面垂直; (4)求两直线所成角的余弦值等等.
高考链接
1.(2006年四川卷)如图,已知正六边
形P1P2P3P4P5P6 ,下列向量的数量积中最
大的是___A___. A. P1P2 ·P1P3
B. P1P2·P1P4
C. P1P2·P1P5 D. P1P2·P1P6
方法三:数形结合法,发现形的特殊性.
(2)已知 a 2 2 , b 2 , a b 2
2
则a,b所成的夹角为__1_3_5___.
分析:根据两向量夹角公式
a·b = a b cosa ,b (0 a,b π)
可得到所求结果.
2.选择
设a,b,c是任意的非零空间向量,且
a b = a b cosθ
向量的夹角: 0 θO a
A
B
2.平面向量的数量积的主要性质
设a,b是两个非零向量
(1)a⊥b a×b=0数量积为零是判
定两非零向量垂直的充要条件;
(2)当a与b同向时, a·b=|a|·|b|;当a与b 反向时, a·b=-|a|·|b|;特别地,a a = a 2 或 a = a a 用于计算向量的模;
2
2
AB' = AB + AA' = 2FG
FG / /AB'
由①知 EG∥AC
∴平面EFG//平面AB’C.
习题答案
1. B
2. 解:因为 AC = AB + AD + AA,
所以 | AC |2= ( AB + AD + AA )2
=| AB |2 + | AD |2 + | AA |2 + 2( AB·AD + AB·AA+ AD·AA )

数学选修2-1苏教版:第3章 空间向量与立体几何 3.1.3-3.1.4

数学选修2-1苏教版:第3章 空间向量与立体几何 3.1.3-3.1.4

3.1.3 空间向量基本定理 3.1.4 空间向量的坐标表示学习目标1.理解空间向量基本定理,并能用基本定理解决一些几何问题.2.理解正交基底、基向量及向量的线性组合的概念.3.掌握空间向量的坐标表示,能在适当的坐标系中写出向量的坐标.知识点一 空间向量基本定理思考 只有两两垂直的三个向量才能作为空间向量的一组基底吗?答案 不一定,只需三个向量不共面,就可作为空间向量的一组基底,不需要两两垂直.梳理 空间向量基本定理(1)定理内容:不共面.3e ,2e ,1e 条件:三个向量①②结论:对空间中任一向量p ,存在唯一的有序实数组(x ,y ,z ),使p =x e 1+y e 2+z e 3.(2)基底:(3)推论:①条件:O ,A ,B ,C 是不共面的四点.②结论:对空间中任意一点P ,都存在唯一的有序实数组(x ,y ,z ),使得OP →=x OA →+y OB →+z OC →. 知识点二 空间向量的坐标表示思考 若向量AB →=(x 1,y 1,z 1),则点B 的坐标一定为(x 1,y 1,z 1)吗?答案 不一定.由向量的坐标表示知,若向量AB →的起点A 与原点重合,则B 点的坐标为(x 1,y 1,z 1),若向量AB →的起点A 不与原点重合,则B 点的坐标就不为(x 1,y 1,z 1). 梳理 (1)空间向量的坐标表示:①向量a 的坐标:在空间直角坐标系O -xyz 中,分别取与x 轴、y 轴、z 轴方向相同的单位向量i ,j ,k 作为基向量,对于空间任意一个向量a ,根据空间向量基本定理,存在唯一的有序实数组(x ,y ,z ),使a =x i +y j +z k ,有序实数组(x ,y ,z )叫做向量a 在空间直角坐标系O -xyz 中的坐标,记作a =(x ,y ,z ).②向量OA →的坐标:在空间直角坐标系O -xyz 中,对于空间任意一点A (x ,y ,z ),向量OA →是确定的,即OA →=(x ,y ,z ).(2)空间中有向线段的坐标表示: 设A (x 1,y 1,z 1),B (x 2,y 2,z 2),①坐标表示:AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1).②语言叙述:空间向量的坐标等于表示这个向量的有向线段的终点坐标减去它的起点坐标. (3)空间向量的加减法和数乘的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则:(4)空间向量平行的坐标表示:若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),且a ≠0,则a ∥b ⇔b 1=λa 1,b 2=λa 2,b 3=λa 3(λ∈R ).1.若{a ,b ,c }为空间的一个基底,则{-a ,b,2c }也可构成空间的一个基底.(√) 2.若向量AP →的坐标为(x ,y ,z ),则点P 的坐标也为(x ,y ,z ).(×)3.在空间直角坐标系O -xyz 中向量AB →的坐标就是B 点坐标减去A 点坐标.(√)类型一 空间向量基本定理及应用命题角度1 空间基底的概念例1 已知{e 1,e 2,e 3}是空间的一个基底,且OA →=e 1+2e 2-e 3,OB →=-3e 1+e 2+2e 3,OC →=e 1+e 2-67e 3,试判断{OA →,OB →,OC →}能否作为空间的一个基底.解 假设OA →,OB →,OC →共面,由向量共面的充要条件知存在实数x ,y ,使OA →=x OB →+y OC →成立.所以OA →=e 1+2e 2-e 3。

空间向量基本定理

空间向量基本定理
3.1.2空间向量基本定理
回顾复习
一、共线向量: 1.共线向量:
如果表示空间向量的有向线段所在的直线互相平行或重合,
则这些向量叫做共线向量或平行向量.
r
r
r a
平行于
r b
记作
r a
//
r b

规定: o 与任一向量 a 是共线向量.
rrr r
2、共线向量定理 对空间任意两个向量a,b(a 0),
ur r r
序实数对 ( x, y) 使 p xa yb .
r b
C
ur p
P
请证明
A
r a
B
思考2:有平面ABC, 若P点在此面内,须 满足什么条件?
ur
rC
p
br Aa
B
P
O
结论:空间一点P位于平面ABC内
uuur uuur uuur
1.存在唯一有序实数对x,y使 AP x AB y AC
uuuur uuuur uuuur (4) P、M、A、B共面 MP xMA yMB ;
A.1个 B.2个 C.3个 D.4个
ur ur
2.
已知uue1ur, e2
是平面内两个不共线的向量,
ur uur uuur ur uur
uuur
ur
uur
若AB e1 e2 , AC 2e1 8e2 , AD 3e1 3e2 ,
uuur OP
2
uuur OA1来自uuur OB2
uuur OC
;
555
uuur uuur uuur uuur
(2) OP 2OA 2OB OC ;
uuur r uuur r
例1.如图三棱柱,设AB a, AC b, A1

高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3-1空间向量基本定理北师

高中数学第三章空间向量与立体几何3空间向量基本定理及空间向量运算的坐标表示3-1空间向量基本定理北师
BD的中点分别为E,F,则EF=________.
答案:3a+3b-5c
解析:如图所示,取BC的中点G,连接EG,FG,则
1
1
1
1
1
EF=GF − GE= CD − BA= CD + AB= (5a+6b-
2
2
1
8c)+ (a-2c)=3a+3b-5c.
2
2
2
2
易错辨析 对基理解不清致误
例3 在平行六面体 ABCDA1B1C1D1 中,M为AC与BD的交点.若
的值分别是(
)
1
1
1
1
1
1
A.x= ,y= ,z= B.z= ,y= ,z=
3
3
3
1
1
1
C.x= ,y= ,z=
3
6
3
答案:D
3
3
6
1
1
1
D.x= ,y= ,z=
6
3
3
(2)在平行六面体ABCDA′B′C′D′中,设AB=a,AD=b,AA′ =c,P是
CA′的中点,M是CD′的中点,N是C′D′的中点,点Q是CA′上的点,且
A1 B1 =a,A1 D1 =b,A1 =c,试用基{a,b,c}表示向量C1 .
解析:如图,连接A1M,A1C1 ,则C1 =A1 -
1
A1 C1 =A1 +AM-(A1 B1 +A1 D1 )=A1 + (A1 B1
1
+A1 D1 )-(A1 B1 +A1 D1 )=A1A-
2
1
1
b构成基的向量是(
)
A.a
B.b
C.a+2b
D.a+2c
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

推论: 设点O、A、B、C是不共面的 四点,则对空间任一点P,都存在 唯一的有序实数组( x,y,z),使 OP xOA yOB zOC 注:空间任意三个不
共面向量都可以构成 空间的一个基底
A P B P O P
C
如: a, b, c} {
例 : 在正方体OADB CA' D' B'中,点E是AB与 OD的交点,M是OD' 与CE的交点,试分别用 向量OA, OB, OC表示向量OD'和OM .
y y z z a b c x x x x
从而 a, b, c 共面,这与已知 a, b, c 不共面矛盾 因此,有序实数组
( x, y, z )
是唯一的.
基底: 如果三个向量 e1 , e2 , e3 不共面,那么空 间的每一个向量都可由向量 e1 , e2 , e3 线性 表示.把 {e1 , e2 , e3} 称为空间的一个基底 基向量: e1 , e2 , e3 正交基底: 如果空间一个基底的三个向量是两 两互相垂直,那么这个基底叫做正交基底. 单位正交基底: 当一个正交基底的三个基向量都是 单位向量时,称这个基底为单位正交基底. 通常用 {i, j , k}表示
A B' Q A' D' N C'
D
B
C
已知PA 平面ABCD,四边形ABCD是正方 形,G为PDC重心, i , AD j , AP k , AB 试用基底 i , j , k 表示向量PG、 、 . BG AG


P
G A N D
B B
C
1 1 1 OA OB OC 如图,在平行六面体 ABCD-A B C D 中, =a, AB
' ' ' '
AD b, =c,p是CA '的中点,M是CD'的中点, = AA' N是C' D'的中点,点Q在CA'上,且CQ:QA'=4 : 1, 用基底{ ,c a b, }表示以下向量: 1)AP ; 3)AN 2)AM 4) AQ

G
A D N B B C
作业 P82
2,3,4
例:已知空间四边形OABC,对角线
OB、AC,M和N分别是OA、BC的中点, 点G在MN上,且使MG=2GN,试用基 底 {OA, OB, OC} 表示向量 OG
O
M A
G
解:在△OMG中,
C N
1 2 OG OM MG 2 OA 3 MN 1 2 OA (ON OM ) 2 3
自学检测
P76
1
空间向量的基本定理:
如果三个向量 a, b, c 不共面, 那么对空间任一向量 p ,存在一 个唯一的有序实数组(x,y,z),使 p xa yb zc 思路:作
E
b
O C
p
A
D
AB // b, BD // a, BC // c
p OB BA
B
c OC OD OE
空间任一向量能用三个
不共面的向量来线性表示吗?
学习目标
1、掌握空间向量基本定理及其推论,理解空间任意 一个向量可以用不共面的三个已知向量线性表示,而 且这种表示是惟一的。 2、在简单问题中,会选择适当的基底来表示任一向量。
自学指导
1、如何类比平面向量基本定理得到空间向量基本定 理?定理内容是什么?你如何理解? 2、什么是基底?零向量能不能作为基底?组成基底 的三个向量有何特征? 3、什么是基向量?基底和基向量有何关系? 4、什么是正交基底、单位正交基底?
x a yb z c
a
下证唯一性: 假设存在实数组 ( x, y, z) ,且 x x ,使
p xa yb zc
那么
xa yb zc xa yb zc
即 (x x)a ( y y)b ( z z)c 0 因为 x x 所以
平面向量基本定理表明: 平面内任一向量可以用该平面的两个 不共线向量来线性表示
如果 e1 , 是平面内两个不共线向量, e2 那么对于这一平面内的任一向量 a , 有且只有一对实数t1,t2,使
a t1 e1 t2 e2
M
e2
a
C 对向量 a 进行分
解:
e1
OC OM ON
O
N
t1 e1 t2 e2
B' C M E A A' D'
B O
D
分层训练
必做题 选做题 P76 2,3
已知PA 平面ABCD,四边形ABCD是正方 形,G为PDC重心, i , AD j , AP k , AB 试用基底 i , j , k 表示向量PG、P 、 . BG AG

相关文档
最新文档