2.2.1 条件概率(一)

合集下载

2.2.1条件概率

2.2.1条件概率

2.2.1条件概率“条件概率”教学设计⼀、⽬标和⽬标解析(1)通过对具体情境“抽奖问题”的分析,初步理解条件概率的含义(让学⽣明⽩,在加强条件下事件的概率发⽣怎样的变化, 通过与概率的对⽐和类⽐达到对新概念的理解)(2)在理解条件概率定义的基础上,将知识技能化,学会⽤两种⽅法求条件概率,并能利⽤条件概率的性质简化条件概率的运算。

(明确求条件概率的两种⽅法,⼀种是利⽤条件概率计算公式,另⼀种是缩减样本空间法。

并能选择恰当的⽅法解决不同概率模型下的条件概率(3)通过实例激发学⽣学习的兴趣,在辨析条件概率时培养学⽣的思辨能⼒,让学⽣亲⾝经历条件概率概念的形成过程,体会由特殊到⼀般再由⼀般到特殊的思维⽅式。

在参与的过程中让他们感受数学带来的⽆穷乐趣。

注重学习过程中师⽣间、学⽣间的情感交流,充分利⽤各种⼿段激发学习的兴趣,共同体验成功的喜悦。

⼆、教学过程设计(⼀)创设情境,引出课题问题1:1.掷⼀均匀硬币2次,(1)第⼆次正⾯向上的概率是多少?(2)当⾄少有⼀次正⾯向上时,第⼆次正⾯向上的概率是多少?2.设在⼀个罐⼦⾥放有⽩球和⿊球,现依次取两球(没有放回),事件A是第⼀次从罐中取出⿊球,事件B是第⼆次从罐中取出⿊球,那么事件A对事件B有没有影响?(1)如果罐⼦⾥有2个不同⽩球和1个⿊球,事件B发⽣的概率是多少?(2)如果罐⼦⾥有2个不同⽩球和1个⿊球,在事件A发⽣的条件下,事件B发⽣的概率⼜是多少?若在事件A没有发⽣的情况下,事件B发⽣的概率⼜是多少?3.三张奖券中只有⼀张能中奖,现分别由三名同学⽆放回地抽取,问:(1)最后⼀名同学抽到中奖奖券的概率是否⽐前两名同学⼩.(2)如果已经知道第⼀名同学抽到了中奖奖券,那么最后⼀名同学抽到奖券的概率是多少?根据上⾯三个例⼦,你能得出这些概率与我们所学过的概率⼀样吗?什么地⽅不⼀样?请⼤家以⼩组的⽅式讨论⼀下。

预设答案:他们与我们所学的概率不⼀样,都在原有的基础上⼜附加了条件,使得概率发⽣变化。

2.2.1条件概率

2.2.1条件概率

用A表示事件“第一名同学没有中奖”
A X1YX2, X2YX1, X1X2Y , X2X1Y
在A发生的条件下,B发生的基本事件 事件A和B同时发生
X1X2Y , X2 X1Y =AB
用 P(B | A) 表示事件“已知第一名同学没有中奖的条件下,最后
一名同学中奖”的概率
由古典概型概率公式,有
高二数学 选修2-3
2.2.1条件概率
1
一、基础知识归纳
设Ω有n个基本事件,随机事件A包含m个基本事件,则 事件A的概率P(A)=m/n. 对任何事件A:0≤P(A)≤1.
1、古典概率定义
P(A)= 有利于事件A的基本事件数
基本事件总数
当且仅当所描述的基本事件的出现是等可能 性时才成立
2
简单概率事件关系
B A∩B A
P(B|A)相当于把A当做新的样本空间来计算AB发生的概率。
P(A|B)怎么读?怎么理解?怎么求解?
2.条件概率的性质:
(1)有界性: 0 P B A 1
(2)可加性:如果B和C是两个互斥事件,则
PB C A PB A PC A
例1
在5道题中有3道理科题和2道文科题。
如果不放回地依次抽取2道题,求:
n()
A52
20,
n( A)
A31
A41
12, P(A)
n( A) n()
12 20
3. 5
( 2)
n(AB ) A32 6,
3P( AB)
n(AB) n()
6 20
3 10
.
(3)法1
P(B
|
A)
P( AB) P( A)
10 3
12法. 2

人教a版数学【选修2-3】2.2.1《条件概率》ppt课件

人教a版数学【选修2-3】2.2.1《条件概率》ppt课件

2 有 2 个红球,5 个蓝球,故第二次取到红球的概率为 P1=7. (2)第一次取到蓝球后不放回,这时口袋里有 3 红 4 蓝 7 个 3 小球,从中取出一球,取到红球的概率为7. (3)第一次取到蓝球后不放回,这时口袋里有 3 红 4 蓝 7 个 4 小球,从中取出一球,取到蓝球的概率为 P3=7.
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
条件概率
思维导航
在 10 件产品中有 9 件产品的长度合格, 8 件产品的质量合 格,7件产品的长度、质量都合格. 令A={任取一件产品其长度合格 },B={任取一件产品其 质量合格 } , AB = { 任取一件产品其长度、质量都合格 } , C =
{任取一件产品,在其长度合格的条件下,其质量也合格},试
讨论概率P(A),P(B),P(AB),P(C)的值,你发现了什么?
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
新知导学 1.条件概率
PAB PA 一般地, 设 A、 B 为两个事件, 且 P(A)>0, 称 P(B|A)=_______
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
通过实例,了解条件概率的概念,能利用条件概率的公式 解决简单的问题.
第二章
2.2
2.2.1
成才之路 · 高中新课程 · 学习指导 · 人教A版 · 数学 · 选修2-3
重点:条件概率的定义及计算.
难点:条件概率定义的理解.
成才之路 · 数学
人教A版 · 选修2-3

【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)

【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)
( 互独事件 互独事件)
独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,

条件概率课件

条件概率课件

解:法一:由(1)(2)可得,在第一次抽到理
科题旳条件下,第二次抽到理科题旳概率为
3
P(B
A)
P( AB) P( A)
10 3
1 2
5
例1:在5道题中有3道理科题和2道文科题,假如不放回 地依次抽取2道题,求: (1)第一次抽取到理科题旳概率; (2)第一次和第二次都抽取到理科题旳概率;
(3)在第一次抽到理科题旳条件下,第二次抽到理科 题旳概率。
思索:为何两个问题旳概率不同?
因为探究中已知第一名同学旳中奖成果会 影响最终一名同学中奖旳概率。若记A:第一名 同学没有抽到中奖劵 ,一般地,在已知事件A 发生旳前提下,事件B发生旳可能性大小不一 定再是P(B).
我们将探究中旳事件记为 P(A B) ,称为
事件A发生旳条件下,事件B发生旳条件概率
当A B时,P(AB)=P(A)
1. 条件概率旳定义. 2. 条件概率旳计算.
公式:
P(B A) P( AB) P( A)
P(B
A)
AB A
中样本点数 中样本点数
,
P( AB)
AB 中样本点数 中样本点数
一般来说, P(B A)比 P( AB) 大.
例1:在5道题中有3道理科题和2道文科题,假如不放回 地依次抽取2道题,求:
(1)第一次抽取到理科题旳概率; (2)第一次和第二次都抽取到理科题旳概率;
解:设第1次抽到理科题为事件A,第2次抽到 理科题为事件B,则第1次和第2次都抽到理科题 为事件AB. (1)从5道题中不放回地依次抽取2道旳事件数为
Ω
⑵几何解释:
P(B |A)相当于把A看作新旳
B
A A
基本事件空间求A∩B发生旳

公开课——条件概率(一)

公开课——条件概率(一)

2.2.1 条件概率教学目标(一)知识目标在具体情境中,了解条件概率的概念,掌握条件概率的计算公式,并能运用条件概率公式解决有关的简单概率问题.(二)情感目标创设教学情境,培养学生学习数学的良好思维习惯和兴趣,加深学生对从特殊到一般的思想认知规律的认识,树立学生善于创新的思维品质.(三)能力目标在知识的教学过程中,培养学生从特殊到一般的探索归纳能力及运算能力和应用新知的能力,渗透归纳、转化的数学思想方法.教学重点条件概率的概念,条件概率公式的简单应用.教学难点正确理解条件概率公式,并能灵活运用条件概率公式解决简单实际问题.教学过程一、复习引入1、复习:(1)两个事件A、B的和事件(BABA或+):事件A、B中至少有一个发生,当事件A、B 互斥时,()()()P A B P A P B+=+(2)两个事件A、B的积事件(BAAB或)事件A、B同时发生,若AB为不可能事件,则说事件A与B互斥.(),(),()P AB P A P B有什么关系呢?2、引例1:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问题1:事件B:最后一名同学抽到中奖奖券的概率为多少?1 ()3 P B=问题2: 如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?12 P=问题3:为什么两个问题的概率不一样?通过回答问题3:,引出课题条件概率:因为问题2中已知第一名同学的抽奖结果会影响最后一名同学抽到中奖奖券的概率:若记A:第一名同学没有抽到中奖使得,一般地,在已知另一事件A 发生的前提下,事件B 发生的可能性大小不一定再是P(B).我们将问题2的事件记为(|)P B A ,称为在“A 已发生”的条件下,B 发生的条件概率 二、新授课:(一)条件概率的概念设A 和B 为两个事件,那么,在“A 已发生”的条件下,事件B 发生的概率叫做______________________. 用符号___________表示。

2.2.1条件概率(刘建波改)

2.2.1条件概率(刘建波改)

2.2.1条件概率文山中学 刘建波课前准备:一、课标点击(一)学习目标:了解 条件概率的概.(二)教学重、难点:条件概率公式及其简单应用是重点,公式的推导是难点.二、教学过程:(一)知识链接链接1、我们知道求事件的概率有加法公式:若事件A 与B 互斥,则.()()()P A B P A P B =+那么怎么求A 与B 的积事件AB 呢注:1.事件A 与B 至少有一个发生的事件叫做A 与B 的和事件,记为A B (或A B + );2.事件A 与B 都发生的事件叫做A 与B 的积事件,记为 A B (或AB );3.若AB 为不可能事件,则说事件A 与B 互斥(二)问题导引三张奖券中只有一张能中奖,现分别由三名同学无放回的抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小。

如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又 是多少?已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?学习探究(一)自主探究:借助抛掷红黑两枚骰子,通过坐标系分析.(二)知识点梳理:1.条件概率对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的条件概率”,叫做条件概率。

记作P(B |A).2.条件概率计算公式:()(|)()P AB P A B P A = 注:⑴0(|)P B A ≤≤1;⑵几何解释:⑶可加性:如果B C 和互斥,那么[]()|(|)(|)P B C A P B A P C A =+3.概率 P(B|A)与P(AB)的区别与联系(),,(),.,(),(),()().A A P AB AB P B A B AB P B A AB P AB P B A P AB ΩΩ=Ω=Ω表示在样本空间中计算发生的概率而表示在缩小的样本空间中计算发生的概率用古典概率公式则中样本点数中样本点数中样本点数中样本点数一般来说比大(三)思考与讨论:1:一般地,在已知另一事件A 发生的前提下,事件B 发生的可能性大小不一定再是P(B).即(|)()P B A P B ≠条件的附加意味着对样本空间进行压缩2:对于上面的事件A 和事件B ,P(B|A)与它们的概率有什么关系呢?()()()()(|)()()()()n AB n AB P AB n P B A n A n A P A n Ω===Ω 3:P(B |A)相当于把A看作新的基本事件空间求A∩B发生的概率(四) 典例探讨例1:个家庭中有两个小孩,假定生男生女是等可能的,已经知道这个家庭有一个女孩,,问这时另一个小孩是男孩的概率是多少?解:此题为古典概型,设(男,女)表示第一个是男孩,第二个是女孩.()()()(){Ω=男,男,男,女,女,男,女,女 }{A =(男,女),(女,男)(,女,女) ()()()}{B =男,男,男,女,女,男()()}{A B =男,女,女,男()()321,442P A P A B === ()()()324132P A P B A P A B === 故所求条件概率为23例2 某种动物出生之后活到20岁的概率为0.7,活到25岁的概率为0.56,求现年为20岁的这种动物活到25岁的概率。

高二数学必修1课件:2.2.1 条件概率

高二数学必修1课件:2.2.1 条件概率

问题探究
若事件A1,A2,…,An两两之间相互 独立,则P(A1A2…An)等于什么?如何证明?
P(A1A2…An)=P(A1)P(A2)…P(An)
第二十三页,编辑于星期一:一点 分。
典例讲评
例1 某商场推出二次开奖活动,凡购买 一定价值的商品可以获得一张奖券,每张 奖券可以分别参加两次抽奖方式相同的兑 奖活动,如果两次兑奖活动的中奖概率都 是0.05,求两次抽奖中下列事件的概率. (1)两次都中奖;
第十一页,编辑于星期一:一点 分。
课堂小结
3.互斥事件的并事件的条件概率性质, 类似于互斥事件的概率加法公式,并可 以推广到多个互斥事件的并事件的条件 概率.
第十二页,编辑于星期一:一点 分。
2.2 二项分布及其应用 2.2.2 事件的相互独立性
第十三页,编辑于星期一:一点 分。
复习回顾
1.条件概率P(B|A)的含义与计算公式 分别是什么?
课堂小结
2.公式P(AB)=P(A)P(B)可以理解为: 相互独立事件同时发生的概率,等于它 们的概率之积.如果事件A与B不相互独 立,那么事件A与B同时发生的概率应 利用条件概率求解.
第二十七页,编辑于星期一:一点 分。
课堂小结
3.两个事件互斥与两个事件相互独立是 完全不同的两个概念,若事件A与B互斥, 则P(A∪B)=P(A)+P(B),这是和事件的 加法公式;若事件A与B相互独立,则 P(AB)=P(A)P(B),这是积事件的乘法公 式.
第六页,编辑于星期一:一点 分。
概念生成
结合条件概率的定义,如何推导 P[(B∪C)|A]与P(B|A),P(C|A)的关系?
P[(B∪C)|A]=P(B|A)+P(C|A)
第七页,编辑于星期一:一点 分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)比较(2)中结果与P(B)的大小及三者概率之 间关系
基本概念
3.概率 P(B|A)与P(AB)的区别与联系
P ( AB ) 表示在样本空间 中 , 计算 AB 发生
A
的概率 , 而 P ( B A ) 表示在缩小的样本空间 计算 B 发生的概率 P (B A ) P ( AB ) .用古典概率公式 , ,则
2.条件概率计算公式:
注 :⑴ 0 ≤ P (B | A) ≤ 1 ; ⑵几何解释: ⑶可加性: 如 果 B和 C 互 斥 ,
P( A | B )
P ( AB ) P( A )

B
A
那 么 P ( B C ) | A P ( B | A ) P (C | A )
引例:
掷红、蓝两颗骰子。 设事件A=“蓝色骰子的点数为3或6” 事件B=“两颗骰子点数之和大于8” 求(1)P(A),P(B),P(AB) (2)在“事件A已发生”的附加条件下事件B发 生 的概率?
2.事件A与B都发生的事件叫做A与B的积事件, 记为 A B (或 A B );
3.若 A B 为不可能事件,则说事件A与B互斥.
探究:
三张奖券中只有一张能中奖,现分别由三名同学 无放回的抽取,问最后一名同学抽到中奖奖券的概率 是否比前两名同学小。
思考1?
如果已经知道第一名同学没有抽到中奖奖券,那 么最后一名同学抽到中奖奖券的概率又是多少?
70 100 95 100
0 .7 3 6 8
B
5
70
95
A
n( AB ) P (B | A) n( AB ) n( A) n ( ) n( A) n ( ) P ( AB ) P ( A)
P(B |A)相当于把A看作新的 基本事件空间求A∩B发生的 概率

B
A
基本概念
1.条件概率
对任意事件A和事件B,在已知事件A发生的 条件下事件B发生的条件概率”,叫做条件概率。 记作P(B |A).
解:即事件 A 已发生,求事件 B 的概率 也就是求:P(B|A) A B 都发生,但样本空 间缩小到只包含A的样本点 1 5 A n( AB ) 2 3 2 P (B | A)
n( A) 3
B
4,6
3.
设 100 件产品中有 70 件一等品,25 件二等品,规 定一、二等品为合格品.从中任取1 件,求 (1) 取得一 等品的概率;(2) 已知取得的是合格品,求它是一等品 的概率. 解 设B表示取得一等品,A表示取得合格品,则
练习
抛掷两颗均匀的骰子,已知第一颗骰子掷
出6点,问:颗均匀的骰子,已知点数不同,求至少
有一个是6点的概率?
2 考虑恰有两个小孩的家庭.(1)若已知某一家有
一个女孩,求这家另一个是男孩的概率;(2)若已 知某家第一个是男孩,求这家有两个男孩(相当于第 二个也是男孩)的概率.(假定生男生女为等可能)
中,
AB 中样本点数
A
中样本点数
AB 中样本点数 中样本点数
一般来说 , P ( B A ) 比 P ( AB ) 大 .
小试牛刀:
1在6道题中有4道理科题和2道文科题,如果不放回
的依次抽取2道题 (1)第一次抽到理科题的概率 (2)第一次与第二次都抽到理科题的概率 (3)第一次抽到理科题的条件下,第二次抽到理科 题的概率.
高二数学 选修2-3
2.2.1条件概率(一)
复习引入:
我们知道求事件的概率有加法公式: 若事件A与B互斥,则. P( A B) P ( A) P ( B) 那么怎么求A与B的积事件AB呢? 注: 1.事件A与B至少有一个发生的事件叫做A与B的 和事件,记为 A B (或 A B );
70 100 0 .7
P (1)因为100 件产品中有 70 件一等品, ( B )
(2)方法1: 因为95 件合格品中有 70 件一等品,所以
B A AB B 70 P (B A) 0 .7 3 6 8 95
方法2:
P (B A)

P( AB ) P ( A)

已知第一名同学的抽奖结果为什么会影响最 后一名同学抽到中奖奖券的概率呢? 一般地,在已知另一事件A发生的前提下,事件B发 生的可能性大小不一定再是P(B).即 P ( B | A ) P ( B ) 条件的附加意味着对样本空间进行压缩.
思考2?
对于上面的事件A和事件B,P(B|A)与它们的概 率有什么关系呢?
1
3 设P(A|B)=P(B|A)=
,P(A)= ,求P(B).
2
1
3
4
盒中有球如表. 任取一球 玻璃 红 蓝 2 4 木质 3 7 总计 5 11
总计
6
10
16
若已知取得是蓝球,问该球是玻璃球的概率.
变式 :若已知取得是玻璃球,求取得是篮球的概率.
1.某种动物出生之后活到20岁的概率为0.7, 活到25岁的概率为0.56,求现年为20岁的这种 动物活到25岁的概率。 解 设A表示“活到20岁”(即≥20),B表示 “活到25岁” (即≥25) 则 P ( A ) 0.7, P ( B ) 0.56
由 于 B A故 A B B,
所求概率为
P ( B A) P( AB) P ( A) P(B) P ( A) 0 .8

0.56
0.7
B
5
A
2.抛掷一颗骰子,观察出现的点数 B={出现的点数是奇数}={1,3,5} A={出现的点数不超过3}={1,2,3}
若已知出现的点数不超过3,求出现的点数是奇数 的概率
相关文档
最新文档