数学建模飞机加油和商人过河问题
关于商人渡河的数学建模

模型构成
xk~第k次渡河前此岸的商人数 xk, yk=0,1,2,3; yk~第k次渡河前此岸的随从数 k=1,2, sk=(xk , yk)~过程的状态 S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk~第k次渡船上的商人数 uk, vk=0,1,2;
建模示例 商人们怎样安全过河
问题(智力游戏)
随从们密约, 在河的任一岸, 河 一旦随从的人数比商人多,
就杀人越货.
小船(至多2人)
但是乘船渡河的方案由商人决定. 3名商人
商人们怎样才能安全过河?
3名随从
问题分析 多步决策过程
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求~在安全的前提下(两岸的随从数不比商人多),经有 限步使全体人员过河
vk~第k次渡船上的随从数 k=1,2, dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合 sk+1=sk+(-1)kdk ~状态转移律
多步决 策问题
求dkD(k=1,2, n), 使skS按转移律 由s1=(3,3)到达sn+1=(0,0).
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
习题
• 模仿这一案例,作下面一题: 人带着猫、鸡、米过河,船除需要人
划之外,至多能载猫、鸡、米三者之一, 而当人不在场时猫要吃鸡、鸡要吃米。试 设计一安全过河方案,并使渡河次数尽量 地少。
D={(u , v) u+v=1, 2}
模型求解 穷举法 ~ 编程上机
y
图 解
数学建模:研究商人过河问题

数学建模实验一报告实验题目:研究商人过河问题一、实验目的:编写一个程序(可以是C,C++或Mathlab )实现商人安全过河问题。
二、实验环境:Turbo c 2.0、Microsoft Visual C++ 6.0、Matlab 6.0以上 三、实验要求:要求该程序不仅能找出一组安全过河的可行方案,还可以得到所有的安全过河可行方案。
并且该程序具有一定的可扩展性,即不仅可以实现3个商人,3个随从的过河问题。
还应能实现 n 个商人,n 个随从的过河问题以及n 个不同对象且每个对象有m 个元素问题(说明:对于3个商人,3个随从问题分别对应于n=2,m=3)的过河问题。
从而给出课后习题5(n=4,m=1)的全部安全过河方案。
四、实验步骤:第一步:问题分析。
这是一个多步决策过程,涉及到每一次船上的人员以及要考虑此岸和彼岸上剩余的商人数和随从数,在安全的条件下(两岸的随从数不比商人多),经有限步使全体人员过河。
第二步:分析模型的构成。
记第k 次渡河前此岸的商人数为k x ,随从数为k y ,2,1=k ,n y x k k 2,1,=,(具有可扩展性),将)(k k y x ,定义为状态,状态集合成为允许状态集合(S )。
S={2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x )(}记第k 次渡船的商人数为k u ,随从数为k v ,决策为),(k k v u ,安全渡河条件下,决策的集合为允许决策集合。
允许决策集合记作D ,所以D={2,1,0,,21|,=<+<v u v u v u )(|1<u+v<2,u,v=0,1,2},因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船由彼岸驶向此岸,所以状态k s 随决策k d 变化的规律是k k k k d s s )1(1-+=-,此式为状态转移律。
制定安全渡河方案归结为如下的多步决策模型:求决策)2,1(n k D d k =∈,使状态S s k ∈按照转移律,由初始状态)3,3(1=s 经有限n 步到达)0,0(1=+n s第三步:模型求解。
基于商人过河游戏的数学建模-最新教育文档

基于商人过河游戏的数学建模1提出问题文献[1]给出一个智力游戏:“三名商人各带一个随从渡河,一只小船只能容纳二人,由他们自己划行。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
但是如何乘船的大权掌握在商人们手中。
商人怎样才能安全渡河呢?”此类智力问题当然可以通过一番思考,拼凑出一个可行的方案来。
文献[1]中通过图解法给出了解答,但是当商人数与随从数发生变化,船能容纳的人数不是二人时,图解法就会变得繁复而难以解决问题。
因此,将上述游戏改为n名商人各带一个随从过河,船每次至多运p个人,至少要有一个人划船,由他们自己划行。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
但是如何乘船的大权掌握在商人们手中。
商人怎样才能安全渡河的问题。
除此之外,考虑了随着船载人数的增多,以及商人与仆人的对数增多到多少时,会影响商人的安全渡河的问题。
2问题分析由于这个虚拟的游戏已经理想化了,所以不必再作假设。
我们希望能找出这类问题的规律性,建立数学模型,并通过计算机编程进行求解。
安全渡河游戏可以看做是一个多步决策过程,分步优化,船由此岸驶向彼岸或由彼岸驶回此岸的每一步,都要对船上的商人和随从做出决策,在保证商人安全的前提下,在无限步内使全部人员过河。
用状态表示某一岸的人员状况,决策表示船上的人员情况,可以找出状态随决策变化的规律。
问题转化为在状态的允许范围内,确定每一步的决策,最后获取一个全局最优方案的决策方案,达到渡河的目标。
除此以外,我们还要找出,随着船载人数的增加,商人与仆人对数达到多少时,会影响到商人不能安全过河。
这里要对船载人数进行限制,因为船载人数过多时,此智力游戏会变得相当繁复,就会失去作为游戏的本来意义。
3模型构成记第k次渡河前此岸的商人数为,随从数为,,,。
将二维向量定义为过程的状态。
安全渡河条件下的状态集合称为允许状态集合,记作S。
当时,;当时,。
记第k次渡船上的商人数为uk,随从数为vk,将二维向量定义为决策。
商人过河问题数学建模

作业1、2:商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。
乘船渡河的方案由商人决定。
商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。
二、问题分析问题可以看做一个多步决策过程。
每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。
用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。
问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
三.问题假设1. 过河途中不会出现不可抗力的自然因素。
2. 当随从人数大于商人数时,随从们不会改变杀人的计划。
3.船的质量很好,在多次满载的情况下也能正常运作。
4. 随从会听从商人的调度。
四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[ x(k), y(k)]~过程的状态S~允许状态集合S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k), v(k)=0,1,2;v(k)~ 第k次渡船上的随从数k=1,2…..d(k)=( u(k), v(k))~过程的决策 D~允许决策集合D={u,v |u+v=1,2,u,v=0,1,2}状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律求d(k) ∈D(k=1,2,….n),使s(k)∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)数学模型:k+1k S =S +k k D (-1) (1)'4k k x x += (2)'4k k y y += (3)k.k x y ≥ (4)''k k x y ≥ (5)模型分析:由(2)(3)(5)可得44kk x y -≥- 化简得k k x y ≤综合(4)可得k k x y = 和 {}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)还要考虑 {}'(',')|'0,'0,1,2,3,4kk k k k S x y x y === (7) 把(2)(3)带入(7)可得{}(4,4)|40,40,1,2,3,4k k k k k S x y x y =---=-=化简得{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 综合(6)(7)(8)式可得满足条件的情况满足下式{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ==== (9)所以我们知道满足条件的点如上图所示:点移动由{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 到达{}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)时,可以认为完成渡河。
数学建模 商人过河

数学建模课程作业论文题目:对商人过河问题的研究指导教师:黄光辉小组成员:黄志宇(20156260)车辆工程04班牛凯春(20151927)电气工程05班文逸楚(20150382)工商管理02班一、问题重述3名商人带3名随从乘一条小船过河,小船每次只能承载至多两人。
随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。
乘船渡河的方案由商人决定,商人们如何才能安全渡河呢?二、问题分析本题针对商人们能否安全过河问题,需要选择一种合理的过河方案。
对该问题可视为一个多步决策模型,通过对每一次过河的方案的筛选优化,最终得到商人们全部安全过到河对岸的最优决策方案。
对于每一次的过河过程都看成一个随机决策状态量,商人们能够安全到达彼岸或此岸我们可以看成目标决策允许的状态量,通过对允许的状态量的层层筛选,从而得到过河的目标。
三、模型假设1.过河途中不会出现不可抗力的自然因素。
2.当随从人数大于商人数时,随从们不会改变杀人的计划。
3.船的质量很好,在多次满载的情况下也能正常运作。
4.随从会听从商人的调度,所有人都到达河对岸。
四、符号说明第k次渡河前此岸的商人数第k次渡河前此岸的随从数过程的状态向量允许状态集合第k次渡船上的商人数第k次渡船上的随从数决策向量允许决策集合x y 3322110s 1s n +1d 1d 11五、模型建立本题为多步决策模型,每一次过河都是状态量的转移过程。
用二维向量表示过程的状态,其中分别表示对应时刻此岸的商人,仆人数以及船的行进方向,其中则允许状态集合:=又将二维向量定义为决策,则允许的决策合集为:因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船从彼岸驶向此岸,所以状态随决策的变化规律是该式称为状态转移律。
求决策,使,并按照转移律,由经过有限步n 到达状态六、模型求解本模型使用MATLAB 软件编程,通过穷举法获得决策方案如下(完整matlab 程序详见附录):初始状态:可用图片表示为:X0=33状态为:S =3132303111220203010200决策为:D =0201020120112001020102七、模型推广该商人和随从过河模型可以完美解决此类商人过河的决策问题,并且该模型还可推广至解决m个商人和n个随从过河,以及小船的最大载重人数改变时的问题,只需适当地改变相关的语句即可轻松实现模型的转换。
商人过河模型问题的求解

《数学建模实验》课程考试试题----商人安全过河数学建模与求解一.问题提出:4名商人带4名随从乘一条小船过河,小船每次自能承载至多两人。
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.乘船渡河的方案由商人决定,商人们如何才能安全渡河呢二.模型假设:商人和随从都会划船,天气很好,无大风大浪,且船的质量很好,可以保证很多次安全的运载商人和随从。
三.问题分析:商随过河问题可以视为一个多步决策过程,通过多次优化,最后获取一个全局最优的决策方案。
对于每一步,即船由此岸驶向彼岸或由彼岸驶向此岸,都要对船上的人员作出决策,在保证两岸的商人数不少于随从数的前提下,在有限步内使全部人员过河。
用状态变量表示某一岸的人员状况,决策变量表示船上的人员状况,可以找出状态随决策变化的规律,问题转化为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
四.模型构成:k x ~第k 次渡河前此岸的商人数,k y ~第k 次渡河前此岸的随从数 k x , k y =0,1,2,3,4; k =1,2,… …k S =(k x , k y )~过程的状态,S ~ 允许状态集合,S={(x , y )| x =0, y =0,1,2,3,4; x =4 ,y =0,1,2,3,4; x =y =1,2,3} k u ~第k 次渡船上的商人数k v ~第k 次渡船上的随从数k d =(k u , k v )~决策,D={(u , v )| 21≤+≤v u ,k u , k v =0,1,2} ~允许决策集合 k =1,2,… …因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船从彼岸驶向此岸,所以状态k S 随决策k d 的变化规律是1+k S =k S +k )1(-k d ~状态转移律求k d ∈D(k =1,2, …n), 使k S ∈S, 并按转移律由1S =(4,4)到达状态1+n S =(0,0)。
数学建模案例作业
数学建模案例作业作业1 商人过河问题三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行(六个人都会划船)。
随从们密谋,无论何时,一旦随从的人数比商人多,就杀人越货。
但是如何乘船渡河的决定权掌握在商人手中。
商人们怎样才能安全渡河?示意图如下: 随从:商人: 一、状态变量一次决策),(k k k y x S = 3,2,1=k 表示第k 次渡河时,此岸的商人数,随从数. 最初 )3,3(0=S 且为整数)3,0(≤≤k k y x)}0,0(),1,0(),2,0(),3,0(),0,1(),1,1(),2,1(),3,1(),0,2(),1,2(),2,2(),3,2(),0,3(),1,3(),2,3(),3,3{(=S要安全过河,需保证彼岸此岸都安全,及随从数不能大于商人数,所以安全的情况有10种,即)}0,0(),1,0(),2,0(),3,0(),1,1(),2,2(),0,3(),1,3(),2,3(),3,3{(=S ② 二、决策变量设),(k k k v u d =2,0(≤≤k k v u 且)21≤+≤k k v u 表示第k 次渡河时,船上的商人数和随从数 )}1,0(),0,1(),2,0(),1,1(),0,2{(=D与状态变量相结合,安全的情况有三种,即 )}1,0(),2,0(),1,1{((=D ③ 三、状态转移方程奇数次(此案到彼岸)k k k d S S -=+1 偶数次(彼岸到此案)k k k d S S +=+1 即k k k k d S S )1(1-+=+ ① 数学建模:由①确定的转移方程下,经过n 次决策,将初始状态转移到最终状态)0,0(=n S . 每次的决策取自③式,每次到达的状态在②中. 图解法:①从右上角移到左下角,每次最多移两步;②奇数次渡河往左下方,偶数次渡河往右下方。
建立平面直角坐标系如图:n S 过河方案:从A 点)3,3(0=S 出发到D 点)0,0(=n S 结束① 小船一次最多能载两人,所以每次最多移动两个格子② 由此岸即彼岸时人员减少,即奇数遍时向左下方行走;有彼岸及此岸时人员增加,即偶数遍时向右上方行走。
多对商人过河数学建模
多对商仆过河问题12对商人过河——(算法中多少对可以改变,此为N=12的时候,稍加修改便可以成为你需要的对数解决方案)摘要本文针对商人安全渡河的问题,采用多步决策的过程建立数学模型,求解得到了在随从没有杀人越货的情况下的渡河方案。
对于本题而言,在12名商人、12名随从、船的最大容量为2的情况下,首先定义了渡河前此岸的状态,并设安全渡河条件下的状态集定义为允许状态集合,接着得到渡河方案的允许决策集合,然后得到状态随渡河方案变化的规律,最后利用 dijkstra算法,并利用Microsoft Visual C++ 6.0软件,编译运行程序得到了一种商人安全渡河的方案。
但是,本文不仅仅是为了拼凑出一个可行方案,而是希望能找到求解这类问题的规律性,并建立数学模型,用以解决更为广泛的问题。
基于此目的,利用了dijkstra算法,得到最短路径的最优解。
但同时由于该算法遍历计算的节点很多,所以效率低,而且当有多个最短距离时,不能够将所有符合条件的情况逐一列出。
我们通过对程序的改善,使可以运行比较多的将符合条件的情况列出来。
1 问题重述十二名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行。
在河的任意一岸,一旦随从的人数比商人多,商人就有危险.但是如何乘船渡河的大权掌握在商人们手中。
商人们怎样才能安全渡河呢?同时,推广到M名商人带M名随从又如何?2 问题分析安全渡河问题可以看成一个多步决策过程。
每一步,即船由此岸驶向彼岸或从彼岸驶回此岸,都要对船上的人员(商人随从各几人)作出决策,在保证安全的前提下(两岸的商人数都不比随从数少),在有限步内使人员全部过河。
用状态(变量)表示某一岸的人员状况,决策(变量)表示船上的人员状况,可以找出状态随决策变化的规律。
问题转化为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到渡河的目的。
此类智力问题经过思考,可以拼凑出一个可行方案。
但是,我们现在希望能找到求解这类问题的规律性,并建立数学模型,用以解决更为广泛的问题。
数学建模 商人过河
数学建模商人过河(hjh)
问题
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.
乘船渡河的方案由商人决定.商人们怎样才能安全过河?
分析问题
(1),数据及其关系?(2)如何存储?(3)过程中数据上的操作?
(4)操作过程中需借助什么结构实现?
解答
(1)数据:河两岸的商人数x∈(0,3)和随从人数y∈(0,3)
关系:线性关系
(2)存储:用二维数组来实现。
(3)操作:前进(过河)、后退(返回)
(4)操作过程中需借助栈结构实现
具体分析
此岸商人数与随从人数为C【x】【y】,彼岸商人数与随从人数为B【3-x】【3-y】,C与B数组中x必须大于等于y。
C与B数组中,各个数组中每相邻两个二维数组|x+y|之差不得超过2。
其中过河途中船上人数用数组A表示A【x1】【y1】,返回途中船上人数A【x2】【y2】。
x1,x2,y1,y2=0,1,2。
x1+y1=1或2;y2+x2=1或2。
从此岸来考察,要从最开始的C【3】【3】变到C【0】【0】。
1,C【3】【3】→C【3】【1】,C【3】【1】→C【3】【2】;
2,C【3】【2】→C【3】【0】,C【3】【0】→C【3】【1】;3,C【3】【1】→C【1】【1】,C【1】【1】→C【2】【2】;4,C【2】【2】→C【0】【2】,C【0】【2】→C【0】【3】;5,C【0】【3】→C【0】【1】,C【0】【1】→C【0】【2】;6,C【0】【2】→C【0】【0】。
操作过程中需借助栈结构实现,具体如下图所示:
此岸人数已经全部转移到彼岸,任务圆满完成,商人们安全过河。
建模作业
一、商人过河问题 商人与随从人数增加或小船容量加大;考虑 4 名商人各带一随从的情况。
允许状态点如图红色标记所示,sk+1 = sk + ( − 1) dk 二、飞机加油问题dk = (uk ,vk )
1 1 8 4
8 3 4
5
8
地球为一圆体,现将其平均分为 8 份,如上图所示。 已知每架飞机加满油只能绕地球飞半周,飞机之间可以相互加油。 假设飞机加满油油量为 1。 1、 有三架飞机同时从同一出发点,设飞行方向为逆时针,编号为 1,2,3,编号为 1 的飞 机可以绕地球飞一周。 2、 飞到 1/8 圆处时,三架飞机均消耗油量 1/4,此时,3 号飞机分别给 1,2 号飞机各加 1/4 油,3 号飞机正好剩 1/4 油,可以保证其飞回原点,1,2 号飞机油箱加满。 3、 到 1/4 处,2 号飞机将 1/4 油加给 1 号飞机,2 号飞机剩 1/2 油,恰能飞回原点,此 时 1 号飞机油箱加满。 4、 1 号飞机飞到 1/2 处时, 4 号飞机从原点逆时针方向起飞, 与 1 号飞机在 3/4 处相遇。 4 号飞机加 1/4 油给 1 号飞机,此时 1,4 号飞机均剩油 1/4,此时 5 号飞机从原点沿 逆时针方向起飞,5 号飞机与 1,4 号飞机在 7/8 处相遇,5 号飞机分别给 1,4 号飞机 加 1/4 油,此时 1,4,5 号飞机均有 1/4 油,正好一起飞回原点,保证了 1 号飞机绕地 球飞行一周。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设飞机转向和加油都是瞬间的。
如图,共需要六架飞机,六架飞机的编号分别为 ①、②、③、④、⑤、⑥ , 每架飞机油箱都都能装V L 油,V L 油能供其绕地球飞半圈。
先让①、②飞机同步逆时针飞行,飞至B 处时,②飞机给①飞机V/3 L 油,然后②飞机返回,此时③、④飞机沿顺时针方向开始飞行,飞至D 点时④飞机给③飞机V/3 L 油,然后④飞机掉头返回,④飞机恰能返回;①、③飞机同时到达C 点,此时③号掉头,③给①V/3 L 油,而③也恰好剩 V/3 L 油,与①飞机一起逆时针飞行;与此同时⑤、⑥飞机从A 出发顺时针飞行,飞至D 点时与①、③相遇,然后⑤、⑥掉头,⑤、⑥分别给①、③ V/3 L 油,与①、③一起恰能飞回A 点,①飞机完成绕地球一周。
600
600
600
A
B ① ②
C ① ③
D ③ ④
⑤ ⑥
① ③
商人过河问题
问题分析
商人过河问题可以看成一个多布决策的过程。
每一步决策都必须满足两岸的随从数不比商人多,经有限步使全体人员过河。
用允许状态量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。
问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。
模型构成
记第k次渡河前此岸的商人数为x k,,随从数位y k,k=1,2,3,4……,x k,y k=0,1,2,3,4.将二维向量s k=( x k,y k)定义为状态.安全渡河条件下的状态集合称为允许状态集合,记为S
S={(x , y) | x=0, y=0,1,2,3,4; x=4, y=0,1,2,3,4; x=y=1,2,3}
此时,S对此岸和彼岸都是安全的.
记第k次渡船上的商人数位u k,随从数为v k,将二维向量d k=(u k, v k)定义为决策,允许决策集合记作D由小船的容量可知
D={(u , v) u+v=1, 2}
因为k为奇数是船从此案驶向彼岸,k为偶数时船从彼案驶向此岸,所以
状态sk因决策dk而变化的规律为:
s k+1=s k+(-1)k d k;
这就是本题的状态转移方程。
也表明了本问题的状态递归关系。
这样,制定安全渡河方案可归结为如下的问题:
求dk在D是范围内,使得sk在S的范围内按照状态转移方程,有初始状态s1=(4,4)经有限步n到达状态s n+1=(0,0)
模型求解
在xoy坐标轴中画出如下图,图中每个坐标点表示状态s k=( x k,y k),允许是状态集合在图中表示如下
Y
0 X
允许决策d k是沿方格线移动1格或2格,k为奇数时向左.下方移动,k为偶数时向右.上方
移动,要确定一系列的d k,使初始状态(4,4)最终变为(0,0),无论怎样走都必须经过中间点(2,2),然后奇数次到达Y轴, 而无论怎么变化人数都也只能到达此点后不能继续走下去,只能循环走,达不到最终的目标(0,0).
S0=(4,4) S1=(3,3) S2=(4,3) S3=(4,1) S4=(4,2) S5=(4,0) S6=(4,1) S1=(4,2) S5=(2,2) S6=(3,3)
由流程图看出,最后陷入循环,达不到(0,0).。