应用计量经济学 第4章
计量经济学简答题四

计量经济学简答题四第一章绪论(一)基本知识类题型1-1.什么是计量经济学?1—2.简述当代计量经济学发展的动向.1-3.计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1—5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1—10.试分别举出五个时间序列数据和横截面数据并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念并举例说明两者之间的联系与区别。
1-12.模型的检验包括几个方面?其具体含义是什么?1—13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1—15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题?1—16.经济数据在计量经济分析中的作用是什么?1—20.模型参数对模型有什么意义?习题参考第一章绪论1-1.答:计量经济学是经济学的一个分支学科是以揭示经济活动中客观存在的数量关系为内容的分支学科是由经济学、统计学和数学三者结合而成的交叉学科。
1-2.答:计量经济学自20年代末、30年代初形成以来无论在技术方法还是在应用方面发展都十分迅速尤其是经过50年代的发展阶段和60年代的扩张阶段使其在经济学科占据重要的地位主要表现在:①在西方大多数大学和学院中计量经济学的讲授已成为经济学课程表中有权威的一部分;②从1969~2003年诺贝尔经济学奖的XX位获奖者中有XX位是与研究和应用计量经济学有关;著名经济学家、诺贝尔经济学奖获得者萨缪尔森甚至说:“第二次世界大战后的经济学是计量经济学的时代”.③计量经济学方法与其他经济数学方法结合应用得到发展;④计量经济学方法从主要用于经济预测转向经济理论假设和政策假设的检验;⑤计量经济学模型的应用从传统的领域转向新的领域如货币、工资、就业、福利、国际贸易等;⑥计量经济学模型的规模不再是水平高低的衡量标准人们更喜欢建立一些简单的模型从总量上、趋势上说明经济现象.1—3.答:计量经济学方法揭示经济活动中各个因素之间的定量关系用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系用确定性的数学方程加以描述。
4.1 多重共线性(计量经济学)

放宽基本假定的模型
说明
• 经典多元线性模型在满足若干基本假定的条件下, 应用普通最小二乘法得到了无偏、有效且一致的 参数估计量。
• 在实际的计量经济学问题中,完全满足这些基本 假定的情况并不多见。不满足基本假定的情况, 称为基本假定违背。
• 对截面数据模型来说,违背基本假定的情形主要 包括:
•逐步回归法(Stepwise forward Regression)
– 以Y为被解释变量,逐个引入解释变量,构成回归 模型,进行模型估计。
– 根据拟合优度的变化决定新引入的变量是否独立。 • 如果拟合优度变化显著,则说明新引入的变量是 一个独立解释变量;
• 如果拟合优度变化很不显著,则说明新引入的变 量与其它变量之间存在共线性关系。
§4.1 多重共线性 Multicollinearity
一、多重共线性 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例
一、多重共线性的概念
1、多重共线性
Yi 0 1Xi1 2 Xi2 k Xik i i 1, 2, , n
实际上:正态性假设的违背
• 李子奈(2011):计量经济学模型方法论 – 当存在模型关系误差时,如果解释变量是随机的,随 机误差项的正态性将得不到保证。 – 当模型遗漏了显著的变量,如果遗漏的变量是非正态 的随机变量,随机误差项将不具有正态性。 – 如果待估计的模型是原模型经过函数变换得到的,随 机误差项将不再服从正态分布。 – 当模型存在被解释变量的观测误差,如果观测误差相 对于随机误差项的标准差特别大、样本长度又特别小, 随机误差项的正态性假设会导致显著性水平产生一定 程度的扭曲。 – 当模型存在解释变量观测误差时,一般情况下,随机 误差项的正态性假设都是不能成立的;只有在回归函 数是线性的,且观测误差分布是正态的特殊情形下, 随机误差项的正态性才成立。
计量经济学的统计检验

统计检验
区间估计
• ������2
•R • 调整���ത���2
拟合优度
显著性检验
• 方程的显著性检验 • 参数的显著性检验
拟合优度
拟合优度(Goodness of Fit)是指回归直线对观测值的拟合程度。 度量拟合优度的统计量是可决系数(亦称判定系数)������2。 拟合优度是样本回归线对数据的拟合有多么好的一个度量。 ������2是双变量情形下的表示,������2是多变量情况下的表示。 维恩图: (a) ������2=0 (f) ������2=1
如例子中一样,置信水平一般用百分比表示,因此置信水平0.95 上的置信区间也可以表达为:95%置信区间。置信区间的两端被 称为置信极限。对一个给定情形的估计来说,置信水平越高, 所对应的置信区间就会越大。
缩小置信区间
由于置信区间一定程度地给出了样本参数估计值与总体参数真 值的“接近”程度,因此置信区间越小越好。 要缩小置信区间,需 1. 增大样本容量n,因为在同样的样本容量下,n越大,t分布表
k
1)
F与���ത���2同方向变化,���ത���2=0时,F=0,F越大,���ത���2越大,���ത���2=1时,F为 无穷大。
F检验是检验回归方程总显著性的,也是检验���ത���2的显著性的。
➢通过F值的取值范围算出���ത���2的取值范围,与实值比较,满足取值范 围说明模型在该置信水平下成立。
������2
������2 公式
������2 性质
R2 =
ESS TSS
= (Y^ i - Y)2 (Yi - Y)2
=
y^i2 yi2
R 2 ESS 1 RSS
TSS
计量经济学复习知识点重点难点

计量经济学复习知识点重点难点计量经济学知识点第一章导论1、计量经济学的研究步骤:模型设定、估计参数、模型检验、模型应用。
2、计量经济学是统计学、经济学和数学的结合。
3、计量经济学作为经济学的一门独立学科被正式确立的标志:1930年12月国际计量经济学会的成立。
4、计量经济学是经济学的一个分支学科。
第二章简单线性回归模型1、在总体回归函数中引进随机扰动项的原因:①作为未知影响因素的代表;②作为无法取得数据的已知因素的代表;③作为众多细小影响因素的综合代表;④模型的设定误差;⑤变量的观测误差;⑥经济现象的内在随机性。
2、简单线性回归模型的基本假定:①零均值假定;②同方差假定;③随机扰动项和解释变量不相关假定;④无自相关假定;⑤正态性假定。
3、OLS回归线的性质:①样本回归线通过样本均值;②估计值的均值等于实际值的均值;③剩余项ei的均值为零;④被解释变量的估计值与剩余项不相关;⑤解释变量与剩余项不相关。
4、参数估计量的评价标准:无偏性、有效性、一致性。
5、OLS估计量的统计特征:线性特性、无偏性、有效性。
6、可决系数R2的特点:①可决系数是非负的统计量;②可决系数的取值范围为[0,1];③可决系数是样本观测值的函数,可决系数是随抽样而变动的随机变量。
第三章多元线性回归模型1、多元线性回归模型的古典假定:①零均值假定;②同方差和无自相关假定;③随机扰动项和解释变量不相关假定;④无多重共线性假定;⑤正态性假定。
2、估计多元线性回归模型参数的方法:最小二乘估计、极大似然估计、矩估计、广义矩估计。
3、参数最小二乘估计的性质:线性性质、无偏性、有效性。
4、可决系数必定非负,但是根据公式计算的修正的可决系数可能为负值,这时规定为0。
5、可决系数只是对模型拟合优度的度量,可决系数越大,只是说明列入模型中的解释变量对被解释变量的联合影响程度越大,并非说明模型中各个解释变量对被解释变量的影响程度也大。
6、当R2=0时,F=0;当R2越大时,F值也越大;当R2=1时,F→∞。
计量经济学讲义

计量经济学讲义第一部分:引言计量经济学是研究经济现象的量化方法,它结合了统计学和经济学原理,旨在提供对经济现象进行定量分析的工具和技术。
本讲义将介绍计量经济学的基本概念和方法,帮助读者理解和应用计量经济学的基本原理。
第二部分:经济数据和计量经济学模型1. 经济数据的类型- 我们将介绍经济数据的两种主要类型:时间序列数据和截面数据。
时间序列数据是在一段时间内收集的数据,而截面数据是在同一时间点上收集的数据。
2. 计量经济学模型- 我们将讨论计量经济学模型的基本原理和应用,例如最小二乘法和线性回归模型。
这些模型可以帮助我们分析经济数据之间的关系,并进行预测和政策评估。
第三部分:经济数据的描述性统计分析1. 描述性统计分析的概念- 我们将介绍描述性统计分析的基本概念和方法,包括中心趋势测量、离散度测量和分布形态测量。
这些方法可以帮助我们理解和总结经济数据的基本特征。
2. 经济数据的描述性统计分析实例- 我们将通过实例演示如何使用描述性统计分析方法来分析和解释经济数据。
例如,我们可以使用均值和方差来描述一个国家的经济增长和收入分配。
第四部分:计量经济学的统计推断1. 统计推断的概念- 我们将讨论统计推断的基本概念和方法,包括假设检验和置信区间。
这些方法可以帮助我们从样本数据中推断总体参数,并评估推断的精度和可靠性。
2. 统计推断的实例- 我们将通过实例演示如何使用统计推断方法来研究和解释经济现象。
例如,我们可以使用假设检验来判断一个政策措施对经济增长的影响。
第五部分:计量经济学的回归分析1. 单变量线性回归模型- 我们将介绍单变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析一个因变量和一个自变量之间的关系,并进行预测和政策评估。
2. 多变量线性回归模型- 我们将讨论多变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析多个自变量对一个因变量的影响,并进行政策评估和变量选择。
第六部分:计量经济学的时间序列分析1. 时间序列模型的基本概念- 我们将介绍时间序列模型的基本概念和方法,包括自回归模型和移动平均模型。
计量经济学重点知识整理

计量经济学重点知识整理1一般性定义计量经济学是以经济理论和经济数据的事实为依据,运用数学和统计学的方法,通过建立数学模型来研究经济数量关系和规律的一门经济学科。
研究的主体〔动身点、回宿、核心〕:经济现象及数量变化规律研究的工具〔手段〕:模型数学和统计方法必须明确:方法手段要服从研究对象的实质特征〔与数学不同〕,方法是为经济咨询题效劳2注重:计量经济研究的三个方面理论:即讲明所研究对象经济行为的经济理论——计量经济研究的根底数据:对所研究对象经济行为瞧测所得到的信息——计量经济研究的原料或依据方法:模型的方法与估量、检验、分析的方法——计量经济研究的工具与手段三者缺一不可3计量经济学的学科类型●理论计量经济学研究经济计量的理论和方法●应用计量经济学:应用计量经济方法研究某些领域的具体经济咨询题4区不:●经济理论重在定性分析,并不对经济关系提供数量上的具体度量●计量经济学对经济关系要作出定量的估量,对经济理论提出经验的内容5计量经济学与经济统计学的关系联系:●经济统计侧重于对社会经济现象的描述性计量●经济统计提供的数据是计量经济学据以估量参数、验证经济理论的全然依据●经济现象不能作实验,只能被动地瞧测客瞧经济现象变动的既成事实,只能依靠于经济统计数据6计量经济学与数理统计学的关系联系:●数理统计学是计量经济学的方法论根底区不:●数理统计学是在标准假定条件下抽象地研究一般的随机变量的统计规律性;●计量经济学是从经济模型动身,研究模型参数的估量和推断,参数有特定的经济意义,标准假定条件经常不能满足,需要建立一些专门的经济计量方法3、计量经济学的特点:计量经济学的一个重要特点是:它自身并没有固定的经济理论,而是依据其它经济理论,应用计量经济方法将这些理论数量化。
4、计量经济学什么缘故是一门单独的学科计量经济学是经济理论、数理经济、经济统计与数理统计的混合物。
1、经济理论所作的陈述或假讲大多数是定性性质的,计量经济学对大多数经济理论给予经验内容。
经济计量学

学的发展 。
14
第一章
经典经济计量学和非经典经济计量学
经典经济计量学(Classical Econometrics)一般指20世 纪70年代以前发展并广泛应用的经济计量学。
贝尔经济学奖得主挪威经济学家R.Frisch(佛里希 给定X和Z值,预测Y值
城市劳动力参与率除受城市失业率的影响之外,还受真实的小时平均工资等因素的影响。
)在1926年模仿“Biometrics”(生物计量学)提 Y = B1+ B2X
(2)利用次级资料数据(统计数据) 假设用失业率(UNR)来度量经济形势,用劳动力参与率(LFPR)来度量劳动力的参与,两数据由政府按时公布,我们依据上面步骤
15
第一章
非经典经济计量学一般指20世纪70年代以来发展的 经济计量学理论、方法及应用模型,也称为现代 经济计量学。
非经典经济计量学主要包括:微观经济计量学、非 参数经济计量学、时间序列经济计量学和动态经 济计量学等。
16
第一章
简·丁伯根——经济 计量学模式建造者 之父
拉格纳·弗里希 (RAGNAR FRISCH) 经济计量学的奠基人
AHE82(美元)
7.78 7.69 7.68 7.79 7.80 7.77 7.81 7.73 7.69 7.64 7.52 7.45 7.41 7.39 7.40 7.40 7.43 7.55 7.75 7.86 7.89 7.99 8.14
28
第一章 表1-1(新) 1980~2007年间城市劳动力参与率(CLFPR)、城市 失业率(CUNR)与真实的小时平均工资(AHE82)资料
计量经济学(庞皓)课后思考题答案

思考题答案第一章绪论思考题1.1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用?答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。
计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。
经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。
我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用。
1.2理论计量经济学和应用计量经济学的区别和联系是什么?答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面。
理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。
所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。
应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。
1.3怎样理解计量经济学与理论经济学、经济统计学的关系?答:1、计量经济学与经济学的关系。
联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善。
区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容。
2、计量经济学与经济统计学的关系。
联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4-10
Figure 4.3 正态分布
4-11
的样本分布
• 古典假定VII已经告诉我们,随机误差项服从一个 (标准正态)概率分布
• 对于β 的估计量
– 不同的样本估计得到的 概率分布称为 的样本分布
• 同样需要考察样本分布的均值、方差、标准误 等统 计性质
4-12
均值的性质
• 一个期待的估计量分析的性质是,它的均值恰好等于待估计参数 的真实值
• 随机误差项必须有一个不变的方差是指,对于不同 的观测值随机误差项的方差不会改变
• 见 Figure 4.2 的图示
4-7
Figure 4.2 随机误差项的方差随着Z的增加 而增大(异方差)
4-8
VI:所有解释变量之间没有线性关系(没有多 重共线性)
• 两个解释变量之间存在完全的线性相关是指ห้องสมุดไป่ตู้
– 他们是完全相同的变量,或 – 其中一个是另一个的倍数,同时/或
• 如果不是,OLS估计方程中,X对Y的解释很可能是来源于 误差项
• 例如:如果误差项与X是正相关的,那么,估计的系数很 有可能比其真实的值要高(高估) • 如果模型遗漏了重要的解释变量,这个假定将被破坏
4-5
IV:误差项之间也不相关(没有序列相关)
• 如果随机误差项之间存在系统性相关性,那么,OLS估计系数的精 确度将要下降 • 在时间序列数据中,这个假定很有可能被破坏:
• 高斯-马尔科夫定理仅需要古典假定 I 到 VI ,无须假定 VII
• 如果加上假定VII,正态性假定,则OLS估计量将有如下的性质:
– 无偏性 – 最小方差 – 一致性 – 正态分布:当随机误差项是正态分布时,估计量也是正态分布的,这使将那 些需要正态分布的不同的统计检验得以应用(将在第5章再次讨论)
4-2
II:随机项均值为零
• 1.2中已经指出,计量学家通常在回归模型中添加随机误差 项
• 其原因是: 包含那些未被模型解释的引起被解释变量变化 的因素 • 不同观测值的随机项的取值是随机决定的 • 见 Figure 4.1 的图示
4-3
Figure 4.1随机项均值为零
4-4
III:所有解释变量都与误差项不相关
4-19
Table 4.1a 约定的符号
4-20
Table 4.1b 约定的称号
4-21
• 正式的说,估计量 参数的真实值 • 可以写为: (4.9) 是 的无偏估计量——样本分布的均值就是
• 相反的,如果估计量样本分布的均值不等于真实的参数,则称估 计量是有偏的。
4-13
方差的性质
• 正如所期望的, 样本分布的期望是真实值,类似的可以期望,样 本分布应当越窄(越精确)越好。
– 收敛到”真实“,但却是高度易变的很可能毫无用处
第4章
古典模型
Slides by Niels-Hugo Blunch Washington and Lee University
古典假设
• • 古典假定必须按顺序获得满足,以使OLS估计量是最优估计量: 7个古典假定分别是: I. 古典模型是线性的,是正确设定的,同时有一个随机项 II. 随机项均值为零 III. 所有解释变量都与误差项不相关 IV. 误差项之间也不相关(没有序列相关) V. 误差项有一个不变的方差(没有异方差) VI. 所有解释变量之间没有线性关系(没有多重共线性) VII. 误差项服从正态分布 (这个假设是可选 的,但通常是指明的)
– 给定古典假定 I 到 VI ,无须假定 VII,在所有线性无偏估计量 中,最小二乘估计量的的方差最小 • 通常说OLS估计量是BLUE的: ―Best (meaning minimum
variance) Linear Unbiased Estimator‖
4-18
高斯-马尔科夫定理与OLS估计量的性质
– 其中一个是另一个加了一个常数
• 例子:
– 同时包含了同一城市年度收入、年度收入税的回归模型
– 因为是在同一城市,收入税的比率是一致的
4-9
VII:误差项服从正态分布
• 即随机误差项的分布是钟形的 (见 Figure 4.3)
• 严格的说,根据高斯-马尔科夫( Gauss-Markov) 定理,这一假定对OLS估计并不是必须的,见本章 4.3 • 这个假定的应用主要是在假设检验中,以判断回归 系数是否满足一些经济上的假定 (见 第5章)
– 某个时期随机项的上升(随机扰动)很有可能引起下一时期随机项的 上升 – 例子:Hurricane Katrina • 如果对于所有的观测值,都有εt+1 与 ε t 相关,此时的随机误差项被称为 序列相关(或自相关),该假定也被破坏 • 第9章中有关于破坏该假定的详细讨论
4-6
V:误差项有一个不变的方差(没有异方差)
4-1
I.古典模型是线性的,是正确设定的,同时有 一个随机项
• 考虑如下的回归模型:
Yi = β0 + β1X1i + β2X2i + ... + βKXKi + εi • 这个模型是:
– 线性的 (对于回归系数) – 同时有一个添加的随机误差项
(4.1)
• 如果假定所有的相关解释变量均被包含在 (4.1) 中,那么, 模型是被正确设定的。
• 其中一种”收窄“样本分布的方法是提高样本容量(当然,也就提高 了自由度)
• 参见 Figures 4.4 与 4.5 的直观解释
4-14
Figure 4.4 的分布
4-15
Figure 4.5 不同值数量 (N) 下, 的样本分布
4-16
标准误的性质
• 估计量的标准误,SE( ),是估计量方差的平方根
• 因此,标准误也同方差一样,受样本容量和其它因素, 类似之前的讨论一样,产生同样的影响
– 例如,样本容量的提高也会降低标准误 – 当然,样本容量越大,估计量的精确度也越高
4-17
高斯-马尔科夫定理与OLS估计量的性质
• 高斯-马尔科夫定理(Gauss-Markov Theorem)的主要内 容: