商人过河问题数学建模修订稿

合集下载

数学建模:研究商人过河问题

数学建模:研究商人过河问题

数学建模实验一报告实验题目:研究商人过河问题一、实验目的:编写一个程序(可以是C,C++或Mathlab )实现商人安全过河问题。

二、实验环境:Turbo c 2.0、Microsoft Visual C++ 6.0、Matlab 6.0以上 三、实验要求:要求该程序不仅能找出一组安全过河的可行方案,还可以得到所有的安全过河可行方案。

并且该程序具有一定的可扩展性,即不仅可以实现3个商人,3个随从的过河问题。

还应能实现 n 个商人,n 个随从的过河问题以及n 个不同对象且每个对象有m 个元素问题(说明:对于3个商人,3个随从问题分别对应于n=2,m=3)的过河问题。

从而给出课后习题5(n=4,m=1)的全部安全过河方案。

四、实验步骤:第一步:问题分析。

这是一个多步决策过程,涉及到每一次船上的人员以及要考虑此岸和彼岸上剩余的商人数和随从数,在安全的条件下(两岸的随从数不比商人多),经有限步使全体人员过河。

第二步:分析模型的构成。

记第k 次渡河前此岸的商人数为k x ,随从数为k y ,2,1=k ,n y x k k 2,1,=,(具有可扩展性),将)(k k y x ,定义为状态,状态集合成为允许状态集合(S )。

S={2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x )(}记第k 次渡船的商人数为k u ,随从数为k v ,决策为),(k k v u ,安全渡河条件下,决策的集合为允许决策集合。

允许决策集合记作D ,所以D={2,1,0,,21|,=<+<v u v u v u )(|1<u+v<2,u,v=0,1,2},因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船由彼岸驶向此岸,所以状态k s 随决策k d 变化的规律是k k k k d s s )1(1-+=-,此式为状态转移律。

制定安全渡河方案归结为如下的多步决策模型:求决策)2,1(n k D d k =∈,使状态S s k ∈按照转移律,由初始状态)3,3(1=s 经有限n 步到达)0,0(1=+n s第三步:模型求解。

商人过河问题数学建模

商人过河问题数学建模

作业1、2:商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。

随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。

乘船渡河的方案由商人决定。

商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。

二、问题分析问题可以看做一个多步决策过程。

每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。

用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。

问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。

三.问题假设1. 过河途中不会出现不可抗力的自然因素。

2. 当随从人数大于商人数时,随从们不会改变杀人的计划。

3.船的质量很好,在多次满载的情况下也能正常运作。

4. 随从会听从商人的调度。

四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[ x(k), y(k)]~过程的状态S~允许状态集合S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k), v(k)=0,1,2;v(k)~ 第k次渡船上的随从数k=1,2…..d(k)=( u(k), v(k))~过程的决策 D~允许决策集合D={u,v |u+v=1,2,u,v=0,1,2}状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律求d(k) ∈D(k=1,2,….n),使s(k)∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)数学模型:k+1k S =S +k k D (-1) (1)'4k k x x += (2)'4k k y y += (3)k.k x y ≥ (4)''k k x y ≥ (5)模型分析:由(2)(3)(5)可得44kk x y -≥- 化简得k k x y ≤综合(4)可得k k x y = 和 {}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)还要考虑 {}'(',')|'0,'0,1,2,3,4kk k k k S x y x y === (7) 把(2)(3)带入(7)可得{}(4,4)|40,40,1,2,3,4k k k k k S x y x y =---=-=化简得{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 综合(6)(7)(8)式可得满足条件的情况满足下式{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ==== (9)所以我们知道满足条件的点如上图所示:点移动由{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 到达{}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)时,可以认为完成渡河。

商人过河优化模型.docx

商人过河优化模型.docx

承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写):A我们的参赛报名号为(如果赛区设置报名号的话):J2202 __________ 所属学校(请填写完整的全名):江西环境工程职业学院参赛队员(打印并签名):1. ___________________________________2. ___________________________________________3. ___________________________________指导教师或指导教师组负责人(打印并签名):教练组_____________________________日期:2012年8月9日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):商人过河摘要本文针对商人安全渡河的问题,采用多步决策的过程建立数学模型,求解得到了在随从没有杀人越货的情况下的渡河方案。

对于本题而言,在3名商人、3名随从、船的最大容量为2的情况下,首先定义了渡河前此岸的状态,并设安全渡河条件下的状态集定义为允许状态集合,接着得到渡河方案的允许决策集合,然后得到状态随渡河方案变化的规律, 最后利用平而坐标分析法,并利用计算机进行了仿真,得到了一种商人安全渡河的方案。

数学建模 商人过河

数学建模 商人过河

数学建模课程作业论文题目:对商人过河问题的研究指导教师:黄光辉小组成员:黄志宇(20156260)车辆工程04班牛凯春(20151927)电气工程05班文逸楚(20150382)工商管理02班一、问题重述3名商人带3名随从乘一条小船过河,小船每次只能承载至多两人。

随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。

乘船渡河的方案由商人决定,商人们如何才能安全渡河呢?二、问题分析本题针对商人们能否安全过河问题,需要选择一种合理的过河方案。

对该问题可视为一个多步决策模型,通过对每一次过河的方案的筛选优化,最终得到商人们全部安全过到河对岸的最优决策方案。

对于每一次的过河过程都看成一个随机决策状态量,商人们能够安全到达彼岸或此岸我们可以看成目标决策允许的状态量,通过对允许的状态量的层层筛选,从而得到过河的目标。

三、模型假设1.过河途中不会出现不可抗力的自然因素。

2.当随从人数大于商人数时,随从们不会改变杀人的计划。

3.船的质量很好,在多次满载的情况下也能正常运作。

4.随从会听从商人的调度,所有人都到达河对岸。

四、符号说明第k次渡河前此岸的商人数第k次渡河前此岸的随从数过程的状态向量允许状态集合第k次渡船上的商人数第k次渡船上的随从数决策向量允许决策集合x y 3322110s 1s n +1d 1d 11五、模型建立本题为多步决策模型,每一次过河都是状态量的转移过程。

用二维向量表示过程的状态,其中分别表示对应时刻此岸的商人,仆人数以及船的行进方向,其中则允许状态集合:=又将二维向量定义为决策,则允许的决策合集为:因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船从彼岸驶向此岸,所以状态随决策的变化规律是该式称为状态转移律。

求决策,使,并按照转移律,由经过有限步n 到达状态六、模型求解本模型使用MATLAB 软件编程,通过穷举法获得决策方案如下(完整matlab 程序详见附录):初始状态:可用图片表示为:X0=33状态为:S =3132303111220203010200决策为:D =0201020120112001020102七、模型推广该商人和随从过河模型可以完美解决此类商人过河的决策问题,并且该模型还可推广至解决m个商人和n个随从过河,以及小船的最大载重人数改变时的问题,只需适当地改变相关的语句即可轻松实现模型的转换。

数学建模案例作业

数学建模案例作业

数学建模案例作业作业1 商人过河问题三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行(六个人都会划船)。

随从们密谋,无论何时,一旦随从的人数比商人多,就杀人越货。

但是如何乘船渡河的决定权掌握在商人手中。

商人们怎样才能安全渡河?示意图如下: 随从:商人: 一、状态变量一次决策),(k k k y x S = 3,2,1=k 表示第k 次渡河时,此岸的商人数,随从数. 最初 )3,3(0=S 且为整数)3,0(≤≤k k y x)}0,0(),1,0(),2,0(),3,0(),0,1(),1,1(),2,1(),3,1(),0,2(),1,2(),2,2(),3,2(),0,3(),1,3(),2,3(),3,3{(=S要安全过河,需保证彼岸此岸都安全,及随从数不能大于商人数,所以安全的情况有10种,即)}0,0(),1,0(),2,0(),3,0(),1,1(),2,2(),0,3(),1,3(),2,3(),3,3{(=S ② 二、决策变量设),(k k k v u d =2,0(≤≤k k v u 且)21≤+≤k k v u 表示第k 次渡河时,船上的商人数和随从数 )}1,0(),0,1(),2,0(),1,1(),0,2{(=D与状态变量相结合,安全的情况有三种,即 )}1,0(),2,0(),1,1{((=D ③ 三、状态转移方程奇数次(此案到彼岸)k k k d S S -=+1 偶数次(彼岸到此案)k k k d S S +=+1 即k k k k d S S )1(1-+=+ ① 数学建模:由①确定的转移方程下,经过n 次决策,将初始状态转移到最终状态)0,0(=n S . 每次的决策取自③式,每次到达的状态在②中. 图解法:①从右上角移到左下角,每次最多移两步;②奇数次渡河往左下方,偶数次渡河往右下方。

建立平面直角坐标系如图:n S 过河方案:从A 点)3,3(0=S 出发到D 点)0,0(=n S 结束① 小船一次最多能载两人,所以每次最多移动两个格子② 由此岸即彼岸时人员减少,即奇数遍时向左下方行走;有彼岸及此岸时人员增加,即偶数遍时向右上方行走。

日常生活中的数学建模

日常生活中的数学建模

改进模型:
l1: 鱼的有效长度 A1:横截面积
V l1 A 1
l1 l
2 A s 1
W kls
2
W V
数学建模
模型检验
在钓鱼比赛期间收集了有关数据:
第i条鱼 长度li
腰围si
所钓鱼的长度、腰围与重量 cm, g
1 36.83
2 31.75
3

5 32.07
6
7
8 32.07
决策 ~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求 ~ 在商人安全的前提下(两岸的随从数都不比商人多), 经有限步使全体人员过河。
数学建模
模型建立及求解
xk~第k次渡河前此岸的商人数 xk, yk=0,1,2,3; 设 yk~第k次渡河前此岸的随从数 k=1,2, sk=(xk , yk)~过程的状态,S ~允许状态集合 S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
态转方程,由 s1=(3,3)到达 sn+1=(0,0)。
数学建模
模型求解
穷举法 ~ 编程上机 图解法
状态s=(x,y) ~ 16个格点
3 2
y
s1
d1
S={(x , y) x=0, y=0,1,2,3;
x=3, y=0,1,2,3; x=y=1,2} 允许状态 ~ 10个 点
1
d11 0sn+1 1 2 3 x
sk+1=sk+(-1)k dk
~状态转移方程
uk~第k次渡船上的商人数 uk, vk=0,1,2; vk~第k次渡船上的随从数 k=1,2, D={(u , v) u+v=1, 2} ~允许决策集合

数学建模作业(商人过河问题)

数学建模作业(商人过河问题)

数学建模作业(四)——商人过河问题一.问题描述有四名商人各带一名仆人过河,但船最多能载二人,商人已获得仆人的阴谋:在河的任一岸,只要仆人数超过商人数,仆人会将商人杀死并窃取财物且安排如何乘船的权力掌握在商人手中。

试为商人制定一个安全过河的方案。

二.解决方案用递归的源程序如下:开始时商人,强盗所在的河的这边设为0状态,另一边设为1状态(也就是船开始时的一边设为0,当船驶到对岸是设为1状态,在这两个状态时,都必须符合条件)#include <stdlib.h>struct node /*建立一个类似栈的数据结构并且可以浏览每一个数据点*/ {int x;int y;int state;struct node *next;};typedef struct node state;typedef state *link;link PPointer1=NULL;link PPointer2=NULL;int a1,b1;int a2,b2;/*栈中每个数据都分为0,1状态*/void Push(int a,int b,int n){link newnode;newnode=(link)malloc(sizeof(state));newnode-> x=a;newnode-> y=b;newnode-> state=n;newnode-> next=NULL;if(PPointer1==NULL){PPointer1=newnode;PPointer2=newnode;}else{PPointer2-> next=newnode;PPointer2=newnode;}}void Pop()/*弹栈*/{link pointer;if(PPointer1==PPointer2){free(PPointer1);PPointer1=NULL;PPointer2=NULL;}pointer=PPointer1;while(pointer-> next!=PPointer2)pointer=pointer-> next;free(PPointer2);PPointer2=pointer;PPointer2-> next=NULL;}int history(int a,int b,int n) /*比较输入的数据和栈中是否有重复的*/ {link pointer;if(PPointer1==NULL)return 1;else{pointer=PPointer1;while(pointer!=NULL){if(pointer-> x==a&&pointer-> y==b&&pointer-> state==n)return 0;pointer=pointer-> next;}return 1;}}int judge(int a,int b,int c,int d,int n)/*判断这个状态是否可行,其中使用了history函数*/{if(history(a,b,n)==0) return 0;if(a> =0&&b> =0&&a <=3&&b <=3&&c> =0&&d> =0&&c <=3&&d <=3&&a+c==3&&b+d==3){switch(n){case 1:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a==b){Push(a,b,n);return 1;}else return 0;}case 0:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a> =b){Push(a,b,n);return 1;}else return 0;}}}else return 0;}int Duhe(int a,int b,int n)/*递归法解决商人渡河问题,如果这一个状态符合*/ {/*则判断下一个状态,直至问题解决*/ if(a==0&&b==0) return 1;if(n==0)/*判断0状态时,商匪状态是否符合要求*/{if(judge(a-1,b-1,4-a,4-b,1)){if(Duhe(a-1,b-1,1)==1)return 1;}if(judge(a,b-2,3-a,5-b,1)){if(Duhe(a,b-2,1)==1)return 1;}if(judge(a-2,b,5-a,3-b,1)){if(Duhe(a-2,b,1)==1)return 1;if(judge(a-1,b,4-a,3-b,1)){if(Duhe(a-1,b,1)==1)return 1;}if(judge(a,b-1,3-a,4-b,1)){if(Duhe(a,b-1,1)==1)return 1;}else{Pop(0);return 0;}}if(n==1)/*判断0状态时,商匪状态是否符合要求*/{if(judge(a+1,b+1,2-a,2-b,0)){if(Duhe(a+1,b+1,0)==1)return 1;}if(judge(a,b+2,3-a,1-b,0)){if(Duhe(a,b+2,0)==1)return 1;}if(judge(a+2,b,1-a,3-b,0)){if(Duhe(a+2,b,0)==1)return 1;}if(judge(a+1,b,2-a,3-b,0)){if(Duhe(a+1,b,0)==1)return 1;}if(judge(a,b+1,3-a,2-b,0))if(Duhe(a,b+1,0)==1)return 1;}else{Pop(1);return 0;}}return 0;}main(){link pointer;Push(3,3,0);Duhe(3,3,0);pointer=PPointer1;while(pointer!=NULL){printf( "%d,%d---%d\n ",pointer-> x,pointer-> y,pointer-> state);pointer=pointer-> next;}getch();}。

商人怎样安全过河文稿

商人怎样安全过河文稿

案例名称:商人怎样安全过河学科分类:数学数学分支:初等数学模型预备知识:线性代数,解析几何,MATLAB适用对象:本科、专科学生1.问题的背景与问题提出这个案例是一个智力游戏。

3名商人各带1个随从乘船渡河,一只小船只能容纳2人,由他们自己划行。

随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。

但是如何乘船渡河的大权掌握在商人手中。

商人们怎样才能安全渡河呢?2.问题的分析与模型建立:将一个智力游戏转化成数学问题。

商人渡河问题是一个多步决策问题。

首先由学生从玩游戏开始,在纸面上完成渡河过程;然后再由学生实际演绎,在黑板上记录渡河过程。

利用学生的演绎记录结果进行问题的分析与模型的建立。

分析整个操作过程,让模型的建立随着思考的深入自然而然的呈现。

Step1 变量的设置:用有序数对(x,y)表示岸上商人数和随从数,(u,v)表示船上的商人数和随从数,代数思想的自然渗入;Step2 过程的数学化表示:(x2,y2)=(x1,y1)-(u1,v1)(x3,y3)=(x2,y2)+(u2,v2)......(x i+1,y i+1)=(x i,y i)+(-1)i(u i,v i)规律即模型自然呈现。

Step3 模型的优化:引入集合的表示法状态允许集S={(x,y):x=0,y=0,1,2,3;x=3,y=0,1,2,3;x=y=1,2}允许决策集D={((u,v)):1≤u+v≤2,u,v=0,1,2}状态转移律 s k+1=s k+(-1)k d k求决策d k(k=1,2,...,n)使状态s k按照转移律,由初始状态s1=(3,3)经过有限步n到达状态s n+1=(0,0)。

3.模型的求解与结果检验求解方法1:符号操作法求解方法2:图解法(引入坐标系)求解方法3:穷举法编程上机4.模型的评注与应用用这种规格化的方法建立的多步决策模型可以用计算机来求解,从而具有推广的意义。

5.参考文献[1]姜启源.数学模型.4版.北京:高等教育出版社,2011×图1 符号法图2 安全渡河的图解法(1)图3 安全渡河的图解法(2)x3 2 1 0sn +139d11dxs n +1dmatlab上机程序:(1)function s=businessmann=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');if nn>nn=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');endk=1;for i=0:nnn %产生出所有的可能过河的决策for j=0:nnnif (i+j<=nnn) &(i+j>0)d(k,1:3)=[i,j,1]; %1表示从此岸到彼岸d(k+1,1:3)=[-i,-j,-1]; %-1表示从彼岸到此岸k=k+2;endendendk=1;for i=n:-1:0 %产生安全队列for j=nn:-1:0if ((i>=j) & ((n-i)>=(nn-j))) | ((i==0)|(i==n))A(k,1:3)=[i,j,1]; %1表示此岸安全k=k+1;endendend%队列数据结构,第一列表示商人数,第二列表示仆人数,第三列用于记录该结点的上一个结点,第四列表示船的运动方向(1表示此岸往彼岸运动,-1表示从彼岸往此岸运动)sq(1,1)=n;sq(1,2)=nn;sq(1,3)=0;sq(1,4)=1; %初始状态front=1;rear=1; %队列的头尾指针while(front<=rear)x=sq(front,1);y=sq(front,2);flag=0;if (sq(front,4)==1)for v=2:2:size(d,1)i=x+d(v,1);j=y+d(v,2);if (is_save(A,i,j)==1)rear=rear+1;sq(rear,1)=i;sq(rear,2)=j;sq(rear,3)=front;sq(rear,4)=-1;endif (i==0 && j==0)flag=1;endendendif (flag==1)break;endflag=0;if (sq(front,4)==-1)for v=1:2:size(d,1)i=x+d(v,1);j=y+d(v,2);if (is_save(A,i,j)==1) & (sq(sq(front,3),1)~=i | sq(sq(front,3),2)~=j)rear=rear+1;sq(rear,1)=i;sq(rear,2)=j;sq(rear,3)=front;sq(rear,4)=1;endif (i==0 && j==0)flag=1;endendendif (flag==1)break;endfront=front+1;(2)function a=is_save(A,x,y)for i=1:size(A,1)if (x==A(i,1) && y==A(i,2))break;endendif i<size(A,1)a=1;elsea=0;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

商人过河问题数学建模 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-
作业1、2:
商人过河
一、问题重述
问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。

随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。

乘船渡河的方案由商人决定。

商人们怎样才能安全过河?
问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。

二、问题分析
问题可以看做一个多步决策过程。

每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。

用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。

问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。

三.问题假设
1. 过河途中不会出现不可抗力的自然因素。

2. 当随从人数大于商人数时,随从们不会改变杀人的计划。

3.船的质量很好,在多次满载的情况下也能正常运作。

4. 随从会听从商人的调度。

四、模型构成
x(k)~第k次渡河前此岸的商人数 x(k),y(k)=0,1,2,3,4;
y(k)~第k次渡河前此岸的随从数 k=1,2,…..
s(k)=[ x(k), y(k)]~过程的状态 S~允许状态集合
S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3}
u(k)~第k 次渡船上的商人数 u(k), v(k)=0,1,2;
v(k)~ 第k 次渡船上的随从数 k=1,2…..
d(k)=( u(k), v(k))~过程的决策 D~允许决策集合
D={u,vu+v=1,2,u,v=0,1,2}
状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律
求d(k) D(k=1,2,….n),使s(k)
S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)
数学模型:
k+1k S =S +k k D (-1) (1)
'4k k x x += (2)
'4k k y y += (3)
k.k x y ≥ (4)
''k k x y ≥ (5)
模型分析:
由(2)(3)(5)可得
化简得
综合(4)可得
k k x y = 和 {}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)
还要考虑 {}'(',')|'0,'0,1,2,3,4k
k k k k S x y x y === (7) 把(2)(3)带入(7)可得
化简得
{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8)
综合(6)(7)(8)式可得
满足条件的情况满足下式
{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ==== (9)
所以我们知道满足条件的点如上图所示:点移动由
{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 到达
{}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)
时,可以认为完成渡河。

因为移动的格数小于等于2,只有中心点(2,2)到(6)点和(8)点的距离为2,所以中心点(2,2)成为渡河的关键点。

当我们移动到(2,2)点时,就无法进行下去。

故4个商人,4个随从,船容量为2人时,无法安全渡河。

对于问题二,我们可以建立模型为:
k+1k S =S +k k D (-1) (10)
'k k x x M += (11)
'k k y y M += (12)
k.k x y ≥ (13)
''k k x y ≥ (14)
u(k), v(k)=0,1,2,3; (15)
通过类似于问题一的步骤可以知道:坐标上的关键点是(3,3),最多可以五名商人带五名随从过去。

需要确定五名商人带五名随从的方案可行再确定六名商人带六名随从的方案不可行
1、五名商人带五名随从的情况:
(1)首先不可能有三名商人先过河,两名商人一名随从过河,一名商人两名随从过河
(2)三个随从先过河(5,2),回来一个随从(5,3),过去两个随从(5,1)回来一个随从(5,2),再过去三个商人(2,2),回来一个商人一个随从(3,3),再过去三个商人(0,3),回来一个随从(0,4),过去三个随从(0,1),回来一个随从(0,2)再过去两个随从(0,0)
综上可知:五名商人带五名随从,小船可以载三个人可以过河
2、六名商人带六名随从的情况:
(1)首先不可能有三名商人先过河,两名商人一名随从过河,一名商人两名随从过河
(2)三个随从先过河(6,3),回来一个随从(6,4),过去两个随从(6,2)回来一个随从(6,3),过去三个商人(3,3),此时两岸都是(3,3),由坐标法分析知,这是最
接近终点的临界点,但是如果回来的时候一定是回来一个商人和一个随从,如果这一步可行,后面就进行不去
综上所述,六个商人带六个随从,小船载三个人的情况下不能渡河
结合1、2知,当小船最多载三个人的时候,最多五名商人各带一个随从可以过河。

五、模型的检验与评价
由少数人的过河问题推广到了更多数人的过河问题,使得问题变得明了有规律。

六、参考文献
[1]章胤,2014年燕山大学全国大学生数学建模竞赛培训ppt,2014年4月17日。

相关文档
最新文档