活塞压缩机气流脉动数值模拟及实验验证33页word文档

合集下载

压缩机排气脉动与气流流动实验研究

压缩机排气脉动与气流流动实验研究

液压#动与&封/202#年第03期doi:103969/j.iss/0008—08133021.03313压缩机排气脉动与气流流动实验研究李小&,李奇,李金禄Experimental Study on Compressor Exhautt Pulsation and Aic Flow PulsationLI Xiao-sa,LI Qi,+Jin-3(合肥通用机械研究院有限公司压缩机技术国家重点实验室,安徽合肥230031)摘要:脉动喷注噪声是一类重要的噪声源,往复式压缩机和旋转机械的排气噪声均属于脉动喷注噪声。

该文通过设计实验,采集实验数据对析了高压动、与压缩机动的机理和,得出压缩机动的规律和气流流动的,为压机降噪提供实验依据。

从压缩机 动路,为3dB/m$压机率存在一个最大的脉动激率,随着压缩机的转速升高,动先增大小。

压机的脉动大于高压动的脉动值,在高压放流动,随着压大,动动与逐渐接近,最小值为0.47dB$关键词:压缩机;动;减振降噪;流中图分类号:TH138文献标志码:B文章编号:1008-0813(2021)03-046-05收稿日期:2020-03-23作者简介:李小-(1985-),男,安徽毫州人,工程师,硕士,主要压缩机是一种广泛应用于石油化工、船舶、汽车、从事压缩机设计、机械振动控制、研究。

航天等行业的通用机械设备$由于活塞的周期性作梁冲槽液压缸接触SQ1,返回初始位置,以进行下一个1•油箱2.滤油器3.变量液压泵4.电动机5、10.单向阀6•卸荷溢流阀7•调速阀8•三位四通电磁换向阀9•卸荷阀11.驱动液压缸12.下横梁13.冷却器14.冷却器风扇图4改进液压驱动系统原理图为冲槽加工的顺利进行,差动连接的驱动油路使上横梁冲槽液压缸在向下运动高速度$与此同时,在液压缸的驱动下可实现上横梁冲槽液压缸快速的升降,以便于后续冲槽加工效率的提升。

3总结通过对冲槽机液压驱动系统的设计和改进,可实现上横梁冲槽液压缸的升降速度和升降,从而为冲槽机的自动化程度提高的进作用,同可为液力变矩器涡轮和泵轮内、外环的制造提供技术依据,从而大大提高液力变矩器的制造效率。

压缩机数值3活塞压缩机热力模拟资料免费全文阅读

压缩机数值3活塞压缩机热力模拟资料免费全文阅读
压缩机与制冷系统数值分析
第二章 往复活塞压缩机热力过程数值模拟
2.9.2 无限宽平行板之间或同心环间隙内的一维不可压缩粘性层流
For Poiseuille flow by pressure difference velocity distribution
P1 For Couette flow duo to the motion of wall
压缩机与制冷系统数值分析
第二章 往复活塞压缩机热力过程数值模拟
2.8 气缸内的热交换 •由于温度的不同,活塞压缩机气缸内工质与 气缸壁面、活塞表面、缸头表面有着热交换。 •吸气过程气缸向工质的传热会提高工质的T,减小工质的密度,
从而降低Q和ηv。 •膨胀过程气缸向工质的热交换会降低m,降低λv、Q和ηv 。
自由能方法表示的状态方程以无量纲的形式给出:
其中
为比自由能,R为气体常数。工质自由能的无量纲形式被
分成了两部分:理想工质部分 ,实际工质与理想工质的差别部分即余
自由能部分 。
式中变量
为对比温度,
为对比密度。
其中 为临界点的温度和密度。
压缩机与制冷系统数值分析
第二章 往复活塞压缩机热力过程数值模拟
理想工质的无量纲自由能 可以写成:
2) Shiva Prasad, B.G: pp857-863 高转速n,低压比,压缩高密度气体时可忽略传热影响。传热对制冷量的 影响大于通过压缩过程对Ni的影响。
压缩机与制冷系统数值分析
第二章 往复活塞压缩机热力过程数值模拟
2.9 泄漏量的计算 能量方程中的 除包括通过吸气阀、排气阀的吸气、排气流动外,还包括 控制容积内的高压气体/工质及油通过活塞与气缸之间的间隙(活塞环、填 料、吸气阀也排气阀不严密的泄漏)。

压缩机数值分析课件6活塞压缩机热力模拟

压缩机数值分析课件6活塞压缩机热力模拟
其中 T3 、 TN 、 TK 活塞
S (θ ) T3 (θ ) = 211 + 0.3TS + 0.017n0 + 8 ( ε 1) 5 S TN (θ ) = 202 + 0.3TS + 0.031n0 + 15 ( ε 1) TK (θ ) = 215 + 0.3TS + 0.01n0 + 8 ( ε 1)
压缩机与制冷系统数值分析
第二章 往复活塞压缩机热力过程数值模拟
适当变换后,上式改写成
式中θ 表示曲轴转角,
dθ = ω dt
2.流量方程式
ω 为曲轴旋转角速度
压缩机与制冷系统数值分析
第二章 往复活塞压缩机热力过程数值模拟

用压力和比容取代公式中的温度后
气体经节流小孔流入吸气腔与排气腔时,质量流量公式与上同
ps = 98000 Pa pd = 588000 Pa Ts = 285 K n = 500r / min
压缩机与制冷系统数值分析
第二章 往复活塞压缩机热力过程数值模拟
n = 500r / min
实线是计算值 虚线是实测值
ZA 1.5 / 8 型空气压缩机
模拟计算曲线与实测曲线比较图
压缩机与制冷系统数值分析
c)
进气腔压力脉动曲线
d)
排气腔压力脉动曲线
ZA 1.5 / 8 型空气压缩机模拟计算曲线
ps = 98000 Pa pd = 588000 Pa Ts = 285 K n = 500r / min
压缩机与制冷系统数值分析
第二章 往复活塞压缩机热力过程数值模拟
e) 气阀运动规律曲线
f) 气体温度变化曲线
第二章 往复活塞压缩机热力过程数值模拟

压缩机气流脉动分析方法及应用研究现状

压缩机气流脉动分析方法及应用研究现状

压缩机气流脉动分析方法及应用研究现状[摘要]近年来,在整个国民经济不断进步的大背景下,能源化工行业作为国民经济的基础和支柱型产业,也得到了迅猛发展。

压缩机作为能源化工行业中常用的动设备装置,人们对其性能和可靠性的要求也越来越高。

其中容积式压缩机的气流脉动问题是影响压缩机性能、噪声和安全性的主要因素。

有关气流脉动分析方法和理论模型的研究一直以来被广大的研究人员所重视。

本文调研了压缩机气流脉动分析方法及研究现状,并指出了今后重点需关注的研究内容。

[关键词]压缩机;气流脉动;频域分析;数值模拟doi:10.3969/j.issn.1673 - 0194.2016.08.052 [中图分类号]F273;U463 [文献标识码]A [文章编号]1673-0194 (2016)08-00-01概述气流脉动的分析模型主要包括频域和时域两大类,不同的分析模型具有不同的分析对象和局限性。

频域分析法由于其具有相对较高的计算效率,得到了更广泛的应用。

但频域分析方法中的模态展开法在声源计算模型方面的研究还存在一定问题,现有的声源模型存在发散性、压力不均匀性和计算效率低等缺点,导致压缩机气流脉动频域分析的计算结果可靠性不高,因此,有必要研究新的声源模型提高压缩机气流脉动的分析精度。

另一方面,气流脉动引发的噪声问题也是容积式压缩机的主要噪声源。

目前,噪声污染已经与水污染、大气污染、固体废弃物污染共同被看成是世界范围内4 个主要环境问题。

在这种背景下,有效控制容积式压缩机的噪声问题,不仅是满足国家法律法规的基本要求,而且是企业提升产品品质、增强企业自身竞争力的有力手段。

研究压缩机工作过程气流脉动规律需要将压缩机气流脉动理论模型与实际压缩机工作过程的数学模型进行耦合。

近年来,随着计算机技术的不断进步,数值分析的范围得到进一步拓展,各种气流脉动分析方法都得到了一定程度的发展。

从总体上看,根据压缩机气流脉动基本处理方法的不同,主要可从分析域的角度分为频域模型和时域模型两大类。

大型往复式压缩机气流脉动及管道振动研究

大型往复式压缩机气流脉动及管道振动研究

华中科技大学硕士学位论文摘要作为流体压缩及动力输送的通用机械,压缩机一向被视作化工行业的核心设备,其能否安全平稳地运行直接关乎相关企业经济效益。

活塞压缩机进、排气过程带有间断特性,使得进排气管内气流参数呈脉动变化,出现气流脉动现象。

气流脉动极易导致管道振动,从而引发压缩机容积效率变低、功率损耗增加等危害。

因此,研究脉动产生机理及其对管道振动特性产生的影响便具有较强意义。

本文针对阀腔压力脉动与管道振动作了以下研究。

建立了求解阀腔压力脉动的数学模型,综合考虑了压缩机阀腔、阀片运动和管道系统等对气流脉动的影响,将压缩机和管系作为一个动态关联的整体进行研究,使得压缩机工作特性的气流脉动分析更接近实际情况,计算结果精度更高。

根据压缩机工作和阀片运动规律特性的模拟结果,对是否考虑阀腔影响的两种情况,进行对比分析,结果表明,若考虑阀腔影响,阀片撞击升程限制器的速度增加约10%,容易损坏阀片。

然后讨论了阀片升程、弹簧刚度及阀片质量等气阀结构参数对气阀运动规律和缸内压力的影响。

另外,通过阀腔压力脉动模型的求解,获得了进气阀腔的压力变化情况,压力不均匀度为3.49%,在合理范围内。

基于流固耦合模态与气柱固频分析的基本理论,探索了压力、壁厚、内径等参数对所建管道固频的影响情况,并进行了管内气柱模态分析。

基于模态分析结果,对弯管内气体处于非定常状态时管路振动响应问题进行数值分析,同时还研究了脉动流体的频率与幅度等参数对管道响应的影响规律。

研究发现,压力脉动使管道应力出现较大波动(7%),这种较大幅度的交变应力极易破坏管道;在流固耦合作用下,管道基频随压力脉动频率的增大而升高,且当管道基频或气柱固频与气流脉动频率相近(共振)时,管道变形增大为非共振情况的2-3倍。

关键词:大型往复压缩机;气阀运动规律;阀腔压力脉动;管道振动;瞬态分析华中科技大学硕士学位论文AbstractAs a general machine of fluid compression and power delivery, compressor always been regarded as the core equipment of the petrochemical industry. Whether safe and smooth operation is directly related to the economic interests of the related enterprises. The inlet and exhaust process of piston compressor is intermittent, which makes the parameters of the air flow in the inlet and exhaust pipes change periodically, and then the flow pulsation occurs. Airflow pulsation can cause pipeline vibration easily, which leads to lower volumetric efficiency of compressor and the increasing of power loss etc. Therefore, it has great significance to study the mechanism of pulsation and its’ influence on the vibration characteristics of pipeline. In this paper, the pressure pulsation of valve cavity and the vibration of pipeline are studied as follows.First, we established the mathematical model of pressure fluctuation in valve chamber. The influence of valve chamber, valve motion and pipeline system on the flow pulsation are considered synthetically in this model, which makes the compressor and pipe system formed integrally, and this kind of air flow pulsation analysis combined with compressor working characteristics will make the calculation results more accurate and closer to the actual situation.According to the simulation results of compressor work and the motion law of valve plate, we compared and analyzed the influence of with or without valve cavity, the rsults show that if we take into account the valve cavity, the speed of valve plate impact lift limiter is increased by about 10%, and the valve plate is easily damaged. After that, we discussed the influence of valve structure parameters such as valve plate lift, spring stiffness and valve blade mass on valve motion and cylinder pressure. By solving the pressure fluctuation model of the valve cavity, the pressure variation of the inlet valve cavity is obtained, and the pressure inhomogeneity is 3.49, which is within a reasonable range.华中科技大学硕士学位论文Last, we studied the influence of pressure, wall thickness and inner diameter on the natural frequency of the pipeline based on the basic theory of fluid-solid coupling and modal analysis. After the modal analysis of the gas column in the pipe was carried out, based which numerical analysis of the vibration response of the pipe was done when the gas in the bend is in an unsteady state. At the same time, the influence of the frequency and amplitude of the pulsating fluid on the pipeline response is also studied. We found that the pressure pulsation causes the pipeline stress to fluctuate greatly (7%), which is easy to destroy the pipeline, and the fundamental frequency of the pipeline increases with the increase of the pressure pulsation frequency under the action of fluid-solid coupling. When the fundamental frequency of the pipeline or the fixed frequency of the gas column is close to the pulsating frequency of the gas flow (resonance), the deformation of the pipeline increases 2-3 times as much as that of the non-resonance case.Keywords: Large Reciprocating compressor; Motion law of valve; Pressure pulsation of valve chamber; Pipe vibration; Transient analysis华中科技大学硕士学位论文主要符号表h阀片位移 y阀片运动速度 θ曲轴转角 v M阀片质量 ω曲轴转角速度 β 推力系数 p气体压力 s p 进气压力 d p排气压力s A气阀推力面积so p进气阀腔气体初始压力 do p排气阀腔气体初始压力 so ρ 进气阀腔初始气体密度 do ρ排气阀腔初始气体密度 z气阀弹簧个数 K弹簧刚度系数 0H弹簧预压缩量 k气体绝热指数 V气体容积 A α气阀有效通流面积 R气体常数 s T进气温度 d T排气温度 S活塞行程p A活塞底面积 λ曲柄半径与连杆长度比值 0V余隙容积 D气缸直径 1α阀隙流量系数 e α阀座通道流量系数 v A环周长 e A阀座通道面积 1N进气阀个数 2N排气阀个数 Q热量W 功 下标imp 碰撞值 下标reb 反弹值 下标s进气 下标d排气H阀片升程s Φ进气管道质量流量 csΦ流经进气阀气体质量流量 cdΦ流经排气阀气体质量流量 d Φ 排气管道质量流量s ρ进气密度华中科技大学硕士学位论文s L进气管道长度 d L排气管道长度 d ρ排气密度 s V进气阀腔体积d V排气阀腔体积s λ进气管沿程阻力损失系数 d λ排气管沿程阻力损失系数 R C 阀片反弹系数 s K进气管局部阻力系数d K排气管局部阻力系数华中科技大学硕士学位论文目录摘要 (I)Abstract ........................................................................................................... I I 主要符号表 (IV)目录 (VI)1绪论 (1)1.1 课题背景与研究意义 (1)1.2 国内外研究现状 (2)1.3 本文主要工作 (6)2往复式压缩机阀腔压力脉动数学模型 (8)2.1 引言 (8)2.2 压缩机工作过程数学模型 (8)2.3 阀片运动方程 (11)2.4 阀腔压力控制方程 (13)2.5 管内气体流动方程 (15)2.6 阀腔压力脉动数学模型及计算条件 (16)2.7 本章小结 (18)3阀片运动及阀腔压力脉动模拟 (20)3.1 引言 (20)华中科技大学硕士学位论文3.2 阀片运动规律与影响因素分析 (20)3.3 阀腔压力脉动分析 (27)3.4 本章小结 (28)4输气管道流固耦合模态分析及气柱固有频率计算 (29)4.1 引言 (29)4.2 流固耦合基本原理 (29)4.3 管道结构模态分析 (33)4.4 气柱固有频率计算 (41)4.5 本章小结 (44)5管道流固耦合瞬态特性分析 (45)5.1 引言 (45)5.2 弯曲管道流固耦合模型 (45)5.3 数值分析 (47)5.4 结果分析及不同因素影响 (47)5.5 本章小结 (54)6总结与展望 (56)6.1 全文总结 (56)6.2 研究展望 (57)致谢 (58)华中科技大学硕士学位论文参考文献 (59)硕士期间研究成果 (66)华中科技大学硕士学位论文1绪论1.1 课题背景与研究意义作为流体压缩及动力输送的给予者,压缩机一向被视作化工行业的核心设备,压缩机将流体加压加速后使其快速涌向装置的其他部位,其能否安全平稳地运行直接关乎相关企业经济利益。

活塞压缩机气流脉动数值模拟和实验验证

活塞压缩机气流脉动数值模拟和实验验证

活塞压缩机气流脉动数值模拟及实验验证1、绪论1.1 研究背景及意义活塞式压缩机广泛应用于石油、化工、冶金、天然气行业,作为一种重要的气体增压设备,在一些工艺流程中发挥着关键作用,这些设备能否正常运行直接关系到企业的生产能力[1]。

在持续安全生产中威胁最大的是管道振动,而管道振动的最大诱因就是气流脉动。

由于活塞式压缩机吸、排气的非连续性,不可避免使管道内气体压力出现周期性的波动,这就是气流脉动[1,2];活塞式压缩机管道系统都存在一定程度的气流脉动,这种脉动的压力在管道的突变截面、弯头、盲管、阀门等处产生交变的激振力,进而引发振动,工业现场经常出现剧烈的管道振动导致管路焊接处或法兰联接处振断,造成生产事故。

控制管道振动首先应准确掌握管道系统的气流脉动情况,尤其是管道系统中关键节点如气缸连接法兰、弯头、阀门等处的压力脉动幅值。

分析气流脉动的方法主要有两种,一种是平面波动理论,另一种是一维非定常可压缩流体流动理论[3]。

平面波动理论是研究气流脉动现象时最早发展起来的理论,这种方法做了几个方面的重要假定:压力脉动值相对管道气流的平均压力值很小[4,5];气体遵守理想气体的性质;认为管道中气体流速相对声速小到可以忽略不计的程度[6]。

因此波动理论建立气体脉动的控制方程时能做线性化处理,最终得出能求解析解的波动方程。

在符合假定的条件下,波动理论能预测出符合实际的压力脉动幅值。

波动理论作出的假定在数学模型上就决定了它不能完整描述管道内压力波和非稳态流动耦合的复杂现象。

一般认为波动理论对气体与管道壁面摩擦考虑不足,导致其在脉动幅值较大尤其共振状态下计算值偏大。

此外波动理论在实际求解过程中将整个管道元件中的气流参数平均值取作气流参数值进行计算,这就决定了管道内气流参数值是常数而不是随实际状态变化的值,这降低了波动理论的模拟压力脉动的准确度。

非定常可压缩流动理论在建立描述管道内气流脉动现象的控制方程时,没有忽略非线性因素,综合考虑了气体与管道壁面的摩擦问题,实际气体性质的问题[2]。

压缩机数值分析课件3活塞压缩机热力模拟

地反映活塞压缩机的实际运行情况。
多物理场耦合算法优化
03
改进多物理场耦合算法,以更准确地模拟活塞压缩机
的热力学过程。
05
结论与建议
对活塞压缩机热力模拟研究的总结
研究目的达成
本研究通过对活塞压缩机的热力模拟,成功地分析了压缩过程中的温度、压力和流场特性 ,验证了模型的准确性和可靠性。
关键发现
在模拟过程中,我们发现压缩机的热力性能受到多个因素的影响,包括压缩比、冷却效果 和摩擦损失等。这些因素在不同工况下的变化规律,对于优化压缩机性能具有重要意义。
THANK YOU
感谢各位观看
COMSOL Multiphysics
一款基于有限元方法的数值模拟软件,适用于多物理场耦合问题的 求解。
ANSYS Fluent
一款基于有限体积方法的流体动力学模拟软件,适用于流体流动、 传热和化学反应等问题的求解。
MATLAB/Simulink
一款数值计算和系统仿真软件,可用于建立数学模型、进行数值计 算和结果可视化等。
03
活塞压缩机热力模拟的案例分析
案例一:某型号活塞压缩机的热力模拟
总结词
该案例对某型号活塞压缩机的热力性能进行了模拟分析,通过建立数学模型和数值计算 ,得到了压缩机的热力性能参数和温度场分布。
详细描述
首先,对活塞压缩机的结构和工作原理进行了简要介绍。接着,建立了活塞压缩机的数 学模型,包括热力学方程、传热方程和运动方程等。然后,通过数值计算方法,对数学 模型进行求解,得到了压缩机的热力性能参数,如排气温度、冷却效率等。最后,通过
自动优化和调整。
多物理场协同模拟
03
发展多物理场协同模拟技术,以更准确地模拟活塞压缩机的热

活塞式压缩机性能测试实验


• •
经喷嘴节流喷出。气流在喷嘴前后形成压差,测出此压差值和喷嘴前相应温 度,即可由相关公式计算出此压差下流经喷嘴的气体量,即压缩机的排气量。 本实验中喷嘴前后的压差和喷嘴前温度分别通过压差传感器和温度传感器实 时采集,经数据采集卡进行数值转换,由计算机实时处理,显示出压缩机的 排气量。 2.实际示功图的绘制 压缩机示功图的绘制方法有机械式和电子式两种。本实验为电子式自动 测试示功图。压力传感器安装在阀板上,通过阀板上所开的孔与气缸相通, 数据采集卡对压力传感器输出的信号进行采集和转换,经计算机中的程序软 件处理,即可清楚直观地在显示屏上显示出气缸内气体压力随行程的瞬时变 化规律(p 图或p 化规律(p-s图或p-V图),即示功图。从示功图中可以直观地分析压缩机在 一个工作循环中吸气、压缩、排气、膨胀过程的变化情况,也可观察示功图 随排气压力的变化规律。
• 3.实验测试和数据采集 • (1) 第一组数据的采集 • ① 手动适当关小排气量调节主阀门,使压力基本稳定在0.2MPa,通过微 手动适当关小排气量调节主阀门,使压力基本稳定在0.2MPa,通过微 • • • • • •
调阀使压力保持在0.2MPa,待压力稳定后,开始第一组数据的采集和存储。 调阀使压力保持在0.2MPa,待压力稳定后,开始第一组数据的采集和存储。 ② 点击“运行采集”选项,运行系统,就会开始采集数据,并且示功图 点击“运行采集” 在不断的变化,显示了空气压缩机内部压力的变化。 ③ 选定一个比较好的曲线,点击“保存当前数据”选项,保存数据,并 选定一个比较好的曲线,点击“保存当前数据” 为所保存的数据命名(如:0.2MPa存储数据,或02shuji等)。如果想重现所 为所保存的数据命名(如:0.2MPa存储数据,或02shuji等)。如果想重现所 测试的曲线,可点击“打开保存记录” 测试的曲线,可点击“打开保存记录”,点击上次所命名的名字,画面上所 显示的就是当时存下的02shuji1数据曲线。 显示的就是当时存下的02shuji1数据曲线。 (2) 后续各组数据的采集 0.3MPa、0.4MPa、0.5MPa、0.6MPa各组数据的采集方式同上。 0.3MPa、0.4MPa、0.5MPa、0.6MPa各组数据的采集方式同上。 (3) 停止数据采集 采集完所需要的数据后,点击“停止运行” 采集完所需要的数据后,点击“停止运行”停止采集 (注意:不点击“停 注意:不点击“ 止运行”无法退出系统) 止运行”无法退出系统)。

活塞式压缩机结构、运转及性能实验

活塞式压缩机结构、运转及性能实验实验项目性质:综合性所属课程名称:过程流体机械计划学时:4学时一、实验目的及任务1. 实验目的本实验室过程流体机械实验课中的一项综合性实验,包括两部分:活塞式压缩机结构和活塞式压缩机运转性能测定。

实验目的有二:(1)通过观察多种结构的压缩机和拆解一台空气压缩机,把课堂教学与实际应用有机地结合起来,达到获得对实际往复活塞压缩机内外各部件的感性认识的目的。

了解气阀、活塞、十字头、曲柄连杆机构与曲轴箱之间的相对位置,以及他们的形状与作用。

认识气体进出压缩机的途径,压缩机的冷却方式,润滑方法。

掌握各主要零部件的拆装步骤及方法。

(2)通过实验测量一台活塞式压缩机运转性能,进一步理解活塞式压缩机的基本理论,掌握过程流体机械的实验研究方法和手段。

本实验通过测定一台活塞式压缩机的排气量、功率、转速来研究和分析活塞式压缩机的运转性能和影响活塞式压缩机性能的因素,同时观察压缩机气缸内部的工作过程—示功图。

2. 任务(1)观察多种结构的压缩机并拆解一台空气压缩机。

(2)测定在一定转速下和一定工况下,压缩机的排气量Q、指示功率、轴功率Nz并与理论计算值比较;观察示功图。

(3)了解计算机控制的参数采集系统的工作机理(包括信号与采集、运算处理、结果显示及结果打印);二、实验内容及要求1. 活塞式压缩机结构实验a. 实验压缩机压缩机3台:立式单级单作用空压机1台,W型单级单作用空压机1台,L型两级双作用空压机(可动有机玻璃模型机)1台。

b. 压缩机的总体结构及主要零部件介绍工作机构工作机构是实现空气压缩的主要部件。

由气缸、气阀、活塞组件等组成。

气缸呈圆筒形,在气缸盖(及汽缸座)设有若干吸气阀与排气阀。

活塞由曲柄连杆机构带动在气缸中做往复运动。

L型压缩机有两个气缸,通常垂直列为一级缸,水平列为二级缸。

空气吸入一级气缸经过压缩后,进入中间冷却器降温,再进入二级气缸压缩,最后排出到输气管路供使用。

运动机构运动机构由曲轴、连杆、十字头(用于双作用压缩机,对单作用压缩机为连杆)组成,用于传递动力,将曲轴的旋转运动变成往复运动。

活塞式压缩机性能测试实验讲义

活塞式压缩机性能测试实验浙大化机研究所一、 实验目的与要求1. 通过实验对普通压缩机几个主要部件的一般结构及运转维护基本知识有初步了解。

2. 通过测绘示功图和一些数据的测量及整理,联系课堂讲课中有关压缩机的实际工作循环、功率、效率及生产能力等章节,对压缩机的基本性能有进一步的体会。

3. 通过实验中测绘示功图、计算示功图面积、测转速等,初步掌握各种传感器、变频器及转速表等的用法。

4. 通过实验中压缩机各个信号的观测,对计算机采集和处理信号有一个初步的认识。

二、 实验设备装置及流程本实验所用的压缩机是一台单级单列双作用卧式活塞式压缩机。

电动机通过皮带将动力输送到飞轮,飞轮的中心是曲轴,通过曲柄连杆机构将旋转运动转换成往复直线运动。

曲轴箱的润滑是采用“飞溅润滑”法,即靠曲柄连杆机构在润滑油中浸击而溅到各个需要润滑的摩擦面,而汽缸中的润滑是靠油杯滴漏法加入润滑油,因为是双作用压缩机,汽缸有两个吸气阀,在吸气过程中,外界气体由一根两侧公用的吸气管吸入,通过汽缸的进气阀进入汽缸。

同样在排气过程中,气体经汽缸的两个公共的排气阀,通过排气管而进到缓冲罐 (又称储气罐 ),缓冲罐顶上安装有压力表,由此可显示压缩机排气压力。

在压缩机的一侧安装有一个由飞轮带动的齿轮,由此可以测出活塞的行程及止点位置。

低压箱与缓冲罐连接,在低压箱的前端装有喷嘴,在喷嘴前有一个测温点和测压点。

我们通过测定喷嘴前温度、喷嘴前后压差、大气压强、排气压力、吸入气体温度及喷嘴直径等可计算出压缩机的排气量。

三、 实验原理及计算1. P -- V 示功图的测绘及压缩机循环指示功的计算示功图的测绘是由计算机及其测量系统完成的。

压缩机一侧的测量专用齿轮由飞轮带动,并与飞轮同步转动,齿轮上均布有 72个齿,齿旁装有传感器 1,当齿轮运转时,传感器 1会产生一系列脉冲信号。

为了测量活塞的止点位置,在齿轮侧面还贴有一金属小块,并装有相应的脉冲传感器 2,当该金属小块通过传感器 2时,产生一脉冲信号,此时活塞恰好处于外止点位置,即曲柄转角0=α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活塞压缩机气流脉动数值模拟及实验验证1、绪论1.1 研究背景及意义活塞式压缩机广泛应用于石油、化工、冶金、天然气行业,作为一种重要的气体增压设备,在一些工艺流程中发挥着关键作用,这些设备能否正常运行直接关系到企业的生产能力[1]。

在持续安全生产中威胁最大的是管道振动,而管道振动的最大诱因就是气流脉动。

由于活塞式压缩机吸、排气的非连续性,不可避免使管道内气体压力出现周期性的波动,这就是气流脉动[1,2];活塞式压缩机管道系统都存在一定程度的气流脉动,这种脉动的压力在管道的突变截面、弯头、盲管、阀门等处产生交变的激振力,进而引发振动,工业现场经常出现剧烈的管道振动导致管路焊接处或法兰联接处振断,造成生产事故。

控制管道振动首先应准确掌握管道系统的气流脉动情况,尤其是管道系统中关键节点如气缸连接法兰、弯头、阀门等处的压力脉动幅值。

分析气流脉动的方法主要有两种,一种是平面波动理论,另一种是一维非定常可压缩流体流动理论[3]。

平面波动理论是研究气流脉动现象时最早发展起来的理论,这种方法做了几个方面的重要假定:压力脉动值相对管道气流的平均压力值很小[4,5];气体遵守理想气体的性质;认为管道中气体流速相对声速小到可以忽略不计的程度[6]。

因此波动理论建立气体脉动的控制方程时能做线性化处理,最终得出能求解析解的波动方程。

在符合假定的条件下,波动理论能预测出符合实际的压力脉动幅值。

波动理论作出的假定在数学模型上就决定了它不能完整描述管道内压力波和非稳态流动耦合的复杂现象。

一般认为波动理论对气体与管道壁面摩擦考虑不足,导致其在脉动幅值较大尤其共振状态下计算值偏大。

此外波动理论在实际求解过程中将整个管道元件中的气流参数平均值取作气流参数值进行计算,这就决定了管道内气流参数值是常数而不是随实际状态变化的值,这降低了波动理论的模拟压力脉动的准确度。

非定常可压缩流动理论在建立描述管道内气流脉动现象的控制方程时,没有忽略非线性因素,综合考虑了气体与管道壁面的摩擦问题,实际气体性质的问题[2]。

而且多认为非定常可压缩流动理论在摩擦问题上处理的更符合实际,因而在脉动幅值较大的情况下计算值比波动理论更符合实测值。

但是摩擦阻尼能否显著抑制脉动幅值还有待进一步验证,其它影响气流脉动的因素还有哪些?哪一个因素起了重要作用?如何定量分析它们的影响?这些问题目前研究的还不够。

此外,用非定常方法建立的双曲型控制方程组需要用数值方法求解,双曲型方程应用在压力脉动上会有哪些特性,数值求解的特点、如何获得较准确的收敛解,这些问题都有待进一步分析。

1.2 气流脉动研究现状气流脉动的研究是随压缩机工业的建立开始的,工程师很早就认识到这种现象对压缩机管道系统的重要影响,美国西南研究院自20世纪50年代已经展开气流脉动的理论和实验研究[7]。

1962年,Kinsl和Kfrey[8]最早提出经典的平面波动理论,至今仍是气流脉动研究的基础性理论之一[9],波动理论不考虑管道内气流流速和气体实际性质,并忽略非线性因素,最终得出波动方程,从而用声波传播的原理很好的揭示了气流脉动的机理,对加深认识气流脉动的本质有重要意义。

气流脉动研究的两大任务是压力脉动幅值和气柱固有频率的计算,60年代后期有学者开始对压力脉动幅值计算进行初步探索[10,11]。

1970年,日本学者Toru等[12]提出转移系数法,用结构离散化的思想,将通常复杂的管道系统分割成不同的元件,分别计算。

这样处理的优点是易于实现数字计算机编程,因而得到了广泛应用,至今仍是脉动计算的主流方法之一。

70年代初山田荣[13]、野田桂一郎[14]提出刚度矩阵法,克服了转移系数法对分支管路处理繁琐的缺陷。

1973年酒井敏之等[15]提出计算复杂管系气柱固有频率的转移矩阵法,仍然借助结构离散化思想,首先计算每个管道元件的转移矩阵,再进行总装配,最后用计算机求解出各阶气柱固有频率,这种方法同样易于编程计算,因而应用非常广泛。

同年,美国的Sodel教授引入经典的亥姆霍兹共鸣器法,开始了压缩机消声器研究[16]。

以上几种方法都是基于波动理论发展起来的,而波动理论在阻尼因素上作了线性化处理即认为阻尼与速度成正比,当阻尼超出线性范围时,计算值比实际值偏大,因此限制了它的应用范围。

后来有研究人员[17]对波动理论进行改进,认为速度的平方决定摩擦力的大小,使波动理论能计算脉动幅值较大的情况,拓展了它的应用范围。

与此同时,不作简化直接用数值计算手段求解管道内非定常气流流动控制方程组的方法从70年代初开始,1972年Benson[18]总结了数值模拟方法的一些进展,提出可处理管道边界的匀熵特征线法。

自1974年起,在美国普渡大学历届召开的国际压缩机会议,都会讨论气流脉动项目,大大推动了此项研究。

这一年的会议上Singh和Sodel[19]教授共同发表一篇综述,全面总结了压力脉动和气柱固有频率计算的各种方法,制订出衰减压力脉动的评价标准。

同年,Elson[20]首次考虑了气阀阀片运动和管路压力波动的相互影响,为精确模拟压缩机吸、排气口处压力脉动情况打下基础。

随着计算机技术的进步,数值模拟的手段越来越受重视,1976年在普渡大学召开的国际压缩机会议上,Maclaren[21]等基于一维非定常流动理论,提出了较为完善的数学模型,建立的非线性双曲型方程组中考虑了气体与管道壁面的非线性摩擦问题以及管道截面变化的影响,得到与实测波形吻合程度较高的计算结果,验证了一维非定常可压缩流动数学模型应用于气流脉动模拟的可行性;文中对比了特征线法、Lax-Wendroff格式和Leap-Frog格式三种算法的数值计算结果,指出特征线法比后两种算法计算精度低,而且更容易衰减压力波的高频成分,但也指出特征线法是计算边界节点信息必不可缺的方法,文中还首次采用非匀熵特征线法计算边界节点,精度比匀熵特征线法高,该文对数值模拟气流脉动有巨大的指导意义。

此后,以Sodel[22]、Singh[23]为代表的研究人员在前人研究成果的基础上进一步取得进展,不断完善气流脉动的数学模型,将已经取得的成果推广到结构更复杂的多气缸大型压缩机上。

随着理论的不断成熟,20世纪80年代以后工程界侧重控制技术的研究[24-27],并逐步形成了在石化、天然气工业界广泛认可的API618标准[28],该标准由美国石油协会联合会员单位共同制订,详细规定了石化与天然气行业用压缩机气流压力脉动幅值上限和管道振幅允许值,并约定了分析气流脉动和管道振动的三种方法。

此标准的广泛认可也使压缩机制造商和用户越来越重视气流脉动问题,并积极开发控制技术。

美国西南研究院自2007年起,展开以声学衰减器为突破点的新一代压力脉动控制技术[29-31],目前已经取得阶段性的成果。

国内是西安交通大学的党锡淇和陈守五教授等人最早发起气流脉动的研究。

从1974年开始着手,他们借鉴了国外转移矩阵法、转移系数法和刚度矩阵法的研究成果,并进一步发展:推导出各种典型管道元件的转移矩阵[32],在转移系数法中引入线性摩擦阻尼[33];对一维非定常流动也作了一定研究,推导出等截面管内气流的非稳态流动控制方程组,用匀熵特征线法处理容器、突变截面、汇流点等元件联接处,使数值计算得到简化[34,35];在理论分析的基础上进行了大量实验研究[36];在深入理论研究和大量工程实践的基础上总结出压力脉动的控制措施[37,38],他们的研究成果集中体现在一本关于活塞式压缩机管道气流脉动与振动的专著上[39]。

近年来,国内学者进一步取得进展:2001年,西安交通大学的彭学院教授基于平面波动理论开发出气流脉动分析软件,该软件能够计算任意复杂管系的气柱固有频率及各节点处压力脉动幅值,为快速分析压缩机管道系统声学特性提供了有效工具;2003年,李志博通过大量的实验验证了该软件计算结果的可靠性[40]。

近年来气流脉动的研究趋势表现在:以美国西南研究院为代表侧重使用纳维斯托克斯方程一维流动模型建立描述管道内非稳态气流流动的控制方程,引入因粘性产生的气体与管道壁面的摩擦力,改变了以往一维非定常气流方程中摩擦力靠经验公式计算的方式[21],方程同样需要有限元或有限差分的数值方法求解[41],并将这种数值解法定义为时域分析法,将波动理论的解析解法定义为频域分析法,认为时域法比频域法作的假设更少,计算结果更符合实际,借助时域法还可以计算出因压力脉动造成的动态压力损失,进而帮助设计者改进压缩机整体性能。

因此认为时域法更有价值,投入了大量精力研究它的计算特性,探讨提高计算精度的方法。

另外也有研究人员[42,43]使用CFD软件运用三维流动理论模拟管道内气体的压力脉动,一般认为缓冲罐、气液分离器等三维结构特征明显的元件以及压缩机吸、排气口等复杂流道处三维方法的结果更准确,西安交通大学的徐斌[44]用Fluent软件在大脉动情况下获得了比一维方法更准确的结果,但也指出一维流动理论在小脉动时精度仍然很高。

以上研究现状的分析表明,基于一维流动的理论仍是分析压缩机管道气流脉动的有效方法,一维非定常流动理论是较为完善的数学模型,随着计算科学的进步,用数值解法精确模拟管道内流体运动越来越重要,但其计算特性如何;如何准确、可靠的得出结果;怎样用数值方法定量分析影响气流脉动的各种因素;摩擦阻尼是否有显著的影响;如何分析非定常方法和波动理论计算差异。

这些问题有待进一步探索,本文将在这些方面进行研究。

1.3 本文所做工作为了深入研究活塞式压缩机管道内气流脉动的机理,探索更加精确的模拟方法,在前人研究的基础上进一步认识气流脉动的内在规律,本文拟做以下几个方面的研究:1)基于一维非定常可压缩流动理论建立描述活塞式压缩机管道内气流脉动现象的控制方程组,分析差分方程的稳定性条件,在用特征线法建立差分格式的过程中分析稳定性条件的物理意义。

2)编写一维非定常方法数值计算程序,通过大量的计算分析双曲型方程数值计算特性和程序的准确度、可靠性。

讨论影响计算结果准确度的主要因素,尤其是网格长度的影响。

3)搭建专门研究活塞式压缩机管道内气流脉动的实验台,测量管道不同位置处的压力脉动值。

通过与实验测量值对比,分析导致计算和实测差异的原因,指出数学模型上可改进之处;定量分析影响压力脉动波形和幅值的因素,尤其是摩擦阻尼的影响;分析导致波动理论方法和一维非定常方法计算差异的原因;定量评价局部阻力在变截面处抑制气流脉动的作用。

2、气流脉动的数学模型及求解平面波动理论分析气流脉动时作了理想气体、等熵流动等假设,并且基本方程忽略了非线性项、气流平均流速的影响[45]。

为了在数学模型上更完整准确的描述脉动现象,本章建立一维非定常气流流动方程,着重考虑管路中的摩擦、实际气体性质等问题。

相关文档
最新文档