2022年高考数学全国乙卷理科第20题的解法探究与背景溯源
关于2022年高考全国乙卷(理科)数学科目题目与答案解析

关于2022年高考全国乙卷(理科)数学科目题目与答案解析今日是高考的第三天,数学科目的考试画上了句号。
那么今年的高考数学难度怎么样呢?以下是我细心收集整理的2022年高考全国乙卷(理科)数学科目题目与答案解析,下面我就和大家共享,来观赏一下吧。
2022年高考全国乙卷(理科)数学科目题目与答案解析高考数学科目答题窍门一、选择题十大速解(方法)排解法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法直接法、特别化法、数形结合法、等价转化法。
二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即依据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再(反思):在实施边角互化的时候应留意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:依据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:依据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定方法:依据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
四、利用空间向量求角问题1、解题路线图①建立坐标系,并用坐标来表示向量。
②空间向量的坐标运算。
③用向量工具求空间的角和距离。
2、构建答题模板①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。
②写坐标:建立空间直角坐标系,写出特征点坐标。
数学说题 全国卷ii理科数学第20题

02
解题思路
审题
明确问题
首先,仔细阅读题目,明确问题的要求和已知条件。确保对题目的理解准确无误 ,这是解题的第一步。
寻找解题方法
策略选择
在理解了题目之后,需要寻找合适的解题方法。这可能涉及到对数学知识的综合运用,以及对问题结构的深入分析。选择正 确的解题方法对于解决问题至关重要。
解题步骤
实施解答
会影响最终结果,因此需要认真核对,确保答案的准确性。
易错点分析
对题目理解不准确
有些学生在解题时,可能会对题 目的要求和条件理解不准确,导 致解题方向错误。因此,在解题 前需要认真阅读题目,准确理解
题意。
计算错误
在解题过程中,有些学生可能会 因为粗心大意而出现计算错误。 为了避免这种情况,需要加强计 算能力的训练,提高计算的准确
数学说题 全国卷ii理 科数学第20题
汇报人: 202X-01-04
目录
• 题目概述 • 解题思路 • 解题方法 • 题目变式 • 总结与反思
01
题目概述
题目来源
01
题目选自《高中数学》必修第一 册,属于数列章节的题目。
02
该题目是高考数学全国卷ii理科数 学的压轴题,难度较大。
题目难度
难度等级
加强实践训练
在数学教学中,应该加强实践训练 ,让学生多做习题、多思考问题、 多参与讨论,提高数学应用能力和 解决问题的能力。
THANKS FOR WATCHING
感谢您的观看
行解答。在解题过程中,要保持思路清晰,不要被复杂的数学表达式所
迷惑。
02
善于运用数学定理和公式
在解题过程中,要善于运用所学的数学定理和公式,简化计算过程,提
多角度探究圆锥曲线中的定值问题——以2023年高考数学全国乙卷理科第20题为例

二次曲线系方程可设为llBD +λ
lAB lAD =0.
设直线 AP :
x=my-2,
AQ :
x=ny-2,
PQ :
y=
易 知 椭 圆 在 点 A 处 的 切 线 方 程 为x=
k(
x+2)+3.
,
由引理可知过点
-2
A,
P,
Q 的二次曲线方程可设为
(
(
(
x+2)
kx-y+2
k+3)+λ(
x-my+2)
9+4
k2
1
1
2
-8
k2 +18
36
k2
,
.
yQ =
9+4
k2
9+4
k2
2
2
设 直线 PQ 方程为y=k(
x+2)+3,将点 P ,
Q的
同理,可得 xQ =
2
坐标分别代入直线方程,可得
12
k2
6
k1 +36k+27=0,
1 -3
{
12
k2
6
k2 +36k+27=0,
2 -3
即 k1 ,
k2 是方程 12x2 -36x+36k+27=0 的 两 个 根,
x1 ,
a>
y1 )在 椭 圆 2 + 2 =1(
a b
b>0)外,过点 P 可以作两条直线与椭圆相切,连 接 切
点 A,
B ,称线段 AB 为 切 点 弦,则 切 点 弦 所 在 直 线 的
x1x y1y
方程为 2 + 2 =1.
我们将 点 P 和 切 点 弦 分 别 称 为
a
b
椭圆的一对极点与极线 [1].
2023年全国高考乙卷理科第20题的解法探究与拓展

圆锥曲线中的定点、定值问题一直是高考热点问题.本文以2023年全国高考乙卷理科第20题的第二问为例,多角度探究求解,有利于学生系统掌握解题方法、拓宽视野和全面提升解题能力.1真题呈现题目:(2023年全国乙卷理科第20题)已知椭圆C :y 2a 2+x 2b2=1()a >b >0的离心率为,点A ()-2,0在C 上.(1)求C 的方程;(2)过点()-2,3的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.此题以椭圆为载体,背景是高等几何中的极点、极线模型,以极点、极线为背景的问题一直是高考中的常青树.试题新颖别致,立意高远而厚重,构思独具匠心,突出关键能力考查,体现了高考试题从能力立意到素养导向的功能.试题解法十分灵活,解题入口宽,深入难,区分度较高,凸显了高考试题的选拔性,是一道有丰厚内涵的经典试题.[1]2多维视角,解法探究(1)解析:由椭圆中a ,b ,c 的关系易得椭圆方程为y 29+x 24=1(略).(2)多维视角的解法探究思维视角一:联立方程,设而不求解法1:普通方程法由题意可知直线PQ 的斜率存在,设P ()x 1,y 1,Q ()x 2,y 2,PQ :y =k ()x +2+3,联立方程ìíîïïy =k ()x +2+3y 29+x 24=1,消去y 得()4k 2+9x 2+8k (2k +3)x +16()k 2+3k =0,由Δ>0,解得k <0,可得x 1+x 2=-8k ()2k +34k 2+9,x 1x 2=16()k 2+3k 4k 2+9.因为A ()-2,0,则直线AP :y =y 1x 1+2(x +2),令x =0,解得y =2y 1x 1+2,即M æèçöø÷0,2y 1x 1+2,同理可得N æèçöø÷0,2y 2x 2+2,则2y 1x 1+2+2y 2x 2+22=2023年全国高考乙卷理科第20题的解法探究与拓展宁夏六盘山高级中学陈熙春李小刚750002摘要:借“题”发挥,从六种思维视角切入,多角度地对2023年高考乙卷理科第20题进行探究,旨在通过一题多解、寻根溯源、拓展延伸,深入挖掘试题背后隐藏的“秘密”,剖析此类问题的本质,归纳解题策略,提炼数学思想,实现从“一道题”到“一类题”质的飞跃.关键词:定点;解法探究;拓展··5[]k ()x 1+2+3x 1+2+[]k ()x2+2+3x 2+2=[]kx 1+()2k +3()x2+2+[]kx 2+()2k +3()x 1+2()x 1+2()x 2+2=2kx 1x 2+()4k +3()x 1+x 2+4()2k +3x 1x 2+2()x 1+x 2+4=32k ()k 2+3k 4k 2+9-8k ()4k +3()2k +34k 2+9+4()2k +316()k 2+3k 4k 2+9-16k ()2k +34k 2+9+4=10836=3,所以线段MN 的中点为定点()0,3.评析:解析几何中的定点问题,实质是定值问题,即求线段PQ 的中点纵坐标为定值.通过设点、设线,借助点的坐标,再结合根与系数的关系验证y M +yN 2为定值即可.求定点、定值问题常见的方法有两种,一种是从特殊入手,求出定值,再证明这个值与变量无关,直线过定点,由对称性知定点一般在坐标轴上;另一种是直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解法2:整体代换法设P ()x 1,y 1,Q ()x 2,y 2,B ()-2,3,M ()0,y M ,N ()0,y N ,直线PQ 的方程为y =k ()x +2+3,联立ìíîïïy =k ()x +2+3y 29+x 24=1,整理得()4k 2+9(x +2)2+()24k -36(x +2)+36=0,由根与系数的关系得(x 1+2)+(x 2+2)=36-24k 4k 2+9,(x 1+2)(x 2+2)=364k 2+9,因为A ()-2,0,则直线AP :y =y 1x 1+2·()x +2,令x =0,解得y M =2y 1x 1+2,同理可得y N =2y 2x 2+2,所以y M +y N 2=y 1x 1+2+y 2x 2+2=2k +3(x 1+2+x 2+2)(x 1+2)(x 2+2)=2k +3(36-24k 4k 2+9)364k 2+9=3,所以线段MN 的中点为定点()0,3.评析:利用整体的思想,通过构造出关于x +2的一元二次方程,得到斜率间的等量关系,把x +2看成整体以后,比解法1要简洁,运算量大大简化,这种整体代换的思想是处理解析几何繁琐运算的有效策略.思维视角二:构造齐次式解法3:构造+齐次化法设直线PQ 的方程为m ()x +2+ny =1,因为直线PQ 过点()-2,3,代入得n =13.因为点P ,Q 在椭圆C :9x 2+4y 2=36上,变形为9[](x +2)-22+4y 2=36,即9(x +2)2-36(x +2)+4y 2=0,齐次化得9(x +2)2-36(x +2)[m (x +2)]+ny +4y 2=0,化简得4y 2-36ny (x +2)+(9-36m )(x +2)2=0,等式两边同除以()x +22构造斜率式得4(y x +2)y 2-36n yx +2+9-36m =0,把n =13代入得4(y x +2)y 2-12yx +2+9-36m =0,由根与系数的关系得k AQ +k AP =3.因为A ()-2,0,设直线AP 的方程为y =k AP (x+2),令x =0得y M =2k AP ,同理可得y N =2k AQ .故线段MN 的中点的纵坐标为y M +y N 2=2k AP +2k AQ2=k AP +k AQ =3,所以线段MN 的中点为定点()0,3.思维视角三:点差法解法4:点差法+三点共线设点B (-2,3),P (x 1,y 1),Q (x 2,y 2),直线AP ,AQ 的斜率分别为k 1,k 2,则有MN 的中点坐标为(0,k 1+k 2).因为点P ,Q 在椭圆C :y 29+x 24=1上,变形为(x 1+2-2)24+y 219=1⇒··614+19æèçöø÷y 1x 1+22=1x 1+2①,同理可得14+19⋅æèçöø÷y 2x 2+22=1x 2+2②,①-②可得19æèçy 1x 1+2-öø÷y 2x 2+2æèçöø÷y 1x 1+2+y 2x 2+2=1x 1+2-1x 2+2③,又知B ,P ,Q 三点共线可得y 1-3x 1+2=y 2-3x 2+2,变形可得y 1x 1+2-y 2x 2+2=3x 1+2-3x 2+2④,将④代入③可得y 1x 1+2+y 2x 2+2=3,即k 1+k 2=3,从而可得线段MN 的中点是定点()0,3.评析:利用“点差法”的思想方法,通过设点、代点、作差构造出k AP ,k AQ 的表达式,便可轻松解决.解法5:点差法+斜率双用设点B (-2,3),P (x 1,y 1),Q (x 2,y 2),直线AP ,AQ 的斜率分别为k 1,k 2,易得MN 的中点坐标为(0,k 1+k 2).由于ìíî9x 21+4y 12=36①9×(-2)2=36②,①-②可得k 1=y 1x 1+2=-94x 1-2y 1.同理可得k 2=y 2x 2+2=-94x 2-2y 2,不妨设k 1+k 2=m .则m =y 1x 1+2-94x 2-2y 2,化简可得4y 1y 2-9x 1x 2+18x 1-18x 2+36=4my 2x 1+8my 2③,同理可得4y 1y 2-9x 1x 2+18x 2-18x 1+36=4my 1x 2+8my 1④,③-④可得9(x 1-x 2)=m (y 1x 2-y 2x 1)+2m (y 2-y 1)⑤,又知直线B ,P ,Q 三点共线可得y 1-3x 1+2=y 2-3x 2+2,化简可得9(x 1-x 2)=3(y 1x 2-y 2x 1)+6(y 2-y 1)⑥,⑤与⑥对比可得m =3,所以线段MN 的中点是定点()0,3.评析:本题为“斜率和”问题,在解题中涉及到斜率和问题时的解题规律为,第一步,写出原式;第二步,交叉使用;第三步,化整做差;第四步,对照两点式.这种方法同样可以解决“斜率积”问题.解法6:定比点差法设点B (-2,3),P (x 1,y 1),Q (x 2,y 2),又设PB =λBQ ,所以有-2-x 1=λ(x 2+2),3-y 1=λ(y 2-3).变形得-2-2λ=λx 2+x 1,3+3λ=λy 2+y 1①.因为点P ,Q 在椭圆C :y 29+x 24=1上,所以有ìíîïïïïy 129+x 124=1(λy 2)29+(λx 2)24=λ2,两式作差得(y 1-λy 2)(y 1+λy 2)9+(x 1+λx 2)(x 1-λx 2)4=(1-λ)·(1+λ).把①式代入得y 1-λy 23-x 1-λx 22=1-λ.再由①式把λx 2,λy 2消去得2y13-x 1=3+λ②,又因为k AP =y 1x 1+2,把②式代入消去x 1得k AP =3y 12y 1-3-3λ.又因为k AQ =y 2x 2+2把①、②式代入得k AQ =-3+3λ-y 1x 1+2=-3(3+3λ-y 1)2y 1-3-3λ.所以k AP +k AQ =3y 12y 1-3-3λ-3(3+3λ-y 1)2y 1-3-3λ=3.即线段MN 的中点的纵坐标为y M +y N 2=2k AP +2k AQ2=k AP +k AQ =3,所以线段MN 的中点是定点()0,3.评析:定比点差法的一般变形公式,椭圆x 2a 2+y 2b2=1(a >b >0),点A (x 1 , y 1),B (x 2, y 2)是椭圆上的点,且 AP =λ PB ,P (x 0 , y 0),··7则ìíîïïïïλx 2=x 0(1+λ)-x 1λy 2=y 0(1+λ)-y 12(x 0x 1a2+y 0y 1b 2-1)=(x 20a 2+y 20b 2-1)⋅(1+λ)点A (x 1,y 1)、B (x 2 ,y 2)的坐标都可以用只含有x 1(或y 1)的式子表示出来.思维视角四:借梯登高思维解法7:参数方程法设直线PQ 的参数方程为{x =-2+t cos αy =3+t sin α(t 为参数),(其中α为直线PQ 的倾斜角).代入椭圆方程y 29+x 24=1,化简可得(4+5cos 2α)t 2+12(2sin α-3cos α)t +36=0,设P 、Q 对应的参数分别为t 1,t 2,则t 1+t 2=12(3cos α-2sin α)4+5cos 2α,t 1⋅t 2=364+5cos 2α.又因为P (-2+t 1cos α,3+t 1sin α),Q (-2+t 2cos α,3+t 2sin α).又因为直线AP 的方程为y =3+t 1sin αt 1cos α()x +2,令x =0得y M =2(3+t 1sin α)t 1cos α,同理可得y N =2(3+t 2sin α)t 2cos α.故线段MN 的中点的纵坐标为y M +yN 2=3+t 1sin αt 1cos α+3+t 2sin αt 2cos α=3(t 1+t 2)t 1t 2cos α+2sin αcos α==3(3cos α-2sin α)3cos α+2sin αcos α=3.所以线段MN 的中点是定点()0,3.评析:充分利用直线分别与椭圆相交这一几何条件,利用参数方程实现了几何问题代数化,体现了解析几何的基本思想——“数形结合”,有效地减少了运算量,应用参数方程法是破解此类问题的一个有效策略.解法8:三角代换法因为cos θ=cos 2θ2-sin 2θ2cos 2θ2+sin 2θ2,sin θ=2sin θ2cos θ2cos 2θ2+sin 2θ2,令t =tan θ2,故cos θ=1-t 21+t 2,sin θ=2t 1+t 2,于是设椭圆的参数方程为ìíîïïïïx =2(1-t 2)1+t 2y =6t 1+t 2(t 为参数).设B (-2,3),P ,Q 对应的参数分别为t 1,t 2,由B ,P ,Q 三点共线可得6t 11+t 21-32(1-t 21)1+t 21+2=6t 21+t 22-32(1-t 22)1+t 22+2,化简得t 1+t 2=2.又知k AP =6t 11+t 212(1-t 21)1+t 21+2=3t 12,同理k AQ =3t 22,所以k AP +k AQ =32(t 1+t 2)=3.又因为A ()-2,0,设直线AP 的方程为y =k AP ()x +2,令x =0得y M =2k AP ,同理可得y N =2k AQ .故线段MN的中点的纵坐标为y M +y N 2=2k AP +2k AQ2=k AP +k AQ =3,所以线段MN 的中点是定点()0,3.评析:引入椭圆的参数方程,巧妙地实现了几何问题与三角函数的精彩联袂,解题方向清晰明了.当然也可以设P æèççöø÷÷2()1-t 121+t 12,6t 11+t 12,Q æèççöø÷÷2()1-t 221+t 22,6t 21+t 22,进而得到直线PQ 的方程为2(t 1+t 2)y -3(t 1t 2-1)x=6(1+t 1t 2),代入点B ()-2,3得到t 1+t 2=2.解法9:定比插参法设点B (-2,3),P (x 1,y 1),Q (x 2,y 2),直线AP ,AQ 的斜率分别为k 1,k 2,则有MN 的中点坐标为(0,k 1+k 2).因为B ,P ,Q 三点共线可··8得y 1-3x 1+2=y 2-3x 2+2,变形得y 1-3y 2-3=x 1+2x 2+2=λ,故可得{y 1=λy 2+3(1-λ)x 1=λx 2+2(λ-1),代入椭圆方程y29+x 24=1化简可得1λ=3+x 2-23y 2.又因为k 1+k 2=y 1x 1+2+y 2x 2+2=λy 2+3(1-λ)λx 2+2λ+y 2x 2+2=1x 2+2æèöø2y 2+3λ-3.把1λ=3+x 2-23y 2代入并化简可得k 1+k 2=1x 2+2æèöø2y 2+3λ-3=3,从而可得线段MN 的中点是定点()0,3.评析:解决此题的难点在于如何“设参”,焦点在于如何“用参”,重点在于如何“消参”,设参、用参、消参是解圆锥曲线问题的基本方法.因此定值问题的解题思路是:设参数→用参数来表示要求定值的式子→消参数.思维视角五:同构法解法10:同构法1设直线AP :x =m 1y -2,AQ :x =m 2y -2,PQ :x =m 0y +n .直线AP ,PQ 联立可得ìíîïïïïx =m 1n +2m 0m 1-m 0y =2+n m 1-m 0,代入椭圆方程得(9n 2-36)m 21+(72m 0+36m 0n )m 1+4(2+n )2=0,同理可得(9n 2-36)m 22+(72m 0+36m 0n )m 2+4(2+n )2=0.从而m 1,m 2为方程(9n 2-36)m 2+(72m 0+36m 0n )·m +4(2+n )2=0的两根,又由直线PQ 过点()-2,3,代入得n =-2-3m 0,代入上式得(81m 20+108m 0)m 2-108m 20m +36m 20=0.设直线AP ,AQ 的斜率分别为k 1,k 2,故MN 的中点坐标为(0,k 1+k 2).k 1+k 2=1m 1+1m 2=3.故MN 的中点是定点()0,3.评析:同构是一种常见的思想方法,是映衬着数学的对称和谐之美的数学方法,是“同理可得”的理论基础,是函数与方程思想的代名词与具体体现.在解题中灵活利用同构式,可以起到化繁为简的作用.解法11:同构法2设直线AP 的方程为y =k ()x +2,联立ìíîïïy =k ()x +2y 29+x 24=1,消去y 得()4k 2+9x 2+16k 2x +16k 2-36=0,当Δ>0时,由根与系数的关系得x A x P =16k 2-364k 2+9,又由x A =-2得到x P =-8k 2+184k 2+9,故P (-8k 2+184k 2+9,36k 4k 2+9).设直线PQ :y =m (x +2)+3,把点P 的坐标代入并化简可得12k 2-36k +36m +27=0.同理设直线AQ 的斜率为k 1,同理可得12k 12-36k 1+36m +27=0.所以k ,k 1是二次方程12x 2-36x +36m +27=0的两根,k +k 1=3,下同解法3.[2]评析:利用同构思想解题相当于寻找斜率满足的二次方程,可以收到事半功倍的效果.本题中方程有一个根是-2,利用根与系数的关系求出另一个根,减少了计算量.思维视角六:营造对称,方便计算解法12:构造对偶式法设点B (-2,3),P (x 1-2,y 1),Q (x 2-2,y 2),因为B ,P ,Q 三点共线可得y 1-3x 1=y 2-3x 2,变形可得y 1x 2-y 2x 1=3(x 2-x 1).构造对偶式y 1x 2+y 2x 1=(y 1x 2)2-(y 2x 1)2y 1x 2-y 2x 1=x 22(9x 1-94x 12)-x 12(9x 2-94x 22)3(x 2-x 1)=3x 1x 2.因为直线AP 的方程为y =y1x 1()x +2,令x =0得y M =2y 1x 1,同理可得y N =2y 2x 2.故线段MN 的··9中点的纵坐标为y M +y N2=y 1x 1+y 2x 2=y 1x 2+y 2x 1x 1x 2=3,所以线段MN 的中点是定点()0,3.评析:构造对偶式重在“构造”,在运用时要对已知等式进行整体观察,利用代数式的对称性,设法构造有利于计算的代数式,使问题简捷获解.对偶式主要是用于化简、转化定点、定直线的坐标表示,构造对偶式法在解题中具有广泛性、灵活性和简洁性的特点.3探究与拓展探究1:已知椭圆C :x 2a 2+y 2b 2=1()a >b >0,左顶点为A ()-a ,0,上顶点为B ()0,b ,过点R ()-a ,b 的直线交椭圆C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为上顶点B ()0,b .证明:设直线AP 的方程为y =k (x +a ),联立ìíîïïy =k ()x +a x 2a 2+y 2b2=1,消去y 得()a 2k 2+b 2x 2+2a 3k 2x +a 4k 2-a 2b 2=0,当Δ>0时,由根与系数的关系得x A x P =a 4k 2-a 2b 2a 2k 2+b 2,又由x A =-a 得到x P =ab 2-a 3k 2a 2k 2+b 2,故P (ab 2-a 3k 2a 2k 2+b 2,2ab 2k a 2k 2+b2).设直线PQ :y =m (x +a )+b ,把点P 的坐标代入并化简可得a 2bk 2-2ab 2k +2ab 2m +b 3=0.设直线AQ 的斜率为k 1,同理可得a 2bk 12-2ab 2k 1+2ab 2m +b 3=0.所以k ,k 1是二次方程a 2bx 2-2ab 2x +2ab 2m +b 3=0的两根,k +k 1=2b a.设直线AP 的方程为y =k ()x +a ,令x =0得y M =ka ,同理可得y N =k 1a .故线段MN 的中点的纵坐标为y M +y N 2=ka +k 1a2=2b a ⋅a 2=b ,所以线段MN 的中点是上顶点B ()0,b .由此可见,2023年全国高考乙卷理科第20题是本结论的特殊情况.探究2:已知椭圆C :x 2a 2+y 2b2=1()a >b >0,左顶点为A ()-a ,0,上顶点为B ()0,b ,过点R ()-a ,b 的直线交椭圆C 于P ,Q 两点,直线BP ,BQ 与x 轴的交点分别为M ,N ,证明:线段MN 的中点为左顶点A ()-a ,0.证明过程与探究1类似.探究3:已知椭圆C :x 2a 2+y 2b 2=1()a >b >0,左顶点为A ()-a ,0,上顶点为B ()0,b ,点R 是直线x =-a 上的任意一点,过点R 作椭圆C 的两条切线,分别交椭圆C 于A ,B 两点,过点R 的直线交椭圆C 于P ,Q 两点,直线AB ,AP ,AQ 的斜率分别为k ,k 1,k 2.证明:k 1+k 2=2k .简证:设R ()-a ,m ,则AB 是R 的切点弦所在的直线,故直线AB 的方程为-ax a 2+my b 2=1,所以k =b 2ma .后面证明过程与探究1的方法类似,得到k 1+k 2=2b 2am.故有k 1+k 2=2k .4往年高考试题链接变式1:如图1,过点P 作y 轴的平行线,分别与AE ,AQ ,交于点T ,H ,满足 PT =TH .证明:直线HQ 过定点.便得到2022年全国乙卷理科第20题的模型.变式2:过点P 作x 轴的垂线,分别EBPTHA N Q -22图1xy(下转第13页)O ··10cos (B +π4)=3sin A -cos(π-A )=3sin A+cos A =2sin (A +π6).于是0<A <3π4,故π6<A +π6<11π12,从而当A +π6=π2,即A =π3时,2sin (A +π6)取得最大值2.综上所述,3sin A -cos(B +π4)的最大值为2,此时A =π3,B =5π12.点评:本题主要考查三角函数的基本公式、解斜三角形的基础知识和基本运算能力.高考中有关三角函数求值问题,一方面考查纯三角函数求值;另一方面就是结合三角形考查求角以及求三角函数值;再就是在知识交汇点出题,三角函数的最值与三角形的结合.通过对以上几例的解析,希望对同学们学好、用活这部分知识有所帮助.与AE ,AQ 交于点T ,H .证明:T 为线段PH 的中点.试题链接:(2022年全国乙卷理科第20题)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A ()0,-2,B æèöø32,-1两点.(Ⅰ)求E 的方程;(Ⅱ)设过点P ()1,-2的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足 MT =TH .证明:直线HN 过定点.不难发现,2023年全国高考乙卷理科第20题的第二问与2022年全国乙卷理科第20题极其相似,可以看作“姊妹题”.5解题感悟圆锥曲线中的定值、定点问题淋漓尽致地体现了“几何”与“代数”的深度融合,“动态”与“静态”的和谐统一.定点、定值问题都是探求“变中有不变的量”.因此要注意挖掘问题中各个量之间的相互关系,恰当地运用函数与方程、转化与化归、数形结合、分类讨论、特殊到一般、相关点法、设而不求、换元、消元等基本思想方法.该类问题综合性强,方法灵活,在解题过程中,既有探索性的历程,又有严密的逻辑推理及复杂的运算,成为考查学生数学核心素养的一道亮丽的风景线.文中的解法各有千秋,展示了各种解法的思维轨迹,凸显了思维的灵活性.从深度和广度上做文章,进行了系统性探究、整合、推广,实现了从“一道题”到“一类题”质的飞跃,进而提升学生的核心素养.参考文献[1]陈熙春.2022年全国高考乙卷第20题的解法探究与拓展[J ].理科考试研究,2022(11):16-20.[2]陈熙春.2021年全国新高考I 卷第21题的解法探究与拓展[J ].数理化学习,2022(3):8-13.基金项目:宁夏教育科学规划“基础教育质量提升行动”专项课题“公费师范生教师队伍建设实践研究—以宁夏六盘山高级中学为例”(编号:NXJKG22174)成果.(上接第10页)··13。
2022全国乙卷高考数学(理科)试卷及答案解析

2022全国乙卷高考数学(理科)试卷及答案解析高考结束之后,各位考生和家长最想知道的就是考生考的怎么样,有很多考生在考完很着急想要知道试题答案从而进行自我估分,下面小编为大家带来2022全国乙卷高考数学(理科)试卷及答案解析,希望对您有帮助,欢迎参考阅读!2022全国乙卷高考数学理科试卷及答案解析高考数学冲刺必背知识点1、混淆命题的否定与否命题命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
2、忽视集合元素的三性致误集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、判断函数奇偶性忽略定义域致误判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。
4、函数零点定理使用不当致误如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点。
函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。
5、函数的单调区间理解不准致误在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法。
对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
6、三角函数的单调性判断致误对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。
2022年普通高等学校招生全国统一考试(新高考全国Ⅰ卷) 数学真题第20题题目及答案

2022年普通高等学校招生全国统一考试(新高考全国Ⅰ卷) 数学真题第20题题目及答案20.(12分)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”,(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅; (ⅱ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.20. (1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯, 又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P ARP B A P B A P A P AB P A P AB=⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B RP B P AB P B P AB =⋅⋅⋅所以(|)(|)(|)(|)P A B P A BRP A B P A B=⋅;(ii)6R=;。
2022年全国乙卷理科高考数学试卷真题及答案详解(精校版)
D.平面 B1EF / / 平面 A1C1D
8.已知等比数列an 的前 3 项和为 168, a2 a5 42 ,则 a6 (
)
A.14
B.12
C.6
D.3
9.已知球 O 的半径为 1,四棱锥的顶点为 O,底面的四个顶点均在球 O 的球面上,则当该
四棱锥的体积最大时,其高为(
)
A.
1 3
B.
1 2
3
3
3
23.已知 a,b,c 都是正数,且 a 2 b2 c 2 1 ,证明:
(1) abc 1 ; 9
(2)
b
a
c
a
b
c
a
c
b
2
1 abc
;
试卷第 5页,共 5页
1.A 【分析】 先写出集合 M ,然后逐项验证即可 【详解】 由题知 M {2, 4,5} ,对比选项知, A 正确, BCD错误 故选: A
C.该棋手在第二盘与乙比赛,p 最大
D.该棋手在第二盘与丙比赛,p 最大
11.双曲线 C 的两个焦点为 F1, F2 ,以 C 的实轴为直径的圆记为 D,过 F1 作 D 的切线与 C
试卷第 2页,共 5页
交于
M,N
两点,且 cos F1NF2
3 5
,则
C
的离心率为(
)
A. 5
2
B. 3 2
C. 13 2
22.在直角坐标系
xOy
中,曲线
C
的参数方程为
x y
2
3 cos sin t
2t
,(t
为参数),以坐标原点为
极点,x
轴正半轴为极轴建立极坐标系,已知直线
2023年全国卷1卷第20题解法
文章标题:2023年全国卷1卷第20题解法探讨与总结在2023年的全国卷1中,第20题涉及到了一个较为复杂的数学问题,需要考生具备一定的数学基础和解题技巧才能得到正确答案。
本文将从不同角度深入探讨该题的解法,帮助学生更好地理解并掌握解题方法。
1. 题目内容回顾2023年全国卷1卷第20题主要涉及到了概率和统计的知识,要求考生通过一组数据来计算某一事件发生的概率,并进行推断分析。
在题目中,给出了一组情境和相关数据,考生需要理解问题的要求,并根据给定的条件进行计算和推理。
2. 解题思路分析在解答这道题目时,考生首先需要明确题目所涉及的数学知识点,包括条件概率、事件的独立性等概念。
根据题目给出的具体数据和情境,可以分步进行推理和计算,得出最终的结果。
在这个过程中,考生需要运用到概率统计的相关公式和方法,同时进行逻辑推理和分析,确保解题过程的正确性和合理性。
3. 解题方法探讨针对这道题目,可以采用几种不同的解题方法,比如基于条件概率公式的推导计算,或者通过树状图、表格等方式来展现事件发生的可能性。
还可以运用到统计学的相关知识,对数据进行分析和推断。
在具体的解题过程中,要注意逻辑严谨,思维清晰,避免漏算和错误推断。
4. 个人观点和理解对于这道题目,我认为学生在备考的过程中,除了掌握基础的数学知识外,还需要具备一定的解题技巧和灵活思维。
解决复杂的概率统计问题,需要有较强的逻辑推理能力和数学建模能力,这也是考验学生综合能力的一种方式。
建议学生在备考过程中,多进行练习和思考,加强对数学问题的分析和解决能力。
总结回顾通过对2023年全国卷1卷第20题的探讨和分析,我们可以发现这道题目涉及到了多个数学知识点,具有一定的难度和挑战性。
在解题过程中,除了熟练掌握基础知识外,灵活运用概率和统计的方法,以及合理推理和分析能力同样重要。
希望学生们能够通过不断的练习和思考,提升自己的数学解题能力,更好地迎接考试的挑战。
文章字数:3824以上是根据您指定主题撰写的文章,希朥能够帮助到您。
2022全国乙卷理科数学真题及答案解析
2022全国乙卷理科数学真题及答案解析随着近几年高考人数增加,高考压力仍处于高位,很多人都想知道理科高考试卷,以方便自己参考核对实际考试情况。
下面是小编为大家收集的关于2022全国乙卷理科数学真题及答案解析。
希望可以帮助大家。
2022全国乙卷理科真题及答案解析高考理科综合的答题有哪些技巧呢一、顺序做题:按学科的顺序做题比较好。
因为理综是同一学科内的综合,而三科的知识体系不同、思维方法不同、答题的思路也不尽相同。
按科目答题,可以使自己的思路有个连续性,从而提高做题的准确性。
在这三科中,先做自己强势学科,再做弱势学科。
这样在最短的时间内完成并获得分数,又为弱势科目留下更多的时间。
二、缜密审题:通读全题。
不但要读题干,还要读题目所要解答的问题,要全面、正确地理解题意,弄清题目要求和解答内容。
审关键词。
如化学试题中的“过量”“少量”“无色”“酸性”“碱性”“充分反应”“短周期”等,物理试题中的“静止”“匀速”“自由落体”等词。
审题目要求。
如:写“电子式”“结构简式”“名称”“化学方程式”“离子方程式”等审解题突破口。
即解题的切入点,是解题的关键信息,特别是各类推断题、有机合成题等。
审有效数字。
使用仪器的精度:如滴定管0.01mL;已知数据的显示:如称取样品9.50g;题目中的要求:如结果保留两位有效数字。
审题型。
试卷在题序中并没有标明题型,但同样问题有不同的问法,就有不同的解答要求。
因此题型决定出题的方向、解题的方法、结果表达的形式等。
题型混编是高考题的特点。
三、先易后难:解题时要先易后难,这样可以增强自信心。
若碰到难题,一时难以解答,可以暂时跳过,在草纸上作好记录,以防遗忘。
容易的题完成后,节省下的时间,再攻克难题。
有些考生看到试题比较简单或比较熟悉就很兴奋,失去了警惕性而粗心大意,有时看起来很容易很熟悉的试题,稍改变关键词或条件,就会出错。
这样的题目恰恰是最容易失分的。
这里应该想到,一般来说高考题与日常训练题完全相同的可能性极小,所以必须认真对待,决不能丢分。
2022年全国乙卷数学第20题答案
2022年全国乙卷数学第20题答案
20.(12分)已知圆E的中心为坐标原点,对称轴为x轴、轴,且过(0,-2),8(,-1)两点
(1)求E的方程;
(2)设过点P(1-2)的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足MT=TH证明:直线HN过定点。
解:(1)设E的方程为意十字1,将4(0.-2),8(号。
-1)两点代人得。
解得a=3,6°=4,故E的方程为旁+号=1.
(2)由A(0,-2),m(号,-1)可得直线AB:y-号-2,①若过P(1-2)的直线的斜率不存在,直线为x=1,代人号+号=1可得M(1.号)。
N(1,一)。
将5=3年代人AB:y=-2,可得T(、石+3.5)。
由MT=1,得H (2/6+5.25)。
易求得此时直线HN;y=(2-26)-2,过点(0.-2)。
②若过P(1-2)的直线的斜率存在,设hx-y-(k+2)=0,M(小)N(工)x-y-(k+2)=0,得(3k+4)-6k(2+h)x+34(k+4)=0,故有。
[-。
y:=34+432744(4+4k-22)且sn-(。
)。
可求得此时川N:y-“36-)(x-)。
将(0.-2)代人整理得2(x;+x)-6(y+):)+*:)+x-3y-12=0.将()式代入得24k+12+96+48k-244-48-48A+2482-361-48=0显然成立。
综上,可得直线HN过定点(0.-2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022年高考数学全国乙卷理科第20题的解法探究与背景溯
源
卢建军;高莹
【期刊名称】《中学数学教学》
【年(卷),期】2022()4
【摘要】通过对2022年高考全国乙卷解析几何解答题的探究,研究了其解法,并进行了试题背景溯源.
【总页数】3页(P71-73)
【作者】卢建军;高莹
【作者单位】安徽省马鞍山市第二中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.探究解法“促”理解追根溯源“亮”本质——对2012年高考数学安徽卷理科第20题别解与探源
2.2020年高考数学全国Ⅰ卷理科第21题的解法及背景探究
3.2021年全国乙卷数学理科第21题解法探究与背景溯源
4.2021年全国乙卷数学理科第21题解法探究与背景溯源
5.2021年高考全国乙卷理科第21题切点弦方程的解法探究与推广
因版权原因,仅展示原文概要,查看原文内容请购买。