惠斯通电桥原理精编版

惠斯通电桥原理精编版
惠斯通电桥原理精编版

惠斯通电桥

在实验中,测量电阻的常见方法有伏安法和电桥法。伏安法测量电阻的公式为R=U/I (测量的电阻两端电压/测量的流经电阻的电流),除了电流表和电压表本身的精度外,还有电表本身的电阻,不论电表是内接或外接都无法同时测出流经电阻的电流I 和电阻两端的电压U ,不可避免存在测量线路缺陷。电桥是用比较法测量电阻的仪器。电桥的特点是灵敏、准确、使用方便,它被广泛地应用于现代工业自动控制电气技术、非电量转化为电学量测量中。电桥可分为直流电桥、交流电桥,直流电桥可以用于测电阻,交流电桥可用于测电容、电感。通过传感器可以将压力、温度等非电学量转化为传感器阻抗的变化进行测量。

惠斯通电桥属于直流电桥,主要用于测量中等数值的电阻(101~106Ω)。对于太小的电阻(10-6~101Ω量级),要考虑接触电阻、导线电阻,可考虑使用双臂电桥;对于大电阻(107Ω级),要考虑使用冲击检流计等方法。惠斯通电桥使用检流计作为指零仪表,而实验室用检流计属于μΑ表,电桥的灵敏度要受检流计的限制。 1.惠斯通电桥测量原理

图1是惠斯通电桥的原理图。四个电阻R 0、R 1、R 2、R x 连成四边形,称为电桥的四个臂。四边形的一个对角线连有检流计,称为“桥”;四边形的另一对角线接上电源,称为电桥的“电源对角线”。E 为线路中供电电源,学生实验用双路直流稳压电源,电压可在0-30V 之间调节。R

保护

为较大的可变电阻,在电桥不平衡时取最大电阻作限流

作用以保护检流计;当电桥接近平衡时取最小值以提高检流计的灵敏度。限流电阻用于限制电流的大小,主要目的

在于保护检流计和改变电桥灵敏度。

电源接通时,电桥线路中各支路均有电流通过。当C 、D 两点之间的电位不相等时,桥路中的电流0≠g I ,检流计的指针发生偏转;当C 、D 两点之间的电位相等时,桥路中的电流0=g I ,检流计指针指零(检流计的零点在刻度盘的中间),这时我们称电桥处于平衡状态。因此电桥处于平衡状态时有:

0=g I DB CB AD

AC U U U U ==

0R Rx I I = 21R R I I = 11R I R I R x Rx = 2200R I R I R R =

于是

2

1

0R R R R x =即102R R R R x = 此式说明,电桥平衡时,电桥相对臂电阻的乘积相等。这就是电桥的平衡条件。 根据电桥的平衡条件,若已知其中三个臂的电阻,就可以计算出另一个桥臂电阻,因此,电桥测电阻的计算式为

002

1

KR R R R R x ==

(1) 电阻1R 、2R 为电桥的比率臂,x R 为待测臂,0R 为比较臂,0R 作为比较的标准,实

验室常用电阻箱。由(1)式可以看出,待测电阻x R 由比率值K 和标准电阻0R 决定,比值

K 可以作成10n

,这是成品电桥常用的方法。检流计在测量过程中起判断桥路有无电流的作用,只要检流计有足够的灵敏度来反映桥路电流的变化则电阻的测量结果与检流计的精度无关,由于标准电阻可以制作得比较精密,所以利用电桥的平衡原理测电阻的准确度可以很高,大大优于伏安法测电阻,这也是电桥应用广泛的重要原因。

2.电桥的灵敏度

电桥是否达到平衡,是以桥路里有无电流来进行判断的,而桥路中有无电流又是以检流计的指针是否发生偏转来确定的,但检流计的灵敏度总是有限的,这就限制了对电桥是否达到平衡的判断;另外人的眼睛的分辨能力也是有限的,如果检流计偏转小于0.1格则很难觉察出指针的偏转,为此,引入电桥灵敏度问题。

先定义检流计的灵敏度S 为电流变化量gx I ?所引起指针偏转格数n ?的比值:

g

I n

S ??=

检流计 (2) 定义电桥灵敏度为S :在处于平衡的电桥里,若测量臂电阻x R 改变一个微小量x R ?引起检流计指针所偏转的格数n ?的比值:

x

R n

S ??=电桥 (3)

定义电桥相对灵敏度为S :在处于平衡的电桥里,若测量臂电阻x R 改变一个相对微小量x x R R /?引起检流计指针所偏转的格数n ?的比值:

0R R n R R n S x

x ??=

??=

相对 (4)

电桥的相对灵敏度有时也简称它为电桥灵敏度。相对S 越大说明电桥越灵敏,电桥的相对灵敏度相对S 与哪些因素有关呢?

将(2)式整理代入(4)式中:

x

g x R I R S S ???

?=检流计相对 (5)

因gx I ?和x R ?变化很小,可用其偏微商形式表示

x

g x R I R S S ???

?=检流计相对 (6)

经过推导(参见附录【电桥灵敏度的推导】)可得

?

????

?++++++?=

)(检流计相对x g x R R R R

R R R R R E

S S 0212102)( (7)

对上式的分析,可知:

(1)电桥灵敏度相对S 与检流计灵敏度检流计S 成正比,检流计灵敏度越高电桥的灵敏

度也越高。

(2)电桥的灵敏度与电源电压E 成正比,为了提高电桥灵敏度可适当提高电源电压。

(3)电桥灵敏度随着四个桥臂上的电阻值210R R R R x +++的增大而减小。随着

x

R R R R 0

21+的增大而减小。臂上的电阻值选得过大,将大大降低其灵敏度,臂上的电阻值相差太大,也会降低其灵敏度。

根据以上分析,就可找出在实际工作中组装的电桥出现灵敏度不高、测量误差大的原因。同时一般成品电桥为了提高其测量灵敏度,通常都有外接检流计与外接电源接线柱。但是外接电源电压的选定不能简单为提高其测量灵敏度而无限制地提高,还必须考虑桥臂电阻的额定功率,不然就会出现烧坏桥臂电阻的危险。

3.惠斯通电桥存在的系统误差及其消除方法

我们考虑组成电桥的电阻元素的阻值不准所导致测量结果的误差,但阻值的不准确一般不会偏离太远,因此一般可以通过将比率臂电阻1R 、2R 选为标称值相同1R =2R ,比较臂0R 选高精度的电阻箱,然后调节比较臂0R 使电桥平衡,记为0R ;交换0R 和x R ,调节

0R 使电桥平衡,记为'0R 。当电桥平衡时,交换前后有102R R R R x =和12'

R R R R x =所以 '

00R R R x = (8)

这样就避免了因比率臂电阻1R 、2R 电阻不准确带来的误差。当然从公式(8)中虽然没有比率臂电阻1R 、2R 的出现,但他们的数值大小将影响系统的灵敏度。

4.检流计的保护

检流计是一个μΑ表,能够通过的电流不能太大,而电流在刚接通的时候一般不知道电流的大小,通常可能超过检流计的量

程而导致指针偏转超过边界甚至撞击损坏,为了保护检流计通常采用限流法(如图1)或分压法(如图2)控制。

分压法的电压可以逐渐增加。在刚开始接通电路时为保护检流计,可以使电压输出较小;当调节电桥到接近平衡时可以将输出电压增加以提高灵敏度,同时也可以将检流计支路的保护电阻

调至最小以提高灵敏度。

限流法是通过电路中的电阻和电压的合理搭配来保护检流计。检流计的量程一般为几十到几百μΑ。而电路中的直流稳压电源电压一般可以调节到2V 左右,电阻箱ZX21一般可以达到100K Ω,因此电阻1R 和2R 可以采用ZX21电阻箱并调节到最大(99999.9Ω)。串联在检流计回路的保护电阻一般可以采用几千欧姆或更大的滑线电阻或电阻箱,在电路处于非平衡状态时将保护电阻调节到最大起保护检流计的作用;在电路接近平衡时,将保护电阻调节到最小,这时检流计回路的电阻为检流计本身的内阻,这样可以使检流计的电流最大以提高灵敏度,这时还可以适当提高电源电压来提高电桥的灵敏度,但要注意此时调节电阻使电桥平衡时一般只能调节电阻箱的低位电阻(如果使用电阻箱

有四位数据可以调节后两位,如果使用电阻箱有三位或两位可以调节后一位),但要时刻注意检流计的指针的变化不要超过边界。 电桥灵敏度的推导: 如图1

g R R g

Rx R I I I I I I -=-=210 (9)

11)(R I R R I R I R g g x Rx =++保护 (10)

AB

R R AB R x Rx U R I R I U R I R I =+=+221100 (11)

将(9)式代入(11)式可得

1

21200)()(R I U R R I R I U R R I g AB R g AB x Rx +=++=+ (12)

将(9)式后一个式子代入(10)式得

x Rx R g g R I R I R R R I -=++121)(保护 (13)

将(12)代入(13)式得

x x g AB g AB g g R R R R I U R R R R I U R R R I 0

012

111)(++-

++=

++保护 (14)

将(14)式经过整理得

A I R R R R U g x A

B =-)(201 (15)

其中A 为

)()(021*********x g x x x R R R R R R R R R R R R R R R R R R A +++++++=)(

保护 我们考虑电桥在平衡位置一个微小变化。因而保护R =0,“限流电阻”也可以取为“0”。因此可以有

)(021*********'

x g x x x AB R R R R R R R R R R R R R R R R R A E

U ++++++==)

( (16)

由于考虑到的是电桥在平衡位置一个微小变化,因而可以忽略x R 的微小变化对'

A 的影响,因此我们可以把'A 当作常数。由(15)可得

'

201)

(A

R R R R E I x g -=

(17) 将(17)式对x R 求微分得

'2A

E

R R I x

g =

?? (18) 将(18)式代入(6)式中,得电桥灵敏度S 为

'

2A E

R R S S x ??=

检流计相对 (19)

最后经过整理得:

??

????++++++?=

)(检流计相对1)(1)(

211010210x g x R R R R R R R R R R R R R E

S S (20)

利用公式(1)简化为

?

????

?++++++?=

)(检流计相对x g x R R R R

R R R R R E

S S 0212102)(

电桥法测电阻18175

实验名称 惠斯登电桥测电阻 (所属实验室:大学物理实验中心217分室) 一、实验基本介绍 电桥是一种比较式仪器,是很重要的电磁学基本测量仪器之一。电桥按其结构特点可分为交流电桥和直流电桥,也可分为单臂电桥和双臂电桥;按工作状态可分为平衡电桥和非平衡电桥。惠斯登电桥称为单臂电桥,是最常用的直流电桥,主要用于低电阻的测量。 二、实验仪器介绍 实验仪器:QJ23型直流电阻电桥,万用电表,电阻若干只。 图 1 QJ23型直流电阻电桥、指针万用表、待测电阻 【QJ23型箱式惠斯登电桥】 如图1所示。箱式直流电桥具有便于携带、准确度高和使用方便等特点。其电路原理图如图2所示。R 1、R 2为比例臂,R s 为比较臂,改变b 点的位置就可以改变R 1/R 2(即比例系数K )的比值。例如将倍率开关 b 置于“102”时,便有 120.9998.90281.009409.09409.0981.009 1008.9020.999 R R +++++==+ 实验中R x 的误差主要取决于R s ,而不是R 1/R 2的比值。从图2可知,比较臂R s 由四只可变的标准电阻相互串联,其总阻值可达9999Ω。所以该电桥可测量1~9999000Ω范围内的电阻,基本量程为100~99990Ω。 调零旋钮 倍率选择 灵敏度旋钮

图3为QJ23型箱式电桥面板示意图。面板中下部有四个标有“1000 ?”、“100 ?”、“10 ?”和“1 ?”的旋钮,是用来调节比较臂R s的,调节范围为0~9999Ω。使用与读取方法同电阻箱。 面板右下角的“R x ”接线柱是用来联接被测电阻的; 左侧上方的“+E-”用于联接外部电源;“内、G、外”为 检流计选择端钮,当“G”和“内”用短路片联接时,则 在“G”和“外”之间需外接检流计;在“G”和“外” 短路时,则箱式电桥内附的检流计接入了电路。面板右 上角为倍率“K”选择开关。 面板左下角的“B”“G”按钮,从图2可以看出, 前者用于接通电源,后者用于接通检流计支路。在使用 时,“B”、“G”两个电健要同时使用,但需先按下“B”, 再按下“G”;断开时则先松开“G”,再松开“B”, 以保护检流计。 所以使用箱式电桥时,先将倍率K(R 1/R 2 )确定, 然后调节R S 使电桥平衡,由公式(3)便可计算出测量结果。 三、实验内容预习 实验目的 1. 理解直流电桥的构成和工作原理; 2. 掌握万用电表的使用和电桥的调节方法; 3. 用直流电桥测定电阻的阻值。 实验原理 惠斯登电桥测量电阻的原理 惠斯登电桥的原理如图4所示。图中R 1、R 2 、R s 是已 知其阻值的标准电阻,它们与待测电阻R x 构成一个四边形, 每一边都称为电桥的臂。R 1、R 2 称为比例臂,R s 称为比较臂, R x 称为待测臂。在A、B两端接直流电源E;在C、D两点间接检流计G,结构像桥一样,故称为电桥。当C、D两点间图3图2

电桥法原理

实验十八 电桥法测电阻 电桥是一种用电位比较法进行测量的仪器,被广泛用来精确测量许多电学量和非电量。在自动控制测量中也是常用的仪器之一。电桥按其用途可分为平衡电桥和非平衡电桥;按其使用的电源又可分为直流电桥和交流电桥;按其结构可分为单臂电桥和双臂电桥。本实验介绍的是直流电桥测量电阻。电阻按阻值的大小大致可分为三类:待测电阻值在1M?以上的为高阻;在1?至1M ?之间时称为中值电阻,可用单臂(惠斯登)电桥测;阻值在1?以下的为低值电阻,则必须使用双臂电桥(又称开尔文电桥)来进行测量。 一 实 验 目 的 (1)掌握直流电桥测电阻的原理和方法。 (2)学习并掌握双臂电桥测低值电阻的方法。 二 实 验 原 理 用伏安法测电阻时,由于电表精度的制约和电表内阻的影响,测量结果准确度较低。于是人们设计了电桥,它是通过平衡比较的测量方法,而表征电桥是否平衡,用的是检流计示零法。只要检流计的灵敏度足够高,其示零误差即可忽略。 用电桥测电阻的误差主要来自于比较,而比较是在待测电阻和标准电阻间进行的,标准电阻越准确,电桥法测电阻的精度就越高。 1.单臂(惠斯登)电桥的工作原理 单臂电桥线路如图1所示,被测电阻R X (即图中 R 3)与三个已知电阻R 1、R 2、R N 、连成电桥的四个臂。四边形的一个对角线接有检流计,称为“桥”,另一个对角线上接电源E ,称为电桥的电源对角线。电源接通,电桥线路中各支路均有电流通过。 A C 当 B 、D 两点之间的电位相等时,“桥”路中的电流,检流计指针指零,这时电桥处于平衡状态。此时 V 0=g I D B V =于是 2 R R N 1R R X = 根据电桥的平衡条件,若已知其中三个臂的电阻,就可以计算出另一个桥臂的电阻,因此,电桥测电阻的计算式为: N X R R R R 2 1= (1) 电阻2 1R R 为电桥的比率臂,称为倍率k ,为 比较臂。以QJ-23型箱式电桥为例,它构造精细,测量范围大(1~),精确度高(在 10~范围内精确度为),QJ-23型惠斯登电桥面板外形如图2:1-待测电阻接线柱; 2-检流计按钮开关G ; 3-电源按钮开关B ; 4-检流计; 5-检流计调零旋钮;6-左侧3个接线柱是检流计连接端,当连接片接通“外接”时,内附检流计被接入桥路,当连接片连通“内接”时,检流计被短路; 7-外接电源接线柱,箱内为3节2号干电池,约4.5V ,使用时应注意外接电源接线柱是否应短路; 8-比率臂,即上述电桥电路中N R 610ΩΩ5 10%2.0±X R 21R R N R 的比值,直接刻在转盘上; 9-比较臂,即上述电桥电路中电阻箱(本处 为四个转盘)。 2.双臂电桥测低值电阻的原理 用图1所示的单臂电桥测电阻时,其中比例臂电阻R 1、R 3可用较高的电阻, 因此, 与R 1、R 3 相连的导线 7 图2 QJ-23型电桥面板图

高中物理选修3-4知识点整理

选 修3—4 一、知识网络 周期:g L T π2= 机械振动 简谐运动 物理量:振幅、周期、频率 运动规律 简谐运动图象 阻尼振动 受力特点 回复力:F= - kx 弹簧振子:F= - kx 单摆:x L mg F -= 受迫振动 共振 波的叠加 干涉 衍射 多普勒效应 特性 实例 声波,超声波及其应用 机械波 形成和传播特点 类型 横波 纵波 描述方法 波的图象 波的公式:vT =λ x=vt 电磁波 电磁波的发现:麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场→预言电磁波的存在 赫兹证实电磁波的存在 电磁振荡:周期性变化的电场能与磁场能周期性变化,周期和频率 电磁波的发射和接收 电磁波与信息化社会:电视、雷达等 电磁波谱:无线电波、红外线、可见光、紫外线、x 射线、ν射线

二、考点解析 考点80 简谐运动 简谐运动的表达式和图象 要求:I 1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动。 简谐运动的回复力:即F = – kx 注意:其中x 都是相对平衡位置的位移。 区分:某一位置的位移(相对平衡位置)和某一过程的位移(相对起点) ⑴回复力始终指向平衡位置,始终与位移方向相反 ⑵―k ‖对一般的简谐运动,k 只是一个比例系数,而不能理解为劲度系数 ⑶F 回=-kx 是证明物体是否做简谐运动的依据 2)简谐运动的表达式: ―x = A sin (ωt +φ)‖ 3)简谐运动的图象:描述振子离开平衡位置的位移随时间遵从正弦(余弦)函数的规律变化的,要求能将图象与恰当的模型对应分析。可根据简谐运动的图象的斜率判别速度的方向,注意在振幅处速度无方向。 A 、简谐运动(关于平衡位置)对称、相等 ①同一位置:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相同. ②对称点:速度大小相等、方向可同可不同,位移、回复力、加速度大小相等、方向相反. 相对论简介 相对论的诞生:伽利略相对性原理 狭义相对论的两个基本假设:狭义相对性原理;光速不变原理 时间和空间的相对性:“同时”的相对性 长度的相对性: 20)(1c v l l -= 时间间隔的相对性:2 )(1c v t -?=?τ 相对论的时空观 狭义相对论的其他结论:相对论速度变换公式:21c v u v u u '+'= 相对论质量: 2 )(1c v m m -= 质能方程2mc E = 广义相对论简介:广义相对性原理;等效原理 广义相对论的几个结论:物质的引力使光线弯曲 引力场的存在使得空间不同位置的时间进程出现差别

惠斯登电桥原理及应用资料

惠斯登电桥的原理与应用 大学物理基础性实验 乐山电大幸荣安 【摘要】惠斯登电桥是大学物理基础性实验之一。教学辅导中发现,在理工科中,不同专业的学员,对惠斯登电桥原理的学习要求各不相同,有的专业学员对惠斯登电桥原理只作一般性了解和使用;而电子工程技术类的学员则作一般性了解和使用外,还要求对每一个原理在其它项目中的应用。本文对惠斯登电桥原理作了一般性的论证分析外,还对对惠斯登电桥原理在温度控制技术作了入门式讨论分析。 【关键词】惠斯登电桥交换测量法热敏电阻 这里介紹一种測量电阻值大小的方法,這种方法称为惠斯登电桥測量法。它的特別之处,是在于精确、精細,几乎省去人在判读時所形成的誤差。並且由于它的精細,我們要用它去測量电阻阻值和測量电阻随温度变化的情形,也就是电阻的温度系数。究竟惠斯登电桥是如何能够达到精确、精細的功能?以下就来了解它的原理。 一、惠斯登电桥(平衡电桥)测电阻的原理. 惠斯登电桥原理图1中,接通电源,调节 电桥平衡,即调节电桥四个“臂”R1、R2、R3、Rx,当检流计G的指针指零,B、D 两点电位相等,则有 式称为比率k。箱式惠斯登电桥的比率K有0.001,0.01,0.1,1, 10,100, 1000七档。根据待测电阻Rx大小选择K,调节R3使检流计G为零, 由R x = KR3求出待测电阻Rx值。 电流计G 的B、D两点电位

(7--2) (7--3) 由上式看出,当R1R3= R2R x时,电流计G 的B、D两点电位差Uo=0,电桥处于平衡,这就是惠斯登电桥。 二、箱式惠斯登电桥的结构线路(以QJ23型箱式直流单臂电桥为例)图(a) 分析箱式惠斯登电桥的结构线路.提示: 当比率转换开关K连接到0.001的挡位时, R1代表一只电阻的值,而R2代表7只电阻串联值.在不同的挡位时,R1 R2所代表的电阻串联值.各不相同.Rx:被测电阻接线柱R3:由四个可变电阻箱串联组成.每个可变电阻箱的挡位X1Ω、X10Ω、X100Ω、X1000Ω构成.箱式惠斯登电桥的操作法1.检流计的指针作调零处理. 2.确定待测量电阻的大致数值,在Rx被测电阻接线柱间接上被测量电阻. 3.根据被测量电阻的大小值选定比率转换开关K连接的挡位. 4.测量时用跃接法按下"B"和"G"按钮(按下后立即 松开),若指针偏向"+"方向.则增加R3的数值;若指针偏向"-"方向,则减小R3的数值,反复调节直至电桥平衡. 5.测量有感电阻(如电机、变压器等)时,应先接通"B"和后接通"G"按钮,断开时应先放开"G"再放开"B". 6.使用完毕,必须断开"B"和"G"按钮,并且将检流计的联接片接在"内接"位置,也保护检流计.

惠斯通电桥原理

惠斯通电桥 在实验中,测量电阻的常见方法有伏安法和电桥法。伏安法测量电阻的公式为R=U/I (测量的电阻两端电压/测量的流经电阻的电流),除了电流表和电压表本身的精度外, 还有电表本身的电阻,不论电表是内接或外接都无法同时测出流经电阻的电流 I 和电阻 两端的电压U ,不可避免存在测量线路缺陷。电桥是用比较法测量电阻的仪器。电桥的 特点是灵敏、准确、使用方便,它被广泛地应用于现代工业自动控制电气技术、非电量 转化为电学量测量中。电桥可分为直流电桥、交流电桥,直流电桥可以用于测电阻,交 流电桥可用于测电容、电感。通过传感器可以将压力、温度等非电学量转化为传感器阻 抗的变化进行测量。 惠斯通电桥属于直流电桥,主要用于测量中等数值的电阻(101 ~106 Q )O 对于太小 的电阻 (10"6 ~101 Q 量级),要考虑接触电阻、导线电阻,可考虑使用双臂电桥;对于大 电阻(107Q 级),要考虑使用冲击检流计等方法。惠斯通电桥使用检流计作为指零仪表, 而实验室用检流计属于 1惠斯通电桥测量原理 图1是惠斯通电桥的原理图。四个电阻 R o 、R i 、R 2、 R x 连成四边形,称为电桥的四个臂。四边形的一个对角线 连有检流计,称为“桥”;四边形的另一对角线接上电源, 称为电桥的“电源对角线” 。E 为线路中供电电源,学生 实验用双路直流稳压电源,电压可在 0-30V 之间调节。R 保护为较大的可变电阻,在电桥不平衡时取最大电阻作限流 作用以保护检流计;当电桥接近平衡时取最小值以提高检 流计的灵敏度。限流电阻用于限制电流的大小,主要目的 在于保护检流计和改变电桥灵敏度。 电源接通时,电桥线路中各支路均有电流通过。当C 、D 两点之间的电位不相等时, 桥路中的电流I g -0,检流计的指针发生偏转;当 C 、D 两点之间的电位相等时,桥路 中的电流I g =0,检流计指针指零(检流计的零点在刻度盘的中间),这时我们称电桥 处于平衡状态。因此电桥处于平衡状态时有: I g =0 U AC =U AD 于是空二邑即R x R 2二R 0R 1 R 0 R 2 此式说明,电桥平衡时,电桥相对臂电阻的乘积相等。这就是电桥的平衡条件。 根据电桥的平衡条件,若已知其中三个臂的电阻,就可以计算出另一个桥臂电阻, 因此,电桥测电阻的计算式为 R x 二邑凤二 KR 。 (1) R 2 电阻R 1、R 2为电桥的比率臂,R x 为待测臂,R 为比较臂,R 。作为比较的标准,实 A 表,电桥的灵敏度要受检流计的限制。 [1 U CB = U DB 1 Rx = 1 R0 I R1 = I R2 1 Rx R x = 1 R1 R 1 1 R0R 0 = 1 R2 R 2

直流单臂电桥的工作原理

直流单臂电桥的工作原理 直流单臂电桥又称惠斯登电桥,其原理电路如上图所示,图中ac、cb、bd、da四条支路为电桥的四个臂,其中R1(RX)为被测臂,R2、R3构成比列臂,R4称为较臂。在电桥的对角线cd 上连接指零仪表(一般是检流计)另一对角线ab上连接直流电源E。 在电桥投入工作时,先接通电源按钮SB,调节电桥的一个臂或几个臂的标准电阻,使检流计指针指示为零,这时,就表示电桥达到平衡。在电桥平衡时,cd两点的电位相等。 则:Uac=Uad, Ucb=Udb 即:I1R1=I4R4, I2R2=I3R3 将这两式相除,得:I1R1/I2R2=I4R4/I3R3 当电桥平衡时,Ig=0 ∴I1=I2,I3=I4 代入上式得: R1R3=R2R4 上式是电桥的平衡条件。它说明:在电桥平衡时,两相对桥臂上电阻乘积等于另外两相对桥臂上电阻的乘积。根据这个关系,在已知三个臂电阻的情况下,就可确定另外一个臂的被测电阻的电阻值。 设被测电阻RX是位于第一个桥臂中,则RX=R2R4/R3。 图1 单臂电桥原理图R1为被测电阻R2、R3、R4为可调电阻P为检流计E为电池。 单臂电桥的使用方法 1、先将检流计的锁扣打开(内外),调节调零器把指针调到零位。 2、把被测电阻接在?的位置上。 要求用较粗较短的连接导线,并将漆膜刮净。接头拧紧,避免采用线夹。因为接头接触不良将使电桥的平衡不稳定,严重时可能损坏检流计。 3、估计被测电阻的大小,选择适当的桥臂比率,使比较臂的四档都能被充分利用。这样容易把电桥调到平衡,并能保证测量结果的4位有效数字。 4、先按电源按钮B,(锁定)再按下检流计的按钮G(点接)。 5、调整比较臂电阻使检流计指向零位,电桥平衡。若指针指?,则需增加比较臂电阻,针指向?,则需减小比较臂电阻。 6、读取数据:比较臂比率臂=被测电阻 7、测量完毕,先断开检流计按钮,在断开电源按钮,然后拆除被测电阻,再将检流计锁扣锁上,以防搬动过程中损坏检流计。 )从而可以测量R3/R4×(R1=R2数值,当电桥平衡时有:R4、R3、R2通过电桥调节.

交流电桥的原理和应用

交流电桥的原理和应用 交流电桥是一种比较式仪器,在电测技术中占有重要地位。它主要用于测量交流等效电阻及其时间常数;电容及其介质损耗;自感及其线圈品质因数和互感等电参数的精密测量,也可用于非电量变换为相应电量参数的精密测量。 常用的交流电桥分为阻抗比电桥和变压器电桥两大类。习惯上一般称阻抗比电桥为交流电桥。本实验中交流电桥指的是阻抗比电桥。交流电桥的线路虽然和直流单电桥线路具有同样的结构形式,但因为它的四个臂是阻抗,所以它的平衡条件、线路的组成以及实现平衡的调整过程都比直流电桥复杂。 【交流电桥的原理】 图1是交流电桥的原理线路。它与直流单电桥原理相似。在交流电桥中,四个桥臂一般是由交流电路元件如电阻、电感、电容组成;电桥的电源通常是正弦交流电源;交流平衡指示仪的种类很多,适用于不同频率范围。频率为200Hz 以下时可采用谐振式检流计;音频范围内可采用耳机作为平衡指示器;音频或更高的频率时也可采用电子指零仪器;也有用电子示波器或交流毫伏表作为平衡指示器的。本实验采用高灵敏度的电子放大式指零仪,有足够的灵敏度。指示器指零时,电桥达到平衡。 图1 交流电桥原理 一、交流电桥的平衡条件 我们在正弦稳态的条件下讨论交流电桥的基本原理。在交流电桥中,四个桥臂由阻抗元件组成,在电桥的一个对角线cd 上接入交流指零仪,另一对角线ab 上接入交流电源。 当调节电桥参数,使交流指零仪中无电流通过时(即I 0=0),cd 两点的电位相等,电桥达到平衡,这时有 U ac =U ad U cb =U db 即 I 1Z 1=I 4Z 4 I 2Z 2=I 3Z 3 两式相除有 3 34 4221Z I Z I Z I Z I 1 当电桥平衡时,I 0=0,由此可得 I 1=I 2,I 3=I 4 所以 Z 1Z 3=Z 2Z 4 (1) 上式就是交流电桥的平衡条件,它说明:当交流电桥达到平衡时,相对桥臂的阻抗的乘

单臂电桥的工作原理(详细)

单臂电桥的工作原理 (1) 单臂电桥的结构及原理 直流单臂电桥又称惠斯登电桥,其原理电路如图1(a )所示。图中被测电阻R x 和R 2、R 3、R 4三个已知电阻连接成四边形。四个 电阻的连接点a 、b 、c 、d 称为电桥的顶点;由这四个电阻组成的支路ac 、cb 、ad 、bd 称为桥臂。在电桥的两个顶点a 、b 之间(一般称为电桥输入端)接一个直流电源,而在电桥的另外两个顶点c 、d 之间(一般称为电桥输出端)接一个指零仪(检流计)。 当电桥电源接通之后,调节桥臂电阻R 2、R 3和R 4,使c 、d 两个顶点的电位相等,即指零仪两端没有电位差,其电流I g =0,这种状态称为电桥平衡。当电桥平衡时,有 Rx=R 2*R 4 / R 3 上式中,R 2 /R 3称为电桥的比率臂,电阻R 4称为比较臂。当电桥 平衡时,可以由R 2、R 3和R 4的电阻值求得被测电阻R x 。为读数方 便,制造时,使R 2 /R 3的值为十进制倍数的比率,如0.1、1.0、 10、100。等。这样,R x 便为已知量R 4的十进制倍数,便于读取被 测量。 用电桥测电阻实际上是将被测电阻与已知标准电阻进行比较来确定被测电阻值,只要比率臂电阻和比较臂电阻R 2、R 3和R 4足够精确,R x 的测量准确度也就比较高。直流单臂电桥的准确度分 为0. 01、0.02、0.05、0.1、0.2、0.5、1.0、2.0共8个等级。 由于上式是根据I g =0得出的结论,所以指零仪必须采用高灵 敏度的检 流计,以确保电桥的平衡条件,从而保证电桥的测量精度。 (2) QJ23型单臂电桥

电桥的种类很多,图1是常见的便携式QJ23型单臂电桥 的原理电路和面板图,其准确度为0.2级。比率臂R 2 /R 3 由8 个电阻组成,共有7个挡位,分别为“10-3”、“10-2”、“l0-l”、“1”、“10”、“102”和“103”,示于面板左上方的读数盘上,由转换开关换接。比较臂R 4 由4个可调电阻箱串联组成,这4个电阻箱分别由9个1Ω、9个10Ω、9个100Ω、9个1000Ω的电阻组成,它们示于面板右上方的读数盘上,比较臂R4的值由面板上这4个读数盘所示的电阻值相加而得。调节面板上的读数盘,可得到0~9999Ω范围内任意的电阻值。 (a)原理电路图(b)面板图 图1 便携式QJ23型单臂电桥 l一倍率旋钮;2一比较臂读数盘;3~检流计电桥可用内附检流计,也可用外接检流计。在面板左下方有三个接线柱,使用内接检流计时,用接线柱上的金属片将下面两个接线柱短接。检流计上装有锁扣,可将可动部分锁住,以免搬动时损坏悬丝。需要外接检流计时,用金属片将上面两个接线柱短接(即将内附检流计短接),并将外接检流计接在下面两个接线

电桥法测电阻

实验十 电桥法测电阻 电桥是一种精密的电学测量仪器,可用来测量电阻、电容、电感等电学量,并能通过这些量的测量测出某些非电学量,如温度、真空度和压力等,被广泛应用在工业生产的自动控制方面。 【实验目的】 ⒈ 掌握用惠斯登电桥测电阻的原理和特点。 ⒉ 学会QJ19型两用直流电桥的使用。 ⒊ 了解双臂电桥测低电阻的原理和特点。 【实验原理】 直流电桥主要分单臂电桥和双臂电桥。单臂电桥又称惠斯登电桥,一般用来测量102 ~ 106Ω的电阻。双臂电桥又称开尔文电桥,可用来测量10-5~10-2 Ω范围的电阻。实验所用的 QJ19型电桥是单、双臂两用直流电桥。 ⒈ 惠斯登单臂电桥的工作原理 惠斯登电桥的原理电路如图3-10-1所示,四个电阻1R 、2R 、3R 、和x R 称为电桥的四个臂,组成一个四边形ABCD ,对角D 和B 之间接检流计G 构成“桥”,用以比较“桥”两端的电位,当D 和B 两点的电位相等时,检流计G 指零,电桥达到了平衡状态。此时有 2211R I R I =,33R I R I x x = 由于x I I =1,23I I =因此可得 32 1 R R R R X = (3-10-1) (3-10-1)式为惠斯登电桥的平衡条件,根据1R 、2R 和3R 的大小,可以计算出待测电阻x R 的阻值,一般称1R 、2R 为比率臂,3R 为比较臂。 图 3-10-1 惠斯登电桥的原理电路图

⒉ 开尔文双臂电桥的工作原理 在惠斯登电桥电路中,存在着接触电阻和接线电阻,这对低电阻的测量将带来很大的误差。特别是当待测电阻的阻值与接触电阻同数量级时,测量便无法进行。在此情形下,为了获得准确的测量结果,必须采用开尔文双臂电桥进行测量。开尔文双臂电桥的电路结构如图3-10-2所示,x R 为待测电阻,S R 为低值标准电阻,1R 、2R 、内R 和外R 均为阻值较大的电阻,Y 表示联接x R 和 S R 的接线电阻(其中包括这一接线与x R 和S R 的接触电阻)它与x R ,S R 同数量级,是引 起测量误差的重要因素,必须设法消除它的影响。对图中以7、2、4为顶点的△形电路变换成Y 型电路后,就可把双臂电桥变成一个惠斯登电桥,根据惠斯登电桥的平衡条件,不难得到开尔文电桥的平衡方程。 )(2 1221R R R R r R R r R R R R R S X 内外内外-++?+= (3-10-2) 不难看出,如果在电桥结构上能够做到内R =外R 和1R =2R (3-10-2)式右边的第二项为零,此时平衡方程就变成如下形式: S R R R R 1 2外= (3-10-3) 实际上不可能完全做到内R =外R ,1R =2R ,但只要把r 值做得很小,(3-10-2)式右边的第二项便为二阶无限小量,此时就可以认为(3-10-3)式成立。 ⒊ 电桥的灵敏度 (3-10-1)式和(3-10-3)式是在电桥平衡条件下推导出来的,在实验中测试者是依据检流计G 的指针有无偏转来判断电桥是否平衡的。然而,检流计的灵敏度是有限的。例如,选用电流灵敏度为1格/1微安的检流计做为指零仪,当通过检流计的电流小于10-7 安培时,指针 图3-10-2双臂电桥的电路结构图

光的衍射及其应用

光的衍射及其应用 摘要:光在传播的过程中能绕过障碍物边缘,偏离直线传播,而进入几何阴影,并出现光强分布不均匀的现象称为光的衍射。光波的波长比声波的波长短很多,这也是为什么人们最先意识到声波的衍射而往往把光波的衍射当成直线的传播,直到1814年,法国物理学家费涅尔注意到光在传播过程中,遇到障碍物,并且障碍物的线度和光的波长可以比拟时,就会出现偏离原来直线传播的路径,在障碍物背后本该出现阴影的地方出现亮纹,而在本该亮的地方出现暗纹的现象,才有了今天的光的衍射并加以研究。 关键词:费涅尔,惠更斯原理,惠更斯—费涅尔原理,柏松亮点,夫琅和费单缝衍射。 一、常见衍射实验的分析。 最常见的光的衍射实验就是单缝衍射和圆孔衍射两种。 单缝衍射即是用一束平行光射到单缝上,在紧贴单缝后放一面凸透镜,注意单缝要很窄,因为要保证光波的波长与狭缝的宽度可比拟,然后在透镜的焦点出放一白板,则可以看到明暗相间的的条纹。这就是光的衍射。 圆孔衍射就是将单缝换成圆孔,当然一样要保证圆孔的直径大小与光的波长可比拟,则可以在物板上看到中间是亮斑而周围是亮环的图形。 上面两个实验我们在高中的就接触过,但没有在单缝或是圆孔后面加一个透镜,而现在,将圆孔后的透镜移走,则可以看到明暗相间的同心圆。 而如果把圆孔换成圆板,当圆板的大小远远大于光的波长时,只能看见物屏上的圆形阴影,而渐渐减小圆环的大小,则可以在圆板大小与光波波长可比拟时看到“柏松亮点”,即在圆形阴影中心的亮点,而圆形的阴影周围是明暗相间的同心圆。 总结以上实验可知:光波在哪个方向受限制,就往哪个方向衍射;当障碍物的大小与光波的波长可比拟时,光的衍射现象最明显;光具有波动性(类比声波)。 如果说上述的实验是光的衍射实验的入门,那么夫琅和费单缝衍射则是光的衍射实验中最常见的仪器。它与之前用的仪器最大的不同就是光源和衍射场到物屏的距离都是无限远,听起来向无法实现似的,但这实质上只是想把入射的光线看成是平行光且在无限远处相干叠加兵形成衍射。其实验装置是一束平行光射在小圆孔s上,再经凸透镜变成,垂直于单缝的光线,光线射到单缝上,根据惠更斯—费涅尔原理,单缝上每一个点都是子波波源,发出衍射波,它们相干叠加形成明暗相间的衍射图样,也

电桥法测电阻

电桥法测电阻

————————————————————————————————作者:————————————————————————————————日期: 2

3 实验十二 用电桥法测电阻 [实验目的] 1.研究直流惠斯登电桥的平衡条件。 2.学会用直流电桥的平衡法测电阻。 3.掌握用换位测量法减小系统误差的方法。 4.掌握板式和箱式惠斯登电桥的使用方法。 5.了解箱式双臂电桥(开尔文电桥)测低电阻的方法。 [实验原理] 1.惠斯登电桥测电阻 惠斯登电桥是一种精密测量电阻的常用仪器。以往我们所知道的用伏-安法测电阻、用万用表(欧姆表)测电阻都只是一种粗略测量电阻阻值的方法,其相对误差一般都在百分之几以上。原因是在上述这些测量中电表本身的非理想化,(所谓电表的理想化是指:电压表内阻应无穷大,电流表内阻应等于0。)就会给测量带来附加的误差。为了减小这种由于电表非理想化所带来的测量误差,惠斯登就专门设计了一种用于测量电阻的电路──惠斯登电桥。在这个电路中,只要想办法使电流表(检流计)两端电势相等,则通过电表的电流就可以为零。这种情况就称为“电桥平衡”。根据电桥平衡所需满足的关系,我们就可精确地测量电阻了。 (1)惠斯登电桥的测量原理如下 当1R 、2R 、3R 、4R 电阻和检流计等连成如图4-12-1所示电路后,若A 点比B 点具有较高电势时,就会有电流从A 点向B 点方向流动。而从A 点向B 点方向的电流在1R 、3R 两电阻上分为两支,然后通过2R 和4R 又使电流汇于一点。这时假定C 、D 两点电势恰好相等、通过检流计G 的电流恰好为零,设通过ACB 路的电流为1I ,通过ADB 路的电流为2I ,则应有关系: ?? ?==4 2213 211R I R I R I R I (4-12-1) 将式(4-12-1)上下相除,得: 4 3 21R R R R = (4-12-2) 式(4-12-2)表示电桥平衡时,图4-12-1中上边左、右两电阻的阻值与下边左、右两电阻的阻值对应成比例。这就是电桥平衡(即C 、D 间电势相等、CD 间电流为零)的充分必要条件。 根据式(4-12-2)的关系,若已知电桥4个电阻其中的任意3个电阻的阻值,则第4个

《光学基础学习知识原理与应用》之双折射基础学习知识原理及其应用

双折射原理及应用 双折射(birefringence)是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。当光射入各向异性晶体(如方解石晶体)后,可以观察到有两束折射光,这种现象称为光的双折射现象。两束折射线中的一束始终遵守折射定律这一束折射光称为寻常光,通常用o表示,简称o光;另一束折射光不遵守普通的折射定律这束光通常称为非常光,用e表示,简称e光。晶体内存在着一个特殊方向,光沿这个方向传播时不产生双折射,即o光和e光重合,在该方向o光和e光的折射率相等,光的传播速度相等。这个特殊的方向称为晶体的光轴。光轴”不是指一条直线,而是强调其“方向”。晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。o光的主平面,e光的光振动在e光的主平面内。 如何解释双折射呢?惠更斯有这样的解释。1.寻常光(o光)和非常光(e光)一束光线进入方解石晶体(碳酸钙的天然晶体)后,分裂成两束光能,它们沿不同方向折射,这现象称为双折射,这是由晶体的各向异性造成的。除立方系晶体(例如岩盐)外,光线进入一般晶体时,都将产生双折射现象。显然,晶体愈厚,射出的光束分得愈开。当改变入射角i时,o光恒遵守通常的折射定律,e光不符合折射定律。2.光轴及主平面。改变入射光的方向时,我们将发现,在方解石这类晶体内部有一确定的方向,光沿这个方向传播时,寻常光和非常光不再分开,不产生双折现象,这一方向称为晶体的光轴。

天然的方解石晶体,是六面棱体,有八个顶点,其中有两个特殊的顶点A和D,相交于A、D两点的棱边之间的夹角,各为102°的钝角.它的光轴方向可以这样来确定,从三个钝角相会合的任一顶点(A或D)引出一条直线,使它和晶体各邻边成等角,这一直线便是光轴方向。当然,在晶体内任何一条与上述光轴方向平行的直线都是光轴。晶体中仅具有一个光轴方向的,称为单轴晶体(例如方解石、石英等)。有些晶体具有两个光轴方向,称为双轴晶体(例如云母、硫磺等)。在晶体中,我们把包含光轴和任一已知光线所组成的平面称为晶体中该光线的主平面,就是o光的主平面;由e光和光轴所组成的平面,就是e光的主平面。 下面通过离子来说明。取一块冰洲石(方解石的一种,化学成分是CaCO3),放在一张有字的纸上,我们将看到双重的像。平常我们把一块厚玻璃砖在字纸上,我们只看到一个像,这个像好象比实际的物体浮起了一点,这是因为光的折射引起的,折射率越大,像浮起来的高度越大,我们可以看到,在冰洲石内的两个像浮起的高度是不同的,这表明,光在这种晶体内成了两束,它们的折射程度不同。这种现象叫做双折射。 下面我们通过一系列实验来说明双折射现象的特点和规律。 1、o光和e光: 如下图,让一束平等的自然光束正入射在冰洲石晶体的一个表面上,我们就会发现光束分解成两束。按照光的折射定律,正入射时光线不应偏折。而上述两束折射光中的一束确实在晶体中沿原方向传

惠斯通电桥原理

惠斯通电桥原理 This model paper was revised by the Standardization Office on December 10, 2020

惠斯通电桥 在实验中,测量电阻的常见方法有伏安法和电桥法。伏安法测量电阻的公式为R=U/I (测量的电阻两端电压/测量的流经电阻的电流),除了电流表和电压表本身的精度外, 还有电表本身的电阻,不论电表是内接或外接都无法同时测出流经电阻的电流I和电阻两 端的电压U,不可避免存在测量线路缺陷。电桥是用比较法测量电阻的仪器。电桥的特点 是灵敏、准确、使用方便,它被广泛地应用于现代工业自动控制电气技术、非电量转化为 电学量测量中。电桥可分为直流电桥、交流电桥,直流电桥可以用于测电阻,交流电桥可 用于测电容、电感。通过传感器可以将压力、温度等非电学量转化为传感器阻抗的变化进 行测量。 惠斯通电桥属于直流电桥,主要用于测量中等数值的电阻(101~106Ω)。对于太小的 电阻(10-6~101Ω量级),要考虑接触电阻、导线电阻,可考虑使用双臂电桥;对于大电 阻(107Ω级),要考虑使用冲击检流计等方法。惠斯通电桥使用检流计作为指零仪表, 而实验室用检流计属于μΑ表,电桥的灵敏度要受检流计的限制。 1.惠斯通电桥测量原理 图1是惠斯通电桥的原理图。四个电阻R0、R1、R2、R x Array连成四边形,称为电桥的四个臂。四边形的一个对角线连有 检流计,称为“桥”;四边形的另一对角线接上电源,称为 电桥的“电源对角线”。E为线路中供电电源,学生实验用 双路直流稳压电源,电压可在0-30V之间调节。R保护为较大 的可变电阻,在电桥不平衡时取最大电阻作限流作用以保护检流计;当电桥接近平衡时取 最小值以提高检流计的灵敏度。限流电阻用于限制电流的大小,主要目的在于保护检流计 和改变电桥灵敏度。

单臂电桥的工作原理(详细)

单臂电桥的工作原理 (1)单臂电桥的结构及原理 直流单臂电桥又称惠斯登电桥,其原理电路如图1(a)所示。图中被测电阻R x和R2、R3、R4三个已知电阻连接成四边形。四个电阻的连接点a、b、c、d称为电桥的顶点;由这四个电阻组成的支路ac、cb、ad、bd称为桥臂。在电桥的两个顶点a、b之间(一般称为电桥输入端)接一个直流电源,而在电桥的另外两个顶点c、d之间(一般称为电桥输出端)接一个指零仪(检流计)。 当电桥电源接通之后,调节桥臂电阻R2、R3和R4,使c、d 两个顶点的电位相等,即指零仪两端没有电位差,其电流I g =0,这种状态称为电桥平衡。当电桥平衡时,有 Rx=R2*R4 / R3 上式中,R2 /R3称为电桥的比率臂,电阻R4称为比较臂。当电桥平衡时,可以由R2、R3和R4的电阻值求得被测电阻R x。为读数方便,制造时,使R2 /R3的值为十进制倍数的比率,如0.1、1.0、10、100。等。这样,R x便为已知量R4的十进制倍数,便于读取被测量。 用电桥测电阻实际上是将被测电阻与已知标准电阻进行比较

来确定被测电阻值,只要比率臂电阻和比较臂电阻R2、R3和R4足够精确,R x的测量准确度也就比较高。直流单臂电桥的准确度分为0. 01、0.02、0.05、0.1、0.2、0.5、1.0、2.0共8个等级。 由于上式是根据I g=0得出的结论,所以指零仪必须采用高灵敏度的检 流计,以确保电桥的平衡条件,从而保证电桥的测量精度。 (2)QJ23型单臂电桥 电桥的种类很多,图1是常见的便携式QJ23型单臂电桥的原理电路和面板图,其准确度为0.2级。比率臂R2 /R3由8个电阻组成,共有7个挡位,分别为“10-3”、“10-2”、“l0-l”、“1”、“10”、“102”和“103”,示于面板左上方的读数盘上,由转换开关换接。比较臂R4由4个可调电阻箱串联组成,这4个电阻箱分别由9个1Ω、9个10Ω、9个100Ω、9个1000Ω的电阻组成,它们示于面板右上方的读数盘上,比较臂R4的值由面板上这4个读数盘所示的电阻值相加而得。调节面板上的读数盘,可得到0~9999Ω围任意的电阻值。

高考物理电学十大方法精讲 方法09电桥法

方法09电桥法 如图:R 1、R 2、R 3、R 4是电桥的四个臂,电桥的一组对角顶点a 、b 之间接电阻R ,对角c 、d 之间接电源,如果所接电源为直流电源,则这种电桥称为直流电桥。 电桥电路的主要特点就是:当四个桥臂电阻的阻值满足一定关系时,会使接在对角线a 、b 间的电阻R 中没有电流通过。这种情况称平衡状态。 要达到平衡条件:必须满足a 、b 两点电势相同。 U da =I a R 1 U ac =I a R 2 U db =I b R 3 U bc =I b R 4 U da =U db U ac =U bc R 1I a =R 3I b R 2I a =R 4I b 13 24 R R R R =或R 1R 4=R 2R 3直流电桥的平衡条件是:对臂电阻的乘积相等. 【调研1】 如图所示是一种测量电阻的实验装置电路图,其中R 1、R 2是未知的定值定值,R 3是保护电阻,R 是电阻箱,R x 是待测电阻,V 是一只零刻度在中央、指针可以左右偏转的双向电压表.闭合开关S 1、S 2,调节R ,使电压表V 的指针指在零刻度处,这时R 的读数为90Ω;将R 1、R 2互换后,再次闭合S 1、S 2,调节R ,使电压表V 的指针指在零刻度处,这时R 的读数为160Ω,那么被测电阻R x 的数值及R 1与R 2的比值分别为 ( ) A. 120Ω 3:4 B. 125Ω 4:3 C. 160Ω 16:9 D. 250Ω 9:16 解析: 此题中的电路图是电桥电路图,其中R 、R x 、R 1、R 2称为电桥的四个臂,调节电阻箱R 适当时,使电压表的读数为零,此时称电桥平衡;这时要满足的条件为12 x R R R R =,由该条件即可求出 R x 及R 1、R 2的比值;当R =90Ω时,即12 90x R R R =,R 1、R 2互换后,R =160Ω,即12 160 x R R R =,所以90160 x x R R =得R x =120Ω.进一步求出12 34 R R =.A 对. 【调研2】如图甲所示电路称为惠斯通电桥,当通过灵敏电流计G 的电流I g =0时,电桥平衡,可 R 1 R 2 R 4 R 3 R d c a b E r I a I a I b I b R 1 R 2 R x R V S 2 R 3 S 1

光的介绍

光的介绍 狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X 射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。 光学的发展简史 光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。 人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。 自《墨经)开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。 1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。 牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。 牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。 惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。 19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝干涉现象。菲涅耳于1818年以杨氏干涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。 在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。 1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。 1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。 然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解

直流双臂电桥工作原理

直流双臂电桥的工作原理 直流双臂电桥又叫凯尔文电桥,其工作原理电路如图1所示,图中Rx是被测电阻,Rn是比较用的可调电阻。Rx和Rn各有两对端钮,C1和C2、Cn1和On2是它们的电流端钮,P1和P2、Pn1和Pn2是它们的电位端钮。接线时必须使被测电阻Rx只在电位端钮P1和P2之间,而电流端钮在电位端钮的外侧,否则就不能排除和减少接线电阻与接触电阻对测量结果的影响。比较用可调电阻的电流端钮Cn2与被测电阻的电流端钮C2用电阻为r的粗导线连接起来。R1、R1'、R2和R2'是桥臂电阻,其阻值均在lOΩ以上。在结构上把R1和R'1以及R2和R2'做成同轴调节电阻,以便改变R1或R2'的同时,R1'和R2'也会随之变化,并能始终保持 测量时接上RX调节各桥臂电阻使电桥平衡。此时,因为Ig=0,可得到被测电阻Rx为 图1 直流双臂电桥工作原理电路

可见,被测电阻Rx仅决定于桥臂电阻Rz和R1的比值及比较用可调电阻Rn 而与粗导线电阻r无关。比值R2/R1称为直流双臂电桥的倍率。所以电桥平衡时 被测电阻值=倍率读数×比较用可调电阻读数 因此,为了保证测量的准确性,连接Rx和Rn电流端钮的导线应尽量选用导电性能良好且短而粗的导线。 只要能保证,R1、R1'、R2和R2'均大于1OΩ,r又很小,且 接线正确,直流双臂电桥就可较好地消除或减小接线电阻与接触电阻的影响。因此,用直流双臂电桥测量小电阻时,能得到较准确的测量结果。 实验简介 电阻按照阻值大小可分为高电阻(100KΩ以上)、中电阻(1Ω ~100KΩ)和低电阻(1Ω 以下)三种。一般说导线本身以及和接点处引起的电路中附加电阻约为>0.1Ω,这样在测低电阻时就不能把它忽略掉。对惠斯通电桥加以改进而成的双臂电桥(又称开尔文电桥)消除了附加电阻的影响,适用于10-5~102 Ω电阻的测量。本实验要求在掌握双臂电桥工作原理的基础上,用双臂电桥测金属材料的电阻率。 实验原理 我们考察接线电阻和接触电阻是怎样对低值电阻测量结果产生影响的。例如用安培表和毫伏表按欧姆定律R=V/I测量电阻Rx,电路图如图 1 所示,

相关文档
最新文档