基于Fluentairpak的数据中心机房的气流组织模拟优化
数据中心IT机房末端气流组织管理

数据中⼼IT机房末端⽓流组织管理从数据中⼼的发展史来看,以提⾼空调的制冷效率、降低机房制冷能耗为推动⼒,数据中⼼IT机房末端的⽓流组织⽅式,从最初的冷热风混合淹没式到冷热通道分离式,再到冷/热通道封闭式及⾏间空调等⽅式的演变,都是围绕着以风为介质进⾏末端空调和IT设备冷热交换效率的优化来进⾏的。
以风为介质进⾏末端空调和IT设备的冷热交换的制冷模式仍然是现阶段数据中⼼的绝对主流应⽤,为实现数据中⼼在不增加投资、不降低数据中⼼可靠性的前提下,对数据中⼼的⽓流组织进⾏精细化管理,降低数据中⼼PUE、节约能耗具有重⼤的现实意义。
先让我们来看看风制冷的理论依据,下式是风量同制冷量的计算式,它反映了在不同温差条件下,风量与热量之间的换算关系。
Qs=Cp*ρ*L*(T1-T2)在通常的室内环境下,其中:Qs是现热量(单位Kcal/h,1KW=860Kcal/h);Cp是空⽓⽐热(0.24Kcal/kg℃);L是风量(单位CMH,即m³/h);ρ是空⽓⽐重(1.25Kg/m³);T1,T2分别是精密空调的回风温度和送风温度(或IT设备后端出风温度和前端进风温度);经过上式计算,当精密空调的回风温度和送风温度(或IT设备后端出风温度和前端进风温度)差为10℃时,空调每带⾛1KW热量所需要的风量近似为300CMH。
这个10℃温差我们以机房常⽤温度(回:24~30℃;送:14~16℃)来参考,最新的《数据中⼼设计规范(GB50174-2017)》对机房送回风温差可放宽⾄8~15℃,那么对应的空调每带⾛1KW热量所需要的风量近似为360~200CMH。
由此可见,风受控地流经IT设备内,才能有效地带⾛IT设备的发热。
如果风不流经IT设备内部,风从精密空调出风⼝经其它途径“短路”回到精密空调出风⼝的⾏为,都是低效的和不节能的。
所以我们在进⾏数据中⼼设计、建造、验证和运维的过程中都要注重对⽓流进⾏精细化管理。
空调房间室内气流组织模拟(fluent)

模型[1]m s,送风温如图,房间左下角有一个空调,送风和回风方向如图所示。
送风速度为1/度为25℃,壁面温度为30℃。
1.建立模型及网格划分①建立模型及网格划分的步骤在此处暂时省略,以后后机会再补上,这里直接读入网格文件hvac-room.msh。
②读入网格后应检查网格及网格尺寸,通过Mesh下的Check和Scale进行实现,这里不做详细描述。
2.求解模型的设定①启动FLUENT。
启动设置如图,这里着重说说Double Precision(双精度)复选框,对于大多数情况,单精度求解器已能很好的满足精度要求,且计算量小,这里我们选择单精度。
然而对于以下一些特定的问题,使用双精度求解器可能更有利。
[1] 李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战:FLUENT GAMBIT ICEM CFD Tecplot[M]. 北京,人民邮电出版社,2011:312-317a.几何特征包含某些极端的尺度(如非常长且窄的管道),单精度求解器可能不能足够精确地表达各尺度方向的节点信息。
b.如果几何模型包含多个通过小直径管道相互连接的体,而某一个区域的压力特别大(因为用户只能设定一个总体的参考压力位置),此时,双精度求解器可能更能体现压差带来的流动。
c.对于某些高导热系数比或高宽纵比的网格,使用单精度求解器可能会遇到收敛性不佳或精确度不足不足的问题,此时,使用双精度求解器可能会有所帮助。
②求解器设置。
这里保持默认的求解参数,即基于压力的求解器定常求解。
如图:下面说一说Pressure-based和Density-based的区别:a.Pressure-Based Solver是Fluent的优势,它是基于压力法的求解器,使用的是压力修正算法,求解的控制方程是标量形式的,擅长求解不可压缩流动,对于可压流动也可以求解;Fluent 6.3以前的版本求解器,只有Segregated Solver和CoupledSolver,其实也Pressure-Based Solver的两种处理方法;b.Density-Based Solver是Fluent 6.3新发展出来的,它是基于密度法的求解器,求解的控制方程是矢量形式的,主要离散格式有Roe,AUSM+,该方法的初衷是让Fluent具有比较好的求解可压缩流动能力,但目前格式没有添加任何限制器,因此还不太完善;它只有Coupled的算法;对于低速问题,他们是使用Preconditioning方法来处理,使之也能够计算低速问题。
CFD模拟篇-Airpak软件学习

CFD模拟篇-Airpak软件学习1.Airpak软件可以用来做什么?在学习CFD软件之前,我们要知道这个软件能够帮助我们解决什么问题。
Airpak软件其实是一款基于Fluent求解的一款十分强大的软件。
可以用来进行建筑室内空调气流组织模拟,空气品质、自然通风,室外风环境,产品设备散热模拟,客车火车等交通工具室内模拟,室外空调外机气流模拟,室内污染物(co2,甲醛等),厨房通风等等。
模拟完了之后,可以出的结果有:温度、湿度、风速、压力、pmv-ppd(即热舒适度)、空气龄(空气新鲜程度)等等。
这个软件对于暖通专业(建环)或者从事绿建方面工作的人使用的比较多,当然在其他行业也会用的到。
对于设计院或者绿建单位,要用他出一些前期的可研报告、建筑设计评估和优化,对于科研单位,主要用于科学研究。
2.如何学习CFD如何学好CFD,对于这个问题,其实我觉得没有什么特别好的捷径。
我们要做的是,正确的方法和努力勤奋,少走弯路。
2.1软件底层逻辑在学习任何一个CFD软件之前,你首先要了解这个软件运行的底层逻辑是什么,他是基于什么原理,弄明白了这个道理,你学习来才不会费劲。
比如Airpak是基于"object"的建模方式,fluent求解器运行的,而ICEM是基于拓扑结构的建模方式。
很多人在学了gambit后,再来学习ICEM,大半年过去了,ICEM还是没有摸着门道,特别痛苦,回头接着学习gambit。
这是因为这2个软件建模的方式是不一样的,所以思维没有转换,学起来也很难。
掌握了大的学习思维之后,我们最重要的是要有一条系统的科学学习方法。
2.2理论知识的掌握在学习具体软件之前,你需要掌握CFD模拟的一些基本知识比如什么是湍流方程、网格划分的目的、什么是后处理,这些知识是你学习软件之前必须掌握的,也是根基。
那如何学习这些知识呢,你可以看看很多CFD相关的书籍,一般第一章都会介绍一些。
如果你觉得看书麻烦,可以关注某公众号:七师兄课堂,里面有CFD公开课的讲解和文章。
数据中心机房气流组织数值模拟

数据中心机房气流组织数值模拟数据中心机房气流和温度分布情况和机架的工作稳定性及使用寿命密切相关。
本文利用CFD 软件建立的数据中心机房空调系统物理模型对数据中心机房气流和温度场进行了数值模拟。
模拟结果表明,机架应与计算机空调机保持一定的距离,下送风地板高度越高气流分布越均匀。
结合模拟结果,文章最后给出了一些优化设计的建议。
标签:CFD 数据中心;温度场;数值模拟1.引言随着互联网的飞速发展,数据处理业务需求的爆炸式增长和计算机、网络技术的飞跃进步,银行、保险、证券等金融行业、交通运输、医疗卫生等大型企业级政府机构相继建立起许多数据中心(IDC)。
在数据业务需求和IT技术的共同推动下,数据中心的热流密度每年呈现上升趋势,而且这种趋势还在继续。
由于IDC以数据设备为主,功耗比较大,对空调的要求比较高,空调能耗也随之增大,以至于IDC与通信机楼相比,显然是一个耗电大户,IDC机房的节能就显得尤为重要,尤其在空调系统上,节能潜力尤为大。
另外,随着数据设备单机功率的不断增加,IDC机房内往往会出现局部高温问题,这种问题目前非常普遍并且很难解决,往往通过在局部增加分体空调机或者工业风扇来缓解,但最终没从根本上解决问题。
在IDC机房,合理的空调气流组织不但能够提高空调的制冷效率,节省空调耗电量,而且能够解决局部高温问题。
目前通过CFD来模拟机房的温度场和流场是检测机房空调气流组织是否合理的重要手段之一。
本文利用CFD工具对IDC机房气流组织进行了模拟研究。
模型的建立目前数据中心常规的空调方式是利用恒温恒湿空调提供冷量,通过地板下的“静压箱”向设备机柜提供冷气。
机架通常摆设成冷热通道,冷通道为机架的进风,热通道为回风。
其示意图如图1所示:如图2所示的建筑物为本文所建立的模型,房间大小为12.4mx11.2mx4.5m (LxWxH),架空地板高度为400mm。
房间里共有机架40台,每个机架功率为4.0kW。
房间里设2台精密空调,每台空调的显冷量85kW,最大风量为23200m3/h。
数据中心机房空调气流组织研究

数据中心机房空调气流组织研究数据中心机房是存储和管理大量计算机服务器的关键设施,而机房空调系统则是保证服务器正常运行的重要设备之一。
为了确保机房内的温度和湿度处于合适的范围,机房空调系统必须能够有效地组织气流,以保持适当的温度分布和空气流通。
因此,对数据中心机房空调气流组织进行研究具有重要的理论和实践意义。
首先,合理的气流组织可以有效地降低机房的能耗。
通过优化空气流通路径和风速分布,可以减少冷气流与热设备之间的混合,从而降低冷却负荷。
此外,适当的气流组织还可以减少冷气流的短路现象,提高冷气流的利用效率,进一步降低能耗。
因此,在设计和运行机房空调系统时,需要考虑气流组织的优化,以提高能源利用效率。
其次,良好的气流组织可以保证机房内的温度分布均匀。
在机房内,热设备会产生大量热量,而温度过高可能会导致设备故障或过早损坏。
通过合理的气流组织,可以将冷气流送到热设备周围,有效降低设备温度,保持设备的正常运行。
此外,均匀的温度分布还可以减少设备之间的温差,减轻设备的热应力,延长设备的使用寿命。
最后,合理的气流组织还可以改善机房内的空气质量。
在机房内,由于设备运行产生的微粒、化学物质和湿度等因素,可能会影响空气质量,进而影响设备的正常运行和人员的健康。
通过优化气流组织,可以将污染物排出机房,保持机房内的空气新鲜和清洁,提供良好的工作环境。
总之,数据中心机房空调气流组织研究是一个重要的课题。
通过优化气流组织,可以降低能耗、提高设备的运行效率和寿命,并保证机房内的空气质量。
未来,我们需要进一步深入研究机房空调气流组织的优化方法和技术,以满足日益增长的数据中心需求,同时减少对环境的不良影响。
南沙国际邮轮码头航站楼大厅气流组织CFD模拟

南沙国际邮轮码头航站楼大厅气流组织CFD模拟摘要:介绍了南沙国际邮轮码头航站楼大厅全空气空调系统的设计,并通过CFD技术分析其温度场和速度场,针对分析所得问题,对全空气空调室内气流组织进行调整和优化,航站楼大厅热环境明显改善。
关键词:高大空间;气流组织;CFD0 引言☆对于高大空间空调系统的气流组织设计,主要研究手段是将气流数值分析和模型相结合,气流数值分析可利用相关的内扰因素、边界条件和初始条件进行分析,能全面地反映室内的气流分布情况,从而确定最优的气流组织方案[1,2]。
本文针对南沙国际邮轮码头航站楼大厅,利用CFD软件对其温度场和速度场进行数值模拟,并根据模拟结果对全空气空调系统设计方案进行调整优化。
1 项目概况及气流组织分析方法简介1.1项目概况本项目位于广州市南沙区,为一级港口客运站,集口岸服务、交通保障、商业、旅游和办公等为一体的大型综合体。
航站楼出境联检大厅,包括出发通道、海关检疫查验区、旅客等候大厅、出境检疫、等候大厅等功能区,为本次CFD气流组织模拟的研究对象。
出境联检大厅建筑面积为8564.3m2,层高为11.35m。
如图1、图2所示。
1.2气流组织分析方法的确定计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。
CFD可以看做是在流体基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值模拟。
通过这种数值模拟,我们可以得到复杂流场内各个位置的基本物理量(如速度、压力、温度、浓度等)分布,以及这些物理量随时间的变化情况[3]。
图1 二层出境联检大厅平面图图2建筑剖面图2 空调型式及CFD模拟结果分析出发通道、海关检疫查验区、旅客等候大厅、出境检疫、等候大厅等大空间区域采用低速全空气空调系统,送回风形式为上送上回。
此类区域的空调风系统设置为该项目的特点及难点。
airpak气流组织模拟教程教程

Airpak气流组织模拟教程编制人:张占莲2015-9-15案例:以广州某办公室房间为例,房间尺寸6m×8m×4.5m,室内通风采用同侧侧送风,上送下回送风方式,送风量1800m³/h,送风温度18℃,广州夏季室外干球温度34.2℃。
室内各物体尺寸、数量及边界条件设置如下表1所示:表1 边界条件设置名称尺寸数量边界条件送风口0.5m×0.2m2个速度入口,2.5m/s 人0.4m×0.35m×1.73m2人热源,75W灯 1.2m×0.2m×0.15m3个热源,40W电脑0.4m×0.4m×0.4m2台热源,173W回风口0.5m×0.2m2个自由出口桌子 1.5m×4m×1.05m1个——北外墙————定壁温,34.2℃1.建模1)打开软件,新建工程。
注:保存路径及工程名称中不要出现中文,中文无法识别。
2)调整房间模型尺寸:Model Room Edit可更改odject名称调整尺寸大小、坐标位置:Geometry可根据个人习惯通过输入起点/终点或起点/长度来确定坐标位置。
3)建立灯、人体、电脑等模型:Creat b locka.创建灯具模型修改block名称:lamp输入坐标尺寸定位a .创建灯具模型:在properties 中修改属性,定义热源。
将灯简化为长方体的固体block定义热源40W利用copy object 可复制灯具模型。
复制数量偏移量b.创建简易桌子模型(可无)采用固体block 创建桌子模型,因桌子并非热源散发源,桌子模型可有可无。
(这里仅作为障碍物)c.创建电脑模型步骤:◆简化为固体的block;◆修改名称为com.1;◆输入坐标定位;◆定义热源属性:173W;◆Copy object命令,设置偏移量。
d.创建人体模型步骤:◆可直接使用自带人体模型,也可将人体简化为长方体的固体block;◆修改名称为person.1;◆修改尺寸,人体为坐姿;◆定义热源属性:75W;◆Copy object命令,设置偏移量。
airpak气流组织模拟教程

Airpak气流组织模拟教程编制人:张占莲2015-9-15案例:以广州某办公室房间为例,房间尺寸6m×8m×4.5m,室内通风采用同侧侧送风,上送下回送风方式,送风量1800m³/h,送风温度18℃,广州夏季室外干球温度34.2℃。
室内各物体尺寸、数量及边界条件设置如下表1所示:表1 边界条件设置名称尺寸数量边界条件送风口0.5m×0.2m2个速度入口,2.5m/s 人0.4m×0.35m×1.73m2人热源,75W灯 1.2m×0.2m×0.15m3个热源,40W电脑0.4m×0.4m×0.4m2台热源,173W回风口0.5m×0.2m2个自由出口桌子 1.5m×4m×1.05m1个——北外墙————定壁温,34.2℃1.建模1)打开软件,新建工程。
注:保存路径及工程名称中不要出现中文,中文无法识别。
2)调整房间模型尺寸:Model Room Edit可更改odject名称调整尺寸大小、坐标位置:Geometry可根据个人习惯通过输入起点/终点或起点/长度来确定坐标位置。
3)建立灯、人体、电脑等模型:Creat b locka.创建灯具模型修改block名称:lamp输入坐标尺寸定位a .创建灯具模型:在properties 中修改属性,定义热源。
将灯简化为长方体的固体block定义热源40W利用copy object 可复制灯具模型。
复制数量偏移量b.创建简易桌子模型(可无)采用固体block 创建桌子模型,因桌子并非热源散发源,桌子模型可有可无。
(这里仅作为障碍物)c.创建电脑模型步骤:◆简化为固体的block;◆修改名称为com.1;◆输入坐标定位;◆定义热源属性:173W;◆Copy object命令,设置偏移量。
d.创建人体模型步骤:◆可直接使用自带人体模型,也可将人体简化为长方体的固体block;◆修改名称为person.1;◆修改尺寸,人体为坐姿;◆定义热源属性:75W;◆Copy object命令,设置偏移量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f o r S c i e n c e a n d T e c h n o l o g y , S h a n g h a i 2 0 0 0 9 3 , C h i n a )
Ab s t r a c t :En e r g y c o n s e r v a t i o n a n d e mi s s i o s n r e d u c t i o n i s a l o n g - t e r m i mp o r t a n t s t r te a g i c t a s k i n o u r
c o u n t r y .Wi t h t h e r a p i d d e v e l o p m e n t o f m o b i l e b u s i n e s s i n C h i n a , mo r e a n d m o r e d a t a c e n t e r s a r e u s e d ,
器均 温和回风 温度基 本相 同时 , 相 对 于原始送 风 温度 1 5℃ , 冷 热通道 改进 方案 可提 高至 2 6℃ , 相 对 于原 始方 案 可节 能 4 2 . 2 7 %。
关键词: 数 据 中心机 房 ; 流动 ; 数值 模拟 ; 算法; 气流 组织 ; 节能 中图分 类号 : T K0 1 8 ; T U8 3 4 文 献标志码 : A 文章编 号 : 1 6 7 3 — 7 2 3 7 ( 2 0 1 5 ) 0 3 — 0 0 2 7 — 0 7
到 重要 的作 用 。利 用 F l u e n t 软件 对 某 实际数据 中心机 房 的具 体 情 况进 行模 拟 , 提 出 2种 气 流
组 织优 化 方案 : 建 立冷 热通道 ( 人 机 分 离布局) 和 冷热 通道 改进 方案 。分别 对这 2种 方案进 行数
值模拟, 得 出相 应 的结果 , 并对这 2种 方案 进行 对 比和 分析 。 在 与原 始方 案 室 内温度 分布 、 服务
DU N Z h e , Q I N Y u n , G U A N X i n
( C o l l e g e o f E n e r g y a n d P o we r E n g i n e e i r n g , U n i v e r s i t y o f S h a n g h a i
w h i c h m e o 2 z t h a t t h e e n e r g y c o n s u m p t i o n i s b i g g e r nd a b i g g e r . Ab o u t 4 0 %o ft h e t o t a l e n e r g y c o su n m p t i o n a c c o u n t s f o r a i r c o n d i t i o n i n g e q u i p m e n t s , t h e ir a d i s t r i b u t i o n W s a n o t r e so a n a b l e ,t h e i n v e s t m e n t f o a i r
顿 酷, 秦 赞, 关 欣
2 0 0 0 9 3 ) ( 上海 理 工大学 能源 与动 力工 程学 院 , 上海
摘要: 节能减排 是我 国重要 的长期 战略任务 。随 着我 国移动 事业 的快速发展 , 数据 中心机房越 来越 多 , 能耗 越 来越 大 。 空调 设 备 约 占机 房 总 能耗 的 4 0 %, 不合 理 的 气流组 织会 导 致 空调 设备 的投 资 和运 行 费用 的增 高。 因此 , 机房 的 气流组 织优 化 对 于提 高机 房 空调 效率 以及机 房 的节 能减排起
2 0 1 5 年 第3 期( 总第4 3 卷 第2 8 9 期)
d o i : 1 0 . 3 9 6 9  ̄ . i s s n . 1 6 7 3 — 7 2 3 7 . 2 0 1 5 . 0 3 . 0 0 7
建 筑 节 能
■暖通与空调
基于 F l u e n t a i r p a k的数 据 中心 机 房 的 气流组织模拟优化
c o n d i t i o n i n g e q u i p m e n t w i l l b e h i g h e r ,S O s t a h e r u n n i n g c o s t s .T h e r e f o r e .t h e o p t i m i z a t i o n f o r r d i s t r i b u t i o n i n 0 c e n t e r w i l l p l a y a v e r y i m p o r t nt a r o l e i n i m p r o v i n g t h e e f ic f i e n c y f o a i r c o n d i t i o n i n g ,