按键接口实验
单片机 键盘接口实验

实验六键盘接口实验一、实验目的1、掌握Keil C51软件与Protues软件联合仿真调试的方法;2、掌握单片机的键盘接口电路;3、掌握单片机的键盘扫描原理;4、掌握键盘的去抖原理及处理方法。
二、实验仪器与设备1、微机一台2、Keil C51集成开发环境3、Protues仿真软件三、实验内容1、用Protues设计一矩阵键盘接口电路。
要求利用P1口接一4×4矩阵键盘。
串行口通过一74LS164接一共阴极数码管。
用线反转法编写矩阵键盘识别程序,用中断方式,并将按键的键值0-F通过串行口输出,显示在数码管上。
2、将P1口矩阵键盘改成8个独立按键,重新编写识别和显示程序。
四、实验说明矩阵键盘识别一般包括以下内容:⑴判别有无键按下。
⑵键盘扫描取得闭合键的行、列号。
⑶用计算法或查表发的到键值;⑷判断闭合键是否释放,如没释放则继续等待。
⑸将闭合键的键值保存,同时转去执行该闭合键的功能。
五、实验步骤1、用Protues设计键盘接口电路;2、在Keil C51中编写键盘识别程序,编译通过后,与Protues联合调试;3、按动任意键,观察键值是否能正确显示。
六、实验电路仿真图矩阵键盘电路图见附录1。
独立按键电路图见附录2。
七、实验程序实验程序见附录3、4。
八、实验总结1、矩阵键盘常用的检测方法有线反转法、逐行扫描法。
线反转法较简单且高效。
在矩阵键盘的列线上接一与门,利用中断方式查询按键,可提高CPU的运行效率。
2、注意用线反转法扫描按键时,得到的键值不要再赋给temp,最好再设一新变量接收键值,否则再按下按键显示数字的过程中,再按按键会出现乱码。
3、学会常用与门、与非门的使用方法。
附录1:矩阵键盘实验电路图附录2:独立按键实验电路图附录3:矩阵键盘实验程序#include <REG51.H>char code LED_TAB[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};char code KEY_TABLE[]={0xee,0xde,0xbe,0x7e,0xed,0xdd,0xbd,0x7d,0xeb,0xdb,0xbb,0x7b,0xe7,0xd7,0xb7,0x77};char code tab1[10]={0xfe,0xde,0x9e,0x9a,0x92,0x82,0x82,0x80,0xff};char temp,num,i,m;int t;bit flag=0;void Delay_ms(t){int i;for(;t>0;t--)for(i=0;i<124;i++);}void main(void){TMOD=0x01;TH0=(65536-10000)/256;TL0=(65536-10000)%256;ET0=1; PT0=1; SCON=0;EX0=1; IT0=1; EA=1;P1=0xf0;while(1){SBUF=tab1[m];while(TI==0); TI=0;Delay_ms(400); //500msm++;if(m==9) m=0;}}void int_1() interrupt 0{P1=0xf0;if(P1!=0xf0){Delay_ms(10);if(P1!=0xf0){temp=P1;P1=0x0f;temp=temp|P1;for(i=0;i<16;i++){if(temp==KEY_TABLE[i]){temp=i; break;}}SBUF=LED_TAB[temp];while(TI==0); TI=0; TR0=1;while(flag==0); flag=0;} } P1=0xf0;}void timer_0() interrupt 1{TH0=(65536-10000)/256;TL0=(65536-10000)%256;t++;if(t==300){t=0; flag=1; TR0=0;}}附录4:独立按键实验#include <REG51.H>char code LED_TAB[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x86,0x8e};char code KEY_TABLE2[]={ 0xfe,0xfd,0xfb,0x f7, 0xef,0xdf,0xbf,0x7f,} ;char code tab1[10]={0xfe,0xde,0x9e,0x9a,0x 92, 0x82,0x82,0x80,0xff};char temp,i,m;int t;bit ff;bit flag=0;void Delay_ms(t){int i;for(;t>0;t--)for(i=0;i<124;i++);}void main(void){TMOD=0x01;TH0=(65536-10000)/256;TL0=(65536-10000)%256;ET0=1; SCON=0; EX0=1;IT0=1; PT0=1; EA=1;P1=0xff;while(1){ff=IE0;SBUF=tab1[m];while(TI==0); TI=0;Delay_ms(400);m++;if(m==9) m=0;}}void timer_0() interrupt 1{TH0=(65536-10000)/256;TL0=(65536-10000)%256;t++;ff=IE0;if(t==300){t=0;flag=1;}}void int_0() interrupt 0{EX0=0;Delay_ms(10);temp=P1;if(temp!=0xff){for(i=0;i<8;i++){if(temp==KEY_TABLE2[i]){temp=i; break;}}SBUF=LED_TAB[temp];while(TI==0); TI=0;TR0=1; while(flag==0);flag=0; TR0=0;P1=0xff; EX0=1;}}。
实验七 8255键盘及显示接口实验

实验七 8255键盘及显示接口实验一实验目的熟练掌握8255及键盘,数码管显示的编程方法二实验设备2.1 TDN86/88教学实验系统一台。
2.2 微型计算机(PC)一台。
三实验内容3.1 8255键盘显示实验3.1.1实验要求:编程使数码块显示相应的按键数字。
3.1.2 硬件连接线路图:图13-1 8255键盘显示实验线路3.1.3 参考程序STACK SEGMENT STACKDW 64 DUP(?)STACK ENDSDATA SEGMENTTABLE DB 3FH,06H,5BH,4FH,66H,6DH,7DH,07HDATA ENDSCODE SEGMENTASSUME CS:CODE,DS:DATASTART: MOV AX,DATAMOV DS,AXMOV SI,3000HMOV AL,00HMOV [SI],ALMOV [SI+1],ALMOV [SI+2],ALMOV [SI+3],ALMOV DI,3003HMOV AL,81HOUT 63H,ALBEGIN: CALL DISCALL CLEARCALL CCSCANJNZ INK1JMP BEGININK1: CALL DISCALL DALLYCALL DALLYCALL CLEARCALL CCSCANJNZ INK2JMP BEGININK2: MOV CH,0FEHMOV CL,00HCOLUM: MOV AL,CHOUT 60H,ALIN AL,62HTEST AL,01HJNZ LONEMOV AL,00HJMP KCODELONE: TEST AL,02HJNZ NEXTMOV AL,04HKCODE: ADD AL,CLCALL PUTBUFPUSH AXKON: CALL DISCALL CLEARCALL CCSCANJNZ KONPOP AXNEXT: INC CLMOV AL,CHTEST AL,08HJZ KERRROL AL,1MOV CH,ALJMP COLUMKERR: JMP BEGIN CCSCAN: MOV AL,00HOUT 60H,ALIN AL,62HNOT ALAND AL,03HRETCLEAR: MOV AL,00HOUT 61H,ALRETDIS: PUSH AXMOV SI,3000HMOV DL,0F7HMOV AL,DLAGAIN: OUT 60H,ALMOV AL,[SI]MOV BX,OFFSET TABLEAND AX,00FFHADD BX,AXMOV AL,[BX]OUT 61H,ALCALL DALLYINC SIMOV AL,DLTEST AL,01HJZ OUTROR AL,1MOV DL,ALJMP AGAINOUT: POP AXRETDALLY: PUSH CXMOV CX,0010HT1: MOV AX,0010HT2: DEC AXJNZ T2LOOP T1POP CXRETPUTBUF: MOV SI,DIMOV [SI],ALDEC DICMP DI,2FFFHJNZ GOBACKMOV DI,3003HGOBACK: RETCODE ENDSEND START3.1.4 调试提示:(1) 分析线路图,画出参考程序相应的流程图(2) 按图13-1接线(3) 输入程序并检查无误,经汇编、连接后装入系统。
嵌入式ARM键盘接口和七段数码管的控制实验

实验三键盘接口和七段数码管的控制实验一、实验目的1. 学习4X4键盘的与CPU的接口原理2. 掌握键盘芯片HD7279的使用,及8位数码管的显示方法;二、实验内容1. 通过4X4按键完成在数码管上的各种显示功能,以及LCD上显示。
三、实验设备1.EL-ARM-830+教学实验箱,PentiumII以上的PC机,仿真调试电缆。
2. PC操作系统WIN98或WIN2000或WINXP,ADS1.2集成开发环境,仿真调试驱动程序。
四、实验原理键盘和7段数码管的控制实验,是通过键盘的控制芯片HD7279A来完成的。
它的信号线及控制线连接到S3C2410上,驱动线直接连到8位共阴的7段数码管上。
由于其芯片的接口电压是5V的,而S3C2410的接口电压是3.3V,所以,HD7279A的信号、控制线经过CPLD 把电压转换到3.3V,然后送入CPU中。
HD7279是一片具有串行接口的可同时驱动8位共阴式数码管或独立的LED的智能显示驱动芯片。
该芯片同时还可连接多达64键的键盘矩阵,单片即可完成显示键盘接口的全部功能。
内部含有译码器可直接接受BCD码或16进制码并同时具有两种译码方式。
此外还具有多种控制指令如消隐、闪烁、左移、右移、段寻址等,具有片选信号可方便地实现多于8位的显示或多于64键的键盘接口。
HD7279在与S3C2410接口中,它使用了4根接口线。
片选信号#CS(低电平有效),时钟信号CLK,数据收发信号DATA,中断信号#KEY(低电平送出),EL-ARM-830+实验箱与其的接口中,使用了三个通用I/O接口,和一个外部中断,实现了与HD7279A的连接,S3C2410的外部中断接HD7279的中断#KEY,三个I/O口分别与HD7279A的其他控制、数据信号线相连。
HD7279的其他管脚分别接4X4按键和8位数码管。
当程序运行时,按下按键,平时为高电平的HD7279A的#KEY就会产生一个低电平,送给S3C2410的外部中断5请求脚,在CPU中断请求位打开的状态下,CPU会立即响应外部中断5的请求,PC指针就跳入中断异常向量地址处,进而跳入中断服务子程序中,由于外部中断4/5/6/7使用同一个中断控制器,所以,还必须判断一个状态寄存器,判断是否是外部中断5的中断请求,当判断出是外部中断5的中断请求,则程序继续执行,CPU 这时,通过发送#CS片选信号选中HD7279A,再发送时钟CLK信号和通过DATA线发送控制指令信号给HD7279A,HD7279A得到CPU发送的命令后,识别出该命令,然后,扫描按键,把得到键值回送给CPU,同时,在8位数码管上显示相关的指令内容,CPU在得到按键后,有时,程序还会给此键值一定的意义,然后再通过识别此按键的意义,进而进行相应的程序处理。
单片机独立按键实验报告总结

单片机独立按键实验报告总结本次实验我们使用了单片机进行了独立按键实验,通过学习掌握了单片机输入输出口的基本使用方法以及独立按键的使用方法和技巧。
以下是本次实验的总结:一、实验内容本次实验的主要内容是独立按键的使用方法和技巧。
通过学习,我们掌握了独立按键的接法原理和基本应用方法。
在实验中,我们首先通过理论学习了按键的工作原理,了解了按键在电路中的应用和接法方法,然后实际动手进行了按键电路的搭建和单片机程序的编写,最后进行了按键测试和实验结果分析。
二、实验步骤1.理论学习:首先,我们学习了独立按键的工作原理和接法原理,了解按键在电路中的应用和接法方法,掌握了按键接口的输入输出方式,并对具体实现过程和技巧进行了分析和探讨。
2.电路搭建:根据学习到的按键接法原理和电路图,我们使用面包板和导线搭建了独立按键电路,将按键连接到单片机的输入端口上,并设置相应的电阻来保护电路和单片机芯片。
3.程序编写:通过阅读单片机说明书和参考其他资料,我们学习了单片机输入输出口的基本使用方法和指令,编写了程序代码,实现了独立按键操作的功能。
我们实现了多种按键操作方式,包括单击、长按等方式,并添加了相应的提示和保护措施,以确保程序的可靠性和稳定性。
4.测试实验:最后,我们进行了独立按键测试实验,通过按键操作,观察测试实验结果,进行了数据分析和结论汇总。
实验结果表明,我们的按键电路和程序代码都实现了预期的功能和效果,证明了我们在实验中掌握的独立按键技巧和方法是正确和有效的。
三、实验结论通过本次实验,我们掌握了单片机输入输出口的基本使用方法和独立按键的使用方法和技巧,了解了按键在电路中的应用和接法方法,探索了独立按键实现的多种方式和技巧,提高了我们的电路设计能力和程序设计能力。
同时,本次实验还加强了我们的实验动手操作能力,增强了我们的实际应用能力和创新思维能力,为我们以后的学习和工作打下了坚实的基础。
键盘 实验报告

键盘实验报告实验报告:键盘引言:键盘是计算机输入设备中最常用的一种设备,用于输入字符、数字、命令等等。
键盘以一定的方式将我们按下的按键转换成计算机可识别的信号,从而实现输入功能。
本实验的目的是了解键盘的工作原理、结构以及使用方法。
实验目的:1. 了解键盘的工作原理;2. 掌握键盘通信协议;3. 掌握键盘的结构和按键布局;4. 学习键盘的使用方法。
实验原理:键盘的工作原理是通过扫描矩阵的方式实现的,常见的键盘为4x4矩阵结构,也有其他规格的矩阵结构。
按键的每一个位置都与键盘电路中的一个电气开关相连接,当按下某个按键时,会导电并向计算机发送信号。
键盘通过PS/2或USB 接口与计算机相连,传输按键的信息。
键盘结构通常包括以下部分:1. 按键:键盘上的每一个按键代表一个字符、数字、命令或功能等。
按键大致分为四个区域:字母区、数字区、符号区和功能区。
2. 电路板:键盘的电路板上连接着按键开关,实现按键的电气连接和信号传输。
3. 导线和线缆:将电路板与接口连接,传递信号。
4. 接口:键盘通过PS/2或USB接口与计算机相连,实现信号的传输。
实验步骤:1. 准备一个计算机和一台键盘,确保键盘的连接正确。
2. 打开计算机,进入操作系统。
3. 在文本编辑器中打开一个文档,用来记录实验结果。
4. 将注意力集中在键盘上,按下键盘上的一个按键,观察文档中的输入情况。
5. 重复步骤4,测试其他按键,记录测试结果。
6. 关闭计算机,结束实验。
实验结果与分析:通过本实验,我们了解到键盘的工作原理是通过扫描矩阵的方式实现的,按键通过电路板中的电气开关与计算机相连,实现键盘输入。
键盘的按键布局通常分为四个区域:字母区、数字区、符号区和功能区。
通过实验测试,我们发现按键输入是可靠的,按下按键时能够正确输入对应的字符或数字。
键盘的使用方法是简单明了的,只需要按下对应的按键即可完成输入。
实验总结:键盘作为计算机最常用的输入设备,广泛应用于各个领域。
单片机实验报告实验5行列式键盘实验

学号姓名专业电气工程及其自动化班级实验5 行列式键盘实验一、实验目的(1)、学习掌握行列式键盘接口方法(2)、学习掌握行列式键盘编程方法。
二、实验内容用单片机P1口接4*4键盘,P0口接共阳数码管,编程实现键字的显示。
P1.0-P1.3为行,P1.4-P1.7为列。
先给端口设处置FEH,相当于给第一行置0,然后分写列值,如果对应的列值为0,说明该行与该列交叉处的键是按下的,接下来扫描第二行,与第一行的操作相同。
这就是行列式键盘扫描原理。
当扫描到某行的键按下时,就退出扫描,然后取键值,再将键值对应的额编码送P0端口显示。
三、实验设备计算机(已安装Keil和Proteus软件)元器件:A T89C51, CAP, CAP-ELEC, CRYSTAL, RES, 7SEG-COM-AN-GRN, RESPACK-7, BUTTON四、实验硬件电路实验源程序:#include<reg51.h>charled_mod[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x6f,0x77,0x7c,0x58,0x5e,0x79,0x7 1};charkey_buf[]={0xee,0xde,0xbe,0x7e,0xed,0xdd,0xbd,0x7d,0xeb,0xdb,0xbb,0x7b,0xe7,0xd7,0xb7,0x 77};char getkey(void){char key_scan[]={0xef,0xdf,0xbf,0x7f};char i=0,j=0;for(i=0;i<4;i++){P1=key_scan[i];if((P1&0x0f)!=0x0f){for(j=0;j<16;j++){if(key_buf[j]==P1)return j;}}}return -1;}void main(void){char key=0;P0=0x00;while(1){key=getkey();if(key!=1)P0=~led_mod[key]; }}五、实验要求(1)、根据实验内容设计相应的调试程序,并通过仿真,运行正确。
单片机原理及接口技术实验报告

单片机原理及接口技术实验报告一、引言单片机(Microcontroller)是一种集成为了处理器、存储器和各种接口电路的微型计算机系统。
它具有体积小、功耗低、成本低等优点,广泛应用于嵌入式系统、自动化控制、电子设备等领域。
本实验旨在深入了解单片机的原理和接口技术,并通过实验验证相关理论。
二、实验目的1. 理解单片机的基本原理和结构。
2. 掌握单片机与外部器件的接口技术。
3. 进一步培养实际操作能力和解决问题的能力。
三、实验仪器与材料1. 单片机开辟板2. 电脑3. 串口线4. LED灯5. 蜂鸣器6. 数码管7. 按键开关8. 电阻、电容等元件四、实验内容与步骤1. 单片机原理实验1.1 单片机的基本结构单片机由中央处理器(CPU)、存储器(RAM、ROM)、输入输出接口(I/O)、定时器/计数器、串行通信接口等组成。
通过学习单片机的基本结构,我们可以了解各个部份的功能和作用。
1.2 单片机的工作原理单片机的工作原理是指单片机在不同工作模式下的内部状态和运行规律。
通过学习单片机的工作原理,我们可以更好地理解单片机的工作过程,为后续的实验操作提供基础。
2. 单片机接口技术实验2.1 LED灯接口实验将LED灯与单片机相连,通过控制单片机的输出口电平,控制LED灯的亮灭。
通过实验,我们可以学习到单片机的输出接口的使用方法。
2.2 蜂鸣器接口实验将蜂鸣器与单片机相连,通过控制单片机的输出口电平和频率,控制蜂鸣器的声音。
通过实验,我们可以学习到单片机的输出接口的使用方法。
2.3 数码管接口实验将数码管与单片机相连,通过控制单片机的输出口电平和数据,显示不同的数字。
通过实验,我们可以学习到单片机的输出接口和数码管的使用方法。
2.4 按键开关接口实验将按键开关与单片机相连,通过检测单片机的输入口电平,实现按键的功能。
通过实验,我们可以学习到单片机的输入接口的使用方法。
五、实验结果与分析1. 单片机原理实验结果通过学习单片机的基本结构和工作原理,我们深入了解了单片机的内部组成和工作过程,为后续的接口技术实验打下了基础。
实验报告1--GPIO输出按键输入实验

班级学号姓名实验日期室温大气压成绩实验题目:GPIO输出实验——按键输入检测实验一、实验目的:1、通过本实验学会ARM7.0软件的安装及掌握对该软件和EasyJTAG仿真器的使用;2、了解EasyARM2131开发板硬件结构,掌握各引脚功能和接线;3、掌握相关实验的程序,并能作出简单的修改并实现其功能;4、掌握GPIO输出实验---按键输入的检测。
二、实验仪器:EasyARM2131开发板一块及相关导线、计算机一台三、实验原理:下面是工程窗口中的图标介绍:如图4.2所示,当P0口连接GPIO且用于输入时,如用于检测按键的时候,由于P0口作GPIO输入时,内部无上拉内阻,所以需要加10K左右的上拉电阻,把I/O口拉到高电平。
当P0口用于GPIO输入时(如按键输入),内部无上拉电阻,需要加上拉电阻,电路如图4.14图4.14 按键输入原理图实验通过跳线JP8连线KEY3_P0.18,程序检测按键KEY3的状态,控制蜂鸣器BEEP的蜂鸣。
在实验中,需要将按键KEY3输入口P0.18设为输入口,而蜂鸣器控制口P0.7设为输出口。
蜂鸣器电路如图1.11所示,当跳线JP6连线蜂鸣器时,P0.7控制蜂鸣器,低电平时蜂鸣器蜂鸣。
程序首先设置管脚连线寄存器PINSEL0和PINSEL1,设置P0.7为输出。
然后检测端口P0.18的电平,对P0.7进行相应的控制,流程图如图4.15所示,实现程序见程序清单4.7。
四、实验步骤:1、接好开发板与计算机的相关接线2、打开已安装好的H-JTAG和H-Flasher软件,并在H-Flasher软件中选择Flasher Selation→PHILIPS→LPC2318;然后再选择Programming→check。
操作过程中出现的窗口如下图(1)、(2)所示:图(1)图(2)3、Metrowerks CodeWarrior for ARM Developer Suite v1.2软件,点击File选择Open打开GPIO输出实验——按键输入检测实验文件夹,选择GPIO_Leds8-2.mcp文件,双击main.c ,打开主程序,并运行检查是否出现错误,无误后点击Dubeg按钮;操作过程中的窗口如下图(3)、(4)所示:图(3)图(4)4、出的AXD窗口中选择Options,点击configure target后,在跳出的choose target窗口中点击Ok,点击运行按钮(若点击运行按钮,开发板中的LED不会亮)则在PIO_Leds8-a.mcp窗口中点击Run按钮运行,并观察开发板上出现的现象是否符合实验要求窗口如下图(5)所示:图(5)5、程序清单4.7:按键输入程序如下#include "config.h"const uint32 BEEP = 1 << 7; // P0.7控制蜂鸣器const uint32 KEY1 = 1 << 18; // P0.18连接KEY3/************************************************************ ************************************************ 函数名称:main()** 函数功能:GPIO输入实验测试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机的键盘接口与编程一键盘接口和数码管接口是构成单片机人机界面的主要方法,对于一个初学者来说,这部分的内容也是较难的,我们将用四节课的时间来学习这方面的知识。
这一课先来讨论键盘的接口原理与编程方法。
键盘是单片机应用系统不可缺少的重要输入设备,主要负责向计算机传递信息,我们可以通过键盘向计算机输入各种指令、地址和数据。
它一般由若干个按键组合成开关矩阵,按照其接线方式的不同可分为两种:一种是独立式接法,一种是矩阵式接法,这一课先来讲解独立式键盘的工作原理和编程方法。
一.独立式键盘的工作原理和编程方法独立式键盘具有结构简单,使用灵活等特点,因此被广泛应用于单片机系统中,那么它是如何来工作的呢?我们慢慢往下看:1.独立式键盘的接线原理独立式键盘是由若干个机械触点开关构成的,把它与单片机的I/O 口线连起来,通过读I/O 口的电平状态,即可识别出相应的按键是否被按下,如果按键不被按下,其端口就为高电平;如果相应的按键被按下,则端口就变为低电平。
在这种键盘的连接方法中,我们通常采用上拉电阻接法,即各按键开关一端接低电平,另一端接单片机I/O 口线并通过上拉电阻与VCC 相连,如上图所示。
这是为了保证在按键断开时,各I/O 口线有确定的高电平,当然,如果端口内部已经有上拉电阻,则外电路的上拉电阻可以省去,想想看,哪几个并行口内部是有上拉电阻的?通常我们用来做键盘的按键有触点式和非触点式两种,单片机中应用的一般是由机械触点构成的触点式微动开关。
这种开关具有结构简单,使用可靠的优点,但当我们按下按键或释放按键的时候它有一个特点,就是会产生抖动,看上图的按键脉冲波形,这种抖动对于人来说是感觉不到的,但对单片机来说,则是完全可以感应到的,因为计算机处理的速度是在微秒级的,而机械抖动的时间至少是毫秒级,对计算机而言,这已是一个很“漫长”的过程了。
下面我们通过一个实验来验证一下,实验程序如下:把这个程序下载到单片机,我们会发现,当按下相应的按键时,灯并不是想象中的按一下亮,再按一下就灭,而是有时灵,有时不灵,为什么会这样呢?原来,当你按了一次按键,可是单片机却早已执行了好多次,如果执行的次数正好是奇数次,那么结果正如您所料;如果执行的次数是偶数次,那结果就不对了。
为了使CPU 能正确地读出端口的状态,对每一次按键只作一次响应,就必须考虑如何去除按键的抖动。
2.按键的去抖动原则和方法常用的去抖动的方法有两种:硬件方法和软件方法。
硬件去抖动的方法很多,好多书都有介绍,这不在我们的讨论范围。
单片机中常用软件去抖动法,软件法其实很简单,就是在单片机获得端口为低电平的信息后,不是立即认定按键已被按下,而是延时10 毫秒或更长一些时间后再次检测该端口,如果仍为低,说明此键的确被按下了,这实际上是避开了按键按下时的抖动时间;而在检测到按键释放后(端口为高电平时)再延时5-10 毫秒,消除后沿的抖动,然后再对按键进行处理,不过一般情况下,我们通常不对按键释放的后沿进行处理,实践证明,也能满足通常的要求。
下面我们把前面的程序改一下,看看按键的去抖动是如何实现的。
看下面的程序:ORG 0000H ;AJMP START ;ORG 0030H ;START:MOV SP,#5FH ;MOV P1,#0FFH ;MOV P3,#0FFH ;L1:JB P3.4,L2 ;P3.4 为“1”,不做处理,转P3.5LCALL D10mS ; 调用延时程序JB P3.4,L1 ;P3.4 为“0”,说明此键确实被按下了CPL P1.0 ; 去除抖动后取反P1.0L3:JNB P3.4,L3 ;直到P3.4 释放后转去判断第二个键L2:JB P3.5,L1 ;P3.5 为“1”,返回去继续处理P3.4 LCALL D10mS ; 调用延时程序JB P3.5,L2 ;P3.5 为“0”,说明此键确实被按下了CPL P1.1 ; 去除抖动后取反P1.1L4:JNB P3.5,L4 ;直到P3.5 释放为止LJMP L1 ;返回D10mS:MOV R7,#50 ;延时的时间一般为10-20mSD1:MOV R6,#200 ;D2:DJNZ R6,D2 ;把这段程序写入单片机,试试看,是不是行了,这就是独立式按键去抖动的基本方法。
不过这个程序在实际应用中并没有多大的意义,因为如果按键数量比较多的话,程序就会变得很长,为什么会这样呢?因为这里我们采用了直接寻址的方式,如果我们把键值放入一个表格中,再通过查表程序来判断到底是哪个按键被按下了,再去处理相应的程序就会很简单,想想看,该怎么做?二.独立式键盘的编程方法我们刚才的程序演示了按键的去抖动原理和基本方法,接下来让我们做一个按键使用的实验来验证一下,我们的实验板上有4 个按键分别接到了P3 口的P3.3,P3.4,P3.5,P3.6 引脚上,现在我们用P3.3,P3.4,P3.5 和P3.6 这四个按键来做一个实验。
实验之前,先定义各个按键的功能:A.P3.3 开始,按此键则灯开始流动(由左向右)B.P3.4 停止,按此键则停止流动,所有灯为灭C.P3.5 向左,按此键则灯反向流动(由右向左)D.P3.6 向右,按此键则灯正向流动(由左向右)实验程序如下:UpDown EQU 00H ; 上下行标志StartEnd EQU 01H; 起动及停止标志LampCode EQU 21H; 存放流动的数据代码ORG 0000H ; AJMP MAIN ;ORG 30H ;MAIN:MOV SP,#5FH ;MOV P1,#0FFH ;CLR UpDown ;启动时处于向上的状态CLR StartEnd ;启动时处于停止状态MOV LampCode,#0FEH;单灯流动的代码LOOP:ACALL KEY ;调用键盘程序JNB F0,LNEXT ;如果无键按下,则继续ACALL KEYPROC ;否则调用键盘处理程序LNEXT:ACALL LAMP ;调用灯显示程序KEYPROC:MOV A,B ;从B 寄存器中获取键值JB ACC.2,KeyStart ;分析键的代码,某位被按下,则该位为”1”(在键盘程序中已取反)JB ACC.3,KeyOver ;JB ACC.4,KeyUp ;JB ACC.5,KeyDown ;AJMP KEY_RET ;KeyStart:SETB StartEnd ;第一个键按下后的处理AJMP KEY_RET ;KeyOver:CLR StartEnd;第二个键按下后的处理 AJMP KEY_RET ;KeyUp:SETB UpDown ;第三个键按下后的处理 AJMP KEY_RET ;KeyDown:CLR UpDown ;第四个键按下后的处理K_RET:ORL P3,#01111000B ;此处循环等待键的释放MOV A,P3 ; ORL A,#10000111B ;CPL A ; JZ K_RET1 ;直到读取的数据取反后为”0”说明键释放了,才从键盘处理程序返回AJMP K_RET ;K_RET1:RET ;D500mS: ;流水灯的延迟时间PUSH PSW ;SETB RS0 ;MOV R7,#200 ;D51:MOV R6,#250 ;D52:NOPNOPNOPDJNZ R6,D52 ;DJNZ R7,D51 ;POP PSW ; RET ;LAMP:JB StartEnd,LampStart ;如果StartEnd=1,则启动 MOV P1,#0FFH ; AJMP LAMPRET ;否则关闭所有显示,返回LampStart:JB UpDown,LAMPUP ;如果UpDown=1,则向上流动MOV A,LAMPCODE ;RL A ;实际就是左移位MOV LAMPCODE,A ;MOV P1,A ;LCALL D500mS ;AJMP LAMPRET ;LAMPUP:MOV A,LAMPCODE ;RR A ;向下流动实际就是右移MOV LAMPCODE,A ;MOV P1,A ;LCALL D500mS ;LAMPRET:RET ;这段程序是我们到目前为止最长的程序,相信大多数指令大家应该能看懂,开始三条,UpDown EQU 00H;StartEnd EQU 01H;LampCode EQU 21H给大家解释一下,EQU 叫做等值伪指令,它的功能是将一个常数或者特定的符号赋予规定的字符串。
什么意思呢?举个例子:ORG 200H;ABC EQU R6;MOV A,ABC;这里将ABC 等值为寄存器R6,也就是说,在指令中,R6 这个寄存器可以用字符串ABC 来代替,为什么要这样写呢?当然是为了增加程序的可读性,不过有一点大家要记住了,这里使用的字符串不是标号,不能用“:”来做分隔符,比如这样写ABC:LJMP START ;如果加上“:”汇编程序会出错;当然,用EQU 指令除了可以赋值数据地址外,还可以赋值直接地址或者直接当作一个立即数来使用,例如:ABC EQU 10H;DELAY EQU 05AFH;MOV A,ABC;LCALL DELAY;这里ABC 赋值以后被当作了直接地址使用;而DELAY 被赋值以后则成了一个16 位的地址,用作子程序的入口。
如此一来,上面的三条指令也就很清楚了。
这里有一个问题大家需注意☺:使用EQU 伪指令必须先赋值,既然讲到了赋值伪指令,我们再讲一下另外三条赋值伪指令.A.位地址定义伪指令BIT它的功能是将一个可直接寻址的位地址赋予所规定的字符名称,例如:ABC BIT P1.0;把P1.0 赋值给ABC,即字符串ABC 就是直接寻址位P1.0。
这里注意☺:与EQU 不同的是,这条指令只能对位地址赋值,而不能对寄存器或直接地址和立即数赋值。
相反,EQU 指令却可以用来定义位地址变量,不过这时所赋的值应当是具体的位地址值。
比如P1.0 要用90H 来代替;P2.0 要用AOH 来代替等等。
B.内部RAM 定义伪指令DATA它的功能是给一个8 位的内部RAM 起一个名称,例如:ABC DATA 20H;把内部RAM 的20H 定义为ABC。
C.外部RAM 定义伪指令XDADT给一个8 位的外部RAM 起一个名称,例如:ABC XDATA 0ACH ;由于89C51 的内部RAM 寻址范围为00H-FFH ,所以这个地址必然大于FFH 。
讲了赋值伪指令,再回到上面的按键程序,这段程序的功能虽然很简单,但它演示了一个键盘处理程序的基本思路,程序本身很简单,也不很实用,实际工作中还会有好多要考虑的因素,比如主循环每次都调用了灯的循环程序,会造成按键反应“迟钝”;而如果一直按着键不放,则灯不会再流动,一直要到松开手为止,大家可以仔细考虑一下这些问题,想想有什么好的解决办法。