电路与模拟电子学第3章动态电路分析

合集下载

《模拟电子技术基础》电子教案 第3章 负反馈放大电路

《模拟电子技术基础》电子教案 第3章 负反馈放大电路
负反馈放大电路也称为闭环放大电路;对应地,未引入反
下一页 返回
3.1 反馈的基本概念
馈的放大电路称为开环放大电路。在反馈放大电路中,将输出 回路与输入回路相连接的中间环节称为反馈网络,一般有电阻、 电容、电感元件组成。反馈的形成实际上就是通过反馈网络, 将输出回路中的信号引回到输入回路,以一定的形式与输入信 号相叠加,将叠加后所得的信号作为净输入信号输入到电路中 去。
上一页 下一页
3.2 反馈类型及判断
馈。由于输入的瞬时极性和反馈极性分别出现在输入端的基极 和发射极,不在同一电极上,应是串联反馈。故Rf引入的是电流 串联负反馈。 4.电流并联负反馈
通过反馈电阻Rf,从输出级的发射极引入到输入级的基极。 由于反馈的引出端与输出电压端不在同一电极,故为电流反 馈;反馈引入端与输入信号端在同一电极,故为并联反馈。按 瞬时极性法判断是负反馈。
从电路结构上也可判断串联反馈和并联反馈,即反馈信号
上一页 下一页
3.2 反馈类型及判断
与输入信号出现在输入端的同一个电极上,是并联反馈,如果 反馈信号与输入信号出现在输入端的不同两个电极上,应是串 联反馈。
反馈信号在放大电路输入端是以电压形式(串联反馈)还 是以电流形式(并联反馈)出现,与其在输出回路中的采样方 式并无关系。也就是说,不论是电压反馈还是电流反馈,它们 的反馈信号在输入端都可能以电压或电流两种形式中的一种与 输入信号去叠加。是电压反馈还是电流反馈仅取决于从输出端 的采样方式,是串联反馈还是并联反馈则仅取决于输入端的叠 加方式。
负反馈放大电路主要由基本放大电路和反馈网络两大部分 组成。若设有反馈网络,仅有基本放大电路,则该电路就是一 个开环放大电路。有了反馈网络,该电路则为闭环放大电路。
上一页 返回

动态电路分析

动态电路分析
兼容性与可扩展性
未来的动态电路将更加注重兼容性与 可扩展性,以适应不同系统和应用的 需求。
感谢您的观看
THANKS
实现方式
采用高级编程语言(如Python、C)或电路设计自动化 软件(如MATLAB、Simulink)进行实现。
优化设计实例分析
实例一
某数字信号处理电路的优化 设计,通过遗传算法对电路 结构进行优化,实现了功耗
降低20%的效果。
实例二
某无线通信收发机的优化设 计,采用模拟退火算法对电 路参数进行优化,提高了信
时域分析法的缺点
计算量大,特别是对于复杂电路,需要求解微分方程, 计算效率较低。
频域分析法
频域分析法的优点
可以方便地处理正弦信号和周期信号,计算量相对较小,特别适合于求解线性时不变电路。
频域分析法的缺点
对于非线性或时变电路,频域分析法可能不适用。
复频域分析法(拉普拉斯变换和傅里叶变换)
要点一
复频域分析法的优点
采用负反馈
通过在系统中引入负反馈,增强系统的稳定性。
05
动态电路的优化设计
优化目标与约束条件
优化目标
在满足一定性能指标的前提下,降低电路的 功耗、体积和成本等。
约束条件
电路的功能、可靠性、稳定性、时序等要求, 以及工艺、材料、封装等限制。
优化算法与实现
优化算法
遗传算法、模拟退火算法、粒子群算法等。
动态电路分析的历史与发展
历史
动态电路分析起源于20世纪初,随着电子技术的快速发展,其分析方法和工具不断演 进。
发展
近年来,随着计算机技术和数值计算方法的进步,动态电路分析在理论和实践方面取得 了重要突破。现代动态电路分析方法更加精确、高效,为复杂电子系统的设计和优化提

模拟电子线路 课件第三章第5-8节——共C和共B电路、多级放大器

模拟电子线路 课件第三章第5-8节——共C和共B电路、多级放大器

模拟电子线路 课件第三章第5-8节——共C 和共B 电路、多级放大器主 题:课件第三章第5-8节——共C 和共B 电路、多级放大器 学习时间:2016年4月18日-4月24日内 容:我们这周主要学习课件第三章半导体三极管及放大电路基础第5-8节共C 和共B 电路、多级放大器的相关内容。

请同学带着以下问题学习:如何分析共C 组态放大电路及多级放大器?一、学习要求掌握共C 组态放大电路的静、动态分析方法;能用小信号等效电路法求指标;掌握多级放大器的静、动态分析和电压放大倍数的计算。

重点:共C 组态放大电路的分析方法;多级放大器的参数计算方法 难点:多级放大器的静、动态分析二、主要内容1.共C 和共B 电路(1)共集电极放大电路(射极输出器)输入信号加在基极和集电极之间,输出信号由发射极和集电极之间取出,集电极是输入、输出回路的共同端。

共集电极电路又称为射极输出器、电压跟随器。

①静态工作点分析CC BEB b e =(1)V U I R R β++-C B I I β=CE CC e E =U V R I -+-u o +-R S u②动态分析电压放大倍数 'o L u 'i e L (1+)==1(1+)b U R A U r R ββ≈+其中,'L e L R R R =∥输入电阻 'i b be L [(1+)]r =R r R β+∥ 输出电阻 s b beo e 1+R R r r R β+=∥∥共集电极放大电路的特点:● 电压增益小于而接近于1,输出电压与输入电压同相; ● 输入阻抗高,输出阻抗小。

射极输出器的应用:● 放在多级放大器的输入端,提高整个放大器的输入电阻。

● 放在多级放大器的输出端,减小整个放大器的输出电阻。

● 放在两级之间,起缓冲作用。

2.共基极电路输入信号加在发射极和基极之间,输出信号由集电极和基极之间取出,基极是输入、输出回路的共同端。

专题动态电路分析

专题动态电路分析

01
RLC电路的动态分析主要研究的是电感、电容和电阻
元件在交流电源作用下的动态响应。
02
RLC电路的振荡过程可以用微分方程来描述,通过求
解微分方程可以得到电路中电压和电流的变化规律。
03
RLC电路在电子设备和系统中有着广泛的应用,如振
荡器、调谐器和滤波器等。
实例三:运放电路的动态分析
01
运放电路的动态分析主要研究 的是运算放大器在输入信号作 用下的动态响应。
与Multisim类似,适用于模拟和 数字电路的仿真,提供多种分析 工具和元件库。
仿真技术在动态电路分析中的应用
01
预测电路性能
通过仿真技术,可以预测电路在 不同输入条件下的性能表现,从 而优化电路设计。
故障排查
02
03
参数优化
仿真技术可以帮助工程师快速定 位电路中的故障点,提高故障排 查效率。
通过调整电路元件参数,仿真技 术可以找到最优的电路性能参数 组合。
动态电路的特点
时域特性
动态电路的输出信号随时间变化,具有时域特 性。
频域特性
动态电路的频率响应是其对不同频率输入信号 的响应能力。
稳定性
动态电路的稳定性是其对外部干扰和内部参数变化的抵抗能力。
动态电路的应用场景
通信系统
用于信号处理、调制解调等。
测量系统
用于信号处理、数据采集等。
控制系统
用于信号处理、控制算法实现等。
特点
将时域函数转换为频域函数,便于分析信号的频率特性。
应用
用于分析交流稳态电路,如正弦稳态分析。
状态空间分析法
定义
状态空间分析法是以电路的状态变量为研究对象的方 法。
特点

第3章 电路、信号与系统相互关系及分析方法概述

第3章 电路、信号与系统相互关系及分析方法概述

VAR : f(u, i) 0 KCL : i 0 KVL : u 0
(3-2-1)
此式中的方程相互独立,即不同类型约束的方程之间相互独立,同一类型约束的方程之 间也相互独立。若电路的支路数为 b ,节点数为 n ,则变量总数为 2b 。这样,方程总数为 2b , 其中独立的 VAR 方程数为 b ,独立 KCL 方程数为 n 1 ,独立的 KVL 方程数为 b ( n 1) 。 显然,基本分析法的方程数较多,求解较为繁琐。这可以通过改变待求量减少方程数, 从而达到简化计算的目的。为此,通过改变待求量,基于式(3-2-1)可得其它变种分析法, 如支路电流法、支路电压法、节点电压法、回路电流法等。 3.2.1.2 支路电流法 支路电流法是以支路电流作为待求量的分析方法, 其数学模型如式 (3-2-2) 所示, 其中 f u () 函数实现由支路电流表示支路电压。与式(3-2-1)相比,减少了 VAR 方程,将其融入到 KVL 方程中。

t

t0
(3-2-8)
式中 y (0 ) 、 y ( ) 、 等分别为初始值、终值、时间常数。按此式求取电路中任一响应 的方法称为三要素法。采用三要素法求取直流一阶电路响应,回避了建立微分方程、解方程、 确定待定系数等繁琐的演算过程。 3.2.3.2 时域卷积分析法 电路时域卷积分析法是利用时域卷积积分求解电路零状态响应的一种分析法,即
3.2.4 相量法
相量法与动态电路复频域分析法类似。相量法用于分析正弦稳态电路,其基本思想是首 先将电路的时域模型转换为相量模型,求取电压或电流的相量解,然后得相应的时域解。此 方法回避了直接采用时域分析时三解函数的相加、相减、微分、积分等运算。 可以采用 3.2.1 节和 3.2.2 节所介绍的方法求取电路相量模型中电压或电流的相量解,只 不过是采用这些分析方法的相量形式。由于相量形式的两类约束与时域中的两类约束在形式 上相似,故各种分析法的相量形式和时域形式亦相似。

动态电路的分析与计算

动态电路的分析与计算

2023
《动态电路的分析与计算》
CATALOGUE
目录
动态电路概述动态电路分析方法动态电路计算技巧动态电路的应用动态电路的仿真与实验
01
动态电路概述
动态电路的定义
动态电路在时间上具有非线性特性,即电路的行为随时间变化而变化。
动态电路在时间上具有记忆效应,即过去的状态会影响未来的行为。
动态电路是指具有储能元件(如电容、电感)的电路,其动态过程由电荷和能量转移来决定。
通过在复频域中进行运算,可简化电路的分析过程。
拉普拉斯变换法通常用于分析具有连续时间变量的电路。
傅里叶变换法
基于傅里叶变换的一种频域分析方法,可将时域函数转换为频域函数。
可用于分析线性时不变和时变电路,以及单频率和多频率信号的情况。
通过在频域中进行运算,可简化电路的分析过程。
傅里叶变换法通常用于分析具有离散时间变量的电路。
使用Multisim进行动态电路实验的步骤包括建立电路图、连接实验仪器、运行实验和结果测量。
电路图的建立
在Multisim中,可以使用提供的元件库和连接工具,方便地建立动态电路的电路图。
连接实验仪器
根据实验需要,将实验仪器连接到电路中,如电源、电阻、电容等。
运行实验
通过Multisim的实验运行功能,进行动态电路的实验运行,观察实验现象。
RC电路
RL电路
LC电路
动态电路的分类
动态电路具有能量储存功能,可以在没有外部激励的情况下保持状态。
动态电路的特点
动态电路在工程、电子、通信等领域具有广泛的应用。
动态电路的行为可以通过微分方程或差分方程来描述,这使得动态电路的分析与计算相对复杂。
02
动态电路分析方法

初三物理动态电路总结归纳

初三物理动态电路总结归纳

初三物理动态电路总结归纳动态电路是物理学中的重要知识点,涉及到电流、电压、电阻等基本概念和电路的运作原理。

初三学生在学习这一内容时,往往存在一定的困惑和难点。

本文将对初三物理动态电路进行总结归纳,旨在帮助同学们更好地理解和掌握该知识点。

一、动态电路的基本概念动态电路是指电路中有电流流动的状态,和静态电路相对。

在动态电路中,电流随时间的变化而变化,涉及到充电、放电等过程。

动态电路中的主要元件包括电源、电阻、电容和开关等。

二、串联电路和并联电路在动态电路中,有两种常见的电路连接方式,即串联电路和并联电路。

串联电路中,电流只有一条路径可走,电流大小相同,而电压可以分担;并联电路中,电流可以分流,电流大小不同,而电压相同。

串联电路和并联电路的特点及应用需要同学们深入理解。

三、电容器的充放电过程电容器是动态电路中常见的元件,充放电过程是电容器的重要特性。

当电容器接入电路后,电路会通过电容器将电荷积累起来,形成电荷差异,此过程称为充电;而当电容器上的电荷被释放,回到初始状态时,称为放电。

电容器的充放电过程和电容器的性质密切相关,掌握这一知识点对于解决电路问题至关重要。

四、欧姆定律和功率计算欧姆定律是动态电路分析中的基本定律,表达了电流、电压和电阻之间的关系。

根据欧姆定律,我们可以计算电路中的电流大小,进而推导出电路中其他要素的数值。

同时,我们还可以利用欧姆定律计算电路的功率,了解电路的能量转化情况,为电路设计和实际应用提供参考。

五、实际电路的应用动态电路的学习并不仅仅限于理论知识,它在生活中的应用也非常广泛。

无论是电灯、电子设备还是汽车等,都涉及到动态电路的运作。

同学们可以从实际生活中的例子出发,加深对动态电路的理解,将所学知识应用于实际问题解决中。

六、解决动态电路问题的方法在学习动态电路时,同学们可能会遇到一些问题和难题。

解决这些问题的关键在于细致观察电路画法,运用所学知识对电路进行分析,并带入相关公式进行计算。

模拟电子技术基础 3.3差分放大电路PPT课件

模拟电子技术基础 3.3差分放大电路PPT课件
uod = 2ic1RL
ic2 = ic1
而(对镜像源):
二、双端变单端的转换电路
对共模信号:
ic4 = ic3 ≈ ic1
iL = ic4 – ic2 = 0
uoc = 0
ic2 = ic1

具有双端输出的效果!
3.3.4 差分放大电路的差模传输特性
O
ui
iC
iC1
iC2
I0
UT
-UT
4UT
采用 V3 管代替 R
4 FET管电流源
I0 = IREF
2、有源负载
以电流源取代电阻作放大电路的负载。
优点:既提高了电压放大倍数,又设置了合适的工作点。
一、电流源与有源负载
二、具有电流源的差分放大电路
二、具有电流源的差分放大电路
CMOS差分放大电路
V1、V2构成差放, V3、V4构成电流源作有源负载, V5、V6 、V7构成电流源提供偏置。
第3章 放大电路基础
3.1 放大电路的基础知识 3.2 基本组态放大电路 3.3 差分放大电路 3.4 互补对称功率放大电路 3.5 多级放大器
3.3 差分放大电路
3.3.1 基本差分放大电路
3.3.2 电流源与具有电流源的差分放大电路
3.3.3 差分放大电路的输入、输出方式
差分放大电路又称差动放大电路,简称差放,具有输出电压近似与两个输入电压之差成正比的特性,是集成运放中重要的基本单元电路。
3.3.3 差分放大电路的差模传输特性及应用
一、电路组成及静态分析
一般
3.3.1 基本差分放大电路
结构特点: 1 两个输入端,两个输出端; 2 电路结构和元件参数对称; 3 双电源供电; 4 RE是公共发射极电阻。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

产生暂态过程的原因:
一般电路不可能!
由于物体所具有的能量不能跃变而造成
在换路瞬间储能元件的能量也不能跃变

C
储能:WC
1 2
C
u
2 C
∵ L储能: W L
1 2
L
i
2 L
\ uC 不能突变 \iL不能突变
电路暂态分析的内容
(1) 暂态过程中电压、电流随时间变化的规律。 (2) 影响暂态过程快慢的电路的时间常数。 研究暂态过程的实际意义
返回 上页 下页
“稳态”与 “暂态”的概念:
SR
R
+
U
_
uC C
+
_U
uC
电路处于一种稳态
uc =0
电路处于另一稳态
uc =U
过渡过程 : 一种稳态
另一种新稳态
过渡过程中 uc(t) =?
称暂态分析
产生暂态过程的必要条件:
(1) 电路中含有储能元件 (内因)
换电路(2路):电接电路通路发、状生切态换断的路、改(变短外。路因如、) :电压改变则或若i参C u数cd改发du生变tC 突变,
i(t) L (t)
+ u (t) -
i
线性非时变电感的特性
线性电感——特性曲线是通过坐标原 点一条直线,否则为非线性;非时 变——特性曲线不随时间变化,否则 为时变电感元件。
线性非时变电感元件的数学表达式:
(t)L(it) 系数L为常量,直线的斜率,称为 电感,表征产生磁链的能力。 单位是亨[利],用H表示。
某时刻电感的储能取决于该时刻电感的电
流值,与电压值无关。电流的绝对值增大
时,储能增加;减小时,储能减少。
3.1 动态电路的基本概念
1. 动态电路
含有动态元件电容和电感的电路称动态电路。
特点
当动态电路状态发生改变时(换路)需要 经历一个变化过程才能达到新的稳定状态。这 个变化过程称为电路的过渡过程。
电容元件的电压电流关系
i(t)dqd(C)uCdu
dt dt
dt
1. 电容是动态元件
电容的电流与其电压对时间的变化率 成正比。假如电容的电压保持不变, 则电容的电流为零,电容元件相当于开 路(i=0)。
4 .电容是储能元件
电压电流参考方向关联时,电容吸收功率
p(t)u(t)i(t)u(t)Cdu dt
1. 利用电路暂态过程产生特定波形的电信号 如锯齿波、三角波、尖脉冲等,应用于电子电路。
2. 控制、预防可能产生的危害 暂态过程开始的瞬间可能产生过电压、过电流使 电气设备或元件损坏。 直流电路、交流电路都存在暂态过程, 我们讲课的
重点是直流电路的暂态过程。
例 电阻电路
+ i R1
us
-
R2
(t = 0) i
iUS /R2 iU S (R 1R 2)
t 0
过渡期为零
返回 上页 下页
电容电路
(t = 0) R i
(t →) R i
+
+
+
+
Us
k
-
uC C Us

-
uC C –
k未动k接作通前U电,S 源电后路u很处c 长于时稳间定,状电态US容:充i 电=新完的0 稳毕, 定,u状C电态=路0
? 达到新的稳R 定状态:
p 可正可负。当 p > 0 时,电容吸收 功率(吞),储存电场能量增加;当p
< 0时,电容发出功率(吐),电容放 出存储的能量。
任意时刻t得到的总能量为
wC(t)
t p()d
tuC()iC()d
C
tuC()
duC() d
d
C
uC(t) uC()
uC()duC()
w12CC([tu)C2(t12)CuuC2C2((t))]
符号和特性曲线:
q
斜率为C
i(t)+ q(t) + u(t) -
u
线性时不变电容的特性
线性电容——特性曲线是通过坐标原 点一条直线,否则为非线性电容。时 不变——特性曲线不随时间变化,否 则为时变电容元件。
线性非时变电容元件的数学表达式:
q(t)C(ut)
系数 C 为常量,为直线的斜率,称 为电容,表征积聚电荷的能力。 单位是法[拉],用F表示。
第三章 动态电路分析
本章的学习目的和要求
了解“暂态”与“稳态”之间的区 别与联系;熟悉“换路”这一名词的含 义;牢固掌握换路定律;理解暂态分析 中的“零输入响应”、“零状态响 应”“全响应”及“阶跃响应”等概念; 充分理解一阶电路中暂态过程的规律; 熟练掌握一阶电路暂态分析的三要素法; 了解二阶电路自由振荡的过程。
某时刻电容的储能取决于该时刻电容的电
压值,与电流值无关。电压的绝对值增大
时,储能增加;减小时,储能减少。
电感元件
定义:如果一个二端元件在任一时刻, 其磁链与电流之间的关系由 (t)i(t)平 面上一条曲线所确定,则称此二端 元件 为电感元件。
代表建立磁场、储存磁场能的元件
符号和特性曲线:
斜率为L
i = 0 ,i u有C=一U过s 渡期
前一个稳定状态
0
t1
过渡状态
t
返回 上页 下页
电感电路
(t = 0) R i
+
+
Us
k
uL
-

+
L Us -
(t →) R i
+ uL –
k未动k作接前通U,电S 电源路后i处很于长时稳间定状,U电态S/路:R 达i 到新= 的新0 稳的, 定稳u状L定态= 0
p 可正可负。当 p > 0 时,电感吸 收功率(吞),储存磁场能量增加;当p
< 0时,电感发出功率(吐),放出存储 的磁场能量。
任意时刻t电感的总能量为
t
t
wL(t)
p()d
u()iL()d
L
t
iL()
diL() d
d
L
iL (t) iL ()
iL()diL()
12wLL([itL2)(t)21iLL2i(L2(t))]
重点 1.动态电路方程的建立及初始条件的确定; 2.一阶的零输入响应、零状态响应和全响应
的概念及求解;
3.一阶的阶跃响应概念及求解。
Байду номын сангаас
电容元件和电感元件
电容元件
定义:如果一个二端元件在任一时 刻,其电荷与电压之间的关系由q-u 平面上一条曲线所确定,则称此二 端元件为电容元件。
代表积聚电荷、储存电场能的元件
? 状态,电感视为短路: uL= 0u,L i=有Us一/R过渡期
前一个稳定状态
0
t1
过渡状态
t
返回 上页 下页
(t →0) R i
+
+
Us
uL
-

(t →) R i
电感元件的电压电流关系
u(t)dd(L)iLdi
dt dt
dt
1. 电感是动态元件
电感的电压与其电流对时间的变化率 成正比。假如电感的电流保持不变, 则电感的电压为零,电感元件相当于短 路(u=0)。
4 .电感是储能元件
电压电流参考方向关联时,电感吸收功率
p(t)u(t)i(t)i(t)Ldi(t) dt
相关文档
最新文档