北大力学ppt课程振动与波部分共164页文档
合集下载
大学物理机械振动和机械波ppt课件

2024/1/26
12
03
驻波形成条件及其性质分析
Chapter
2024/1/26
13
驻波产生条件及特点描述
产生条件
两列沿相反方向传播、振幅相同、频 率相同的波叠加。
特点描述
波形不传播,能量在波节和波腹之间 来回传递,形成稳定的振动形态。
2024/1/26
14
驻波能量分布规律探讨
能量分布
驻波的能量主要集中在波腹处,波节处能量为零。
2024/1/26
16
04
多普勒效应原理及应用举例
Chapter
2024/1/26
17
多普勒效应定义及公式推导
2024/1/26
定义
当波源与观察者之间存在相对运动时,观察者接收到的波的频率会发生变化,这种现象 称为多普勒效应。
公式推导
设波源发射频率为f0,波速为v,观察者与波源相对运动速度为vr,则观察者接收到的 频率为f=(v±vr)/v×f0,其中“+”号表示观察者向波源靠近,“-”号表示观察者远离
Chapter
2024/1/26
25
非线性振动概念引入和分类
非线性振动定义
描述系统振动特性不满足叠加原理的振动现象。
分类
根据振动性质可分为自治、非自治、周期激励和 随机激励等类型。
与线性振动的区别
线性振动满足叠加原理,而非线性振动则不满足 。
2024/1/26
26Biblioteka 混沌理论基本概念阐述混沌定义
确定性系统中出现的内在随 机性现象。
受迫振动
物体在周期性外力作用下所发生的振动。
共振现象
当外力的频率与物体的固有频率相等时,物体的振幅达到最大的现象。
大学物理-振动和波ppt课件

• a, , x 都是谐振动, 振幅不同,角频率不变
• a, , x 依次超前 /2; a, x 反相(谐振动特点)
可编辑课件PPT
8
曲线描述
x xt图
xA co ts
vx Acostπ2
axA 2costπ
A
o
T
A
Av vt 图
o
T
t
t
x a
A
A
a at图
o
A
t A2
o
Tt
2A T
A2
可编辑课件PPT
可编辑课件PPT
22
曲线描述
x xt图
xA co ts
vx Acostπ2
axA 2costπ
A
o
T
A
Av vt 图
o
T
t
t
x a
A
A
a at图
o
A
t A2
o
Tt
2A T
A2
可编辑课件PPT
23
四. 谐振系统的能量
1. 谐振系统的动能和势能
由
d2x dt2
2 x
及
d2x dt2
d
dt
d
dx
有 d2xdx, 同乘以m
A
o A Ax
2
0.2m 6s1(负号表示速度沿 Ox轴负方向)
可编辑课件PPT
41
(3)如果物体在 x0.05m处时速度不等于零,
而是具有向右的初速度 v00.30ms,1求其运动方程.
解 A' x02v022 0.070m7
tan'v0 1 x0
'π 或3π
44
o π 4 x
• a, , x 依次超前 /2; a, x 反相(谐振动特点)
可编辑课件PPT
8
曲线描述
x xt图
xA co ts
vx Acostπ2
axA 2costπ
A
o
T
A
Av vt 图
o
T
t
t
x a
A
A
a at图
o
A
t A2
o
Tt
2A T
A2
可编辑课件PPT
可编辑课件PPT
22
曲线描述
x xt图
xA co ts
vx Acostπ2
axA 2costπ
A
o
T
A
Av vt 图
o
T
t
t
x a
A
A
a at图
o
A
t A2
o
Tt
2A T
A2
可编辑课件PPT
23
四. 谐振系统的能量
1. 谐振系统的动能和势能
由
d2x dt2
2 x
及
d2x dt2
d
dt
d
dx
有 d2xdx, 同乘以m
A
o A Ax
2
0.2m 6s1(负号表示速度沿 Ox轴负方向)
可编辑课件PPT
41
(3)如果物体在 x0.05m处时速度不等于零,
而是具有向右的初速度 v00.30ms,1求其运动方程.
解 A' x02v022 0.070m7
tan'v0 1 x0
'π 或3π
44
o π 4 x
第2章振动与波

振动学是研究声学的基础
6
第2章振动与波
与振动相关的概念
振荡 振荡是一种物理量在观测时间内,不断地 经过最大值和最小值而变化的过程。
振动 振动是指物理量是一个机械系统的运动参 量时的振荡。主要是指机械运动。
7
第2章振动与波
与振动相关的概念
弹簧振子
k
弹性力 f 与拉伸长度 x 的关系为 f kx
振子在获得这种外部来的能量后就开始振 动,将其转化为振动能。
cm
1 k
为力顺,它反映弹簧的柔顺程度
根据牛顿第二运动定律
所以
f= ma
d2x m dt 2 kx
质点自由振动方程
d2x dt 2
02
x
0
其中
02
k m
21
第2章振动与波
d2x dt 2
02
x
0
二阶齐次方程
22
第2章振动与波
声学基础
0T 2
第二章 振动与波
2π秒钟的振动次数
0 2 f
自由振动的一般规律
f0
1
2
1 mCm
数k越小,固有频率 越低。
25
第2章振动与波
思考
若需要降低动圈扬声器的固有频率,应采 取什么措施?
①增加系统的质量,即增加音圈与纸盆的 质量
②减小系统的弹性系数,即使纸盆边缘的 折环部分更为柔顺。
26
第2章振动与波
声学基础
第二章 振动与波
例:扬声器力学振动系统在低频时可视为集中参数系统,
3
第2章振动与波
声音是一种波动现象。当声源(机械振 动源)振动时,振动体对周围相邻媒质产 生扰动,而被扰动的媒质又会对它的外围 相邻媒质产生扰动,这种扰动的不断传递 就是声音产生与传播的基本机理。
6
第2章振动与波
与振动相关的概念
振荡 振荡是一种物理量在观测时间内,不断地 经过最大值和最小值而变化的过程。
振动 振动是指物理量是一个机械系统的运动参 量时的振荡。主要是指机械运动。
7
第2章振动与波
与振动相关的概念
弹簧振子
k
弹性力 f 与拉伸长度 x 的关系为 f kx
振子在获得这种外部来的能量后就开始振 动,将其转化为振动能。
cm
1 k
为力顺,它反映弹簧的柔顺程度
根据牛顿第二运动定律
所以
f= ma
d2x m dt 2 kx
质点自由振动方程
d2x dt 2
02
x
0
其中
02
k m
21
第2章振动与波
d2x dt 2
02
x
0
二阶齐次方程
22
第2章振动与波
声学基础
0T 2
第二章 振动与波
2π秒钟的振动次数
0 2 f
自由振动的一般规律
f0
1
2
1 mCm
数k越小,固有频率 越低。
25
第2章振动与波
思考
若需要降低动圈扬声器的固有频率,应采 取什么措施?
①增加系统的质量,即增加音圈与纸盆的 质量
②减小系统的弹性系数,即使纸盆边缘的 折环部分更为柔顺。
26
第2章振动与波
声学基础
第二章 振动与波
例:扬声器力学振动系统在低频时可视为集中参数系统,
3
第2章振动与波
声音是一种波动现象。当声源(机械振 动源)振动时,振动体对周围相邻媒质产 生扰动,而被扰动的媒质又会对它的外围 相邻媒质产生扰动,这种扰动的不断传递 就是声音产生与传播的基本机理。
大学物理-振动和波-PPT

t 3T 4
(振动状态 1 2 3 4 5 6 7 8 9 10 11 12 13 传至10 )
所以运动方程为:
x bCos(
g b
t
)
二、谐振动的图线描述法
x
A
0
t1
t
两类问题:
1、已知谐振动方程,描绘谐振动曲线 2、已知谐振动曲线,描绘谐振动方程
三、 简谐振动的旋转矢量表示法
1、旋转矢量
ω
M
旋转矢量的长度:振幅 A
A
旋转矢量旋转的角速度:
圆频率 0
旋转矢量与参考方向x 的夹角: 振动周相
则可得: x ACos(t )
其中: A A12 A22 2 A1A2Cos(2 1)
tg A1Sin1 A2Sin2 A1Cos1 A2Cos2
2、利用旋转矢量合成
A
x ACos(t )
A1
A2
A A12 A22 2 A1A2Cos(2 1)
x
tg A1Sin1 A2Sin2 A1Cos1 A2Cos2
a
v
0
t
问题: 是描述t=0时刻振动物体的状态,当给定计时时刻振动物 体的状态(t=0 时的位置及速度:x0 v0 ),如何求解相对应的 ?
(1)、已知 t = 0 振动物体的状态x(0), v(0)求
x(0) Acos v(0) A sin
可得:
A
x2
(0)
v2 (0) 2
tg v(0) x(0)
X
如果振动物体可表示为一质点,而与之相连接的所有弹簧等效 为一轻弹簧,忽略所有摩擦,可用弹簧振子描述简谐振动。
二、谐振动的特点:
1、动力学特征:
高一物理机械振动和机械波PPT教学课件

实质:通过传播振动的形式而将振源的能量传播出去.
②介质中各质点的振动周期和波的传播周期都与
波源的振动周期
相同. 介质
③机械波的传播速度只由
决定.
(3)波速、波长、周期、频率的关系:v= =f·λ
6.振动图象和波动图象的物理意义不同:振动图象反
映的是 一个质点在各个时刻的位置 ,而波动图象 是 某时刻各质点的位移 .振动图象随时间推移图
思路方法
1.判断波的传播方向和质点振动方向的方法:①特殊 点法,② 微平移法(波形移动法) .
2.利用波传播的周期性,双向性解题
(1)波的图象的周期性:相隔时间为周期整数倍的
ห้องสมุดไป่ตู้
两个时刻的波形相同,从而使题目的解答出现多解
的可能.
(2)波传播方向的双向性:在题目未给出传播方向 正向 负向
时,要考虑到波可沿x轴
等于这几列波分别在该质点处引起的位移的
.
9.波的现象 (1)波的叠加、干涉、衍射、多普勒效应. (2)波的干涉 ①必要条件:频率相同. ②设两列波到某一点的波程差为Δx.若两波源振 动情况完全相同,则
③加强区始终加强,减弱区始终减弱.加强区的振 幅A=A1+A2,减弱区的振幅A=|A1-A2|. ④若两波源的振动情况相反,则加强区、减弱区的
移随时间变化的表达式为:x= A sin (ωt+φ)或x= Acos (ωt+φ).
3.简谐运动的能量特征是:振动的能量与 振幅有关, 随 振幅 的增大而增大.振动系统的动能和势能相
互转化1 ,总机械能守恒,能量的转化周期是位移周
期的 2 .
弹簧振子
4.简谐运动的两种模型是
和单摆.当单摆摆
第振动和波动波动PPT课件

kx)
wp
1 2
2 A2
si n2(t
kx)
w = wk+wp = 2A2sin2 (t-x/u)
wk、wp 均随 t 周期性变化,两者同相同大 。
怎么动能和势能之和不等于常数,也不相互转化 ?
第22页/共49页
2. 波的强度 单位时间内通过垂直于波的传播方向的
单位面积的平均能量,称为平均能流密度,
第30页/共49页
【例7】相干波源 A、B 位置如图所示,频率 =100Hz, 波速 u =10 m/s,A-B=,求:P 点振动情况。
【解】 rA 15m
P
rB 152 202 u 0.1m
15m
A
20 m
B
B
A
2
rB
rA
200
201
P点干涉减弱
第31页/共49页
【例8】两相干波源分别在 PQ 两点处,初相相同,
横波的波形图与实际的波形是相同的,但是对于纵波, 波形图表示的是各质点位移的分布情况。
y
u
o
x
第4页/共49页
4. 描述波特性的几个物理量
周期T : 传播一个完整的波形所用的时间,或一个完整的波通过波线上某一点所需 要的时间。
频率 :单位时间内传播完整波形的个数。
周期、频率与介质无关,波在不同介质中频率不变。
2纵波横轴x表示波的传播方向坐标x表示质点的平衡位置纵轴y表示质点的振动方向坐标y表示质点偏离平衡位置的位移表示某一时刻波中各质点位移的图横波的波形图与实际的波形是相同的但是对于纵波波形图表示的是各质点位移的分布情况
5.4.1 机械波的产生与描述
1. 产生机械波的条件
产生波的条件——存在弹性介质和波源
振动与波动振动PPT课件

y(x, t) = 2Acos kx cost
y(x, t) = 2Acos kx cost
三.驻波的特点
1.频率特点:各质元以同一频率作简谐振动。 2.振幅特点:
(1)各点的振幅|2Acos kx|和位置x有关, 振幅在空间按余弦规律分布。
(2)波节:有些点始终静止,这些点称作波节 (node)。
v
此方程是取原点质原振动初相位为0时得到的
波方程更加一般的表达(通解)如下:
yt( ) A x, ω c k o t x s
例1、 已知波源在原点的平面简谐波方程为
yAcos(btcx)
A,b,c均为常量。试求: (1)振幅,频率,波速和波长; (2)写出在传播方向上距波源处一点的振动方程式,
一.驻波的形成
驻波是由两列频率相同、振动方 向相同、且振幅相等,但传播方 向相反的行波叠加而成的。
t=0
y2
t = T/8
t = T/4
t = 3T/8
y y1
o
o
o o
t = T/2 o
驻波的形成
图中红线即驻波的波
x
形曲线。可见,驻波
x 波形原地起伏变化。
x
驻波波形不传播
(“驻”字的第一层含义)
驻波不传播能量 (“驻”字的第三层含义)
在驻波中,两个相邻波节间各质 点的振动 ( ) (A)振幅相同,位相相同。 (B)振幅不同,位相相同。 (B)振幅相同,位相不同。 (D)振幅不同,位相不同
试总结比较
弹簧振子简谐振动
平面简谐行波
能量特点
驻波
四、实际中驻波的形成
实际的驻波可由入射到媒质界面上的行波和它的 反射波叠加而成
(2) 求出三个 x 数值使得在P点合振动最弱.
y(x, t) = 2Acos kx cost
三.驻波的特点
1.频率特点:各质元以同一频率作简谐振动。 2.振幅特点:
(1)各点的振幅|2Acos kx|和位置x有关, 振幅在空间按余弦规律分布。
(2)波节:有些点始终静止,这些点称作波节 (node)。
v
此方程是取原点质原振动初相位为0时得到的
波方程更加一般的表达(通解)如下:
yt( ) A x, ω c k o t x s
例1、 已知波源在原点的平面简谐波方程为
yAcos(btcx)
A,b,c均为常量。试求: (1)振幅,频率,波速和波长; (2)写出在传播方向上距波源处一点的振动方程式,
一.驻波的形成
驻波是由两列频率相同、振动方 向相同、且振幅相等,但传播方 向相反的行波叠加而成的。
t=0
y2
t = T/8
t = T/4
t = 3T/8
y y1
o
o
o o
t = T/2 o
驻波的形成
图中红线即驻波的波
x
形曲线。可见,驻波
x 波形原地起伏变化。
x
驻波波形不传播
(“驻”字的第一层含义)
驻波不传播能量 (“驻”字的第三层含义)
在驻波中,两个相邻波节间各质 点的振动 ( ) (A)振幅相同,位相相同。 (B)振幅不同,位相相同。 (B)振幅相同,位相不同。 (D)振幅不同,位相不同
试总结比较
弹簧振子简谐振动
平面简谐行波
能量特点
驻波
四、实际中驻波的形成
实际的驻波可由入射到媒质界面上的行波和它的 反射波叠加而成
(2) 求出三个 x 数值使得在P点合振动最弱.
物理讲座振动与波动PPT课件

次声波(infrasonic wave)<20Hz。大象、鱼、老鼠 等能听到次声。次声波因不易被水和空气吸收,因 而常常不容易衰减。次声波的波长往往很长,因此 能绕开某些大型障碍物发生衍射。某些频率的次声 波由于和人体器官的振动频率4Hz~8Hz相近,容易 共振受损。
超声波 > 20000Hz。狗能听到最高频率50000Hz的
DB X
AC O DB
x=Asinωt
km
第7页/共41页
V=0
X F
AC O DB
F
X
AC O DB V最大
AC X
O DB F
AC O DB
简谐运动的能量
势能最大
动能最大
势能最大
动能和势能也 作周期变化, 但比位移周
x 期快一倍。
A
o
A
简谐运动中动能和势能在发生相互转化,但机械能的总量保持不
位移(x):由平衡位置指向质点所在位置的有向 线段,矢量。
振幅(A):振动物体离开平衡位置的最大距离。
周期(T):完成一次全振动所经历的时间。
频率(f):一秒钟内完成全振动的次数。
单位:赫兹(Hz)。
周期频率和圆
圆频率(ω)与频率关系:ω=2πf 频率都是表
频率与周期关系: T 1
f
征振动快慢 的物理量。
声音,蝙幅能发出且能听到的声音频率高达 120000Hz,此外海豚等也能发出和感受到超声。超 声波的应用:分两类,一类是两种其波长小来探测; 二是利用它的能量。
第34页/共41页
练习1
1.物体做简谐运动的动力学特征:回复力及加速度表达式
为:F= ,a=
,方向总是与位移的方向相反,始终
指向
超声波 > 20000Hz。狗能听到最高频率50000Hz的
DB X
AC O DB
x=Asinωt
km
第7页/共41页
V=0
X F
AC O DB
F
X
AC O DB V最大
AC X
O DB F
AC O DB
简谐运动的能量
势能最大
动能最大
势能最大
动能和势能也 作周期变化, 但比位移周
x 期快一倍。
A
o
A
简谐运动中动能和势能在发生相互转化,但机械能的总量保持不
位移(x):由平衡位置指向质点所在位置的有向 线段,矢量。
振幅(A):振动物体离开平衡位置的最大距离。
周期(T):完成一次全振动所经历的时间。
频率(f):一秒钟内完成全振动的次数。
单位:赫兹(Hz)。
周期频率和圆
圆频率(ω)与频率关系:ω=2πf 频率都是表
频率与周期关系: T 1
f
征振动快慢 的物理量。
声音,蝙幅能发出且能听到的声音频率高达 120000Hz,此外海豚等也能发出和感受到超声。超 声波的应用:分两类,一类是两种其波长小来探测; 二是利用它的能量。
第34页/共41页
练习1
1.物体做简谐运动的动力学特征:回复力及加速度表达式
为:F= ,a=
,方向总是与位移的方向相反,始终
指向