数据挖掘之动态数据

数据挖掘之动态数据
数据挖掘之动态数据

摘要

动态数据挖掘是针对动态数据库和实时数据库进行知识提取的数据挖掘技术。随着信息技术的进一步发展,对知识新颖性的需求越来越强,采用传统的静态数据挖掘技术来分析不断产生的信息无法满足现实应用的要求,对实际应用数据源在其运行的同时进行动态数据挖掘得到相关知识显得日益重要。动态数据挖掘(DDM)由于信息时效性越来越短,为了能充分把握新颖性的信息,对实际应用数据源(数据库、序列数据或流式数据等)在其运行的同时进行数据动态提取并加以分析来得到相关知识。数据挖掘目前已广泛应用于现代社会的各行各业,但是大多都是针对历史数据进行分析与处理,人们追求的不再只是发现历史数据中隐藏的规律来解决实际问题,而是想在竞争激烈的社会中即时获取有用的信息,这对于传统的针对静态的历史数据进行挖掘的静态数据挖掘是不能很好实现这种需求的;设计一种针对当前数据动态分析处理的一种信息处理技术具有很大的现实意义。结合动态数据挖掘来研究多维数据的动态预测问题在现实应用中具有广阔的实践意义。动态数据挖掘不仅仅限于数据预测方面,对其应用领域探讨也具有很大的现实意义。深入分析了以往数据处理技术的发展现状之后给出了一种在动态数据源运行过程中结合历史数据、当前数据以及即将到来的数据进行数据分析与处理的动态数据挖掘技术:运用滑动窗口技术动态的获取数据,通过动态数据窗口动态处理数据,运用未来数据测试动态数据挖掘的性能。相关工作有持续数据挖掘、流式数据挖掘、移动数据流挖掘和Web在线数据挖掘。

关键词: 动态数据挖掘; 体系结构; 动态数据采集; 动态数据处理; 滑动窗口;

问题分析

DDM的问题

关键是如何选取当前数据集,如何保持与历史数据平滑过渡,以及如何平滑地获取后续数据集。(现在current,过去old,将来new)

DDM vs DM

传统的数据挖掘主要是基于历史数据集进行挖掘,提取出隐藏在其中的知识,而动态数据挖掘是集过去现在与未来于一体的知识提取的过程,动态处理各实时数据。

动态数据挖掘的体系机构保证新旧数据的平滑以及数据的及时或实时获取,运用动态数据窗口进行数据的实时动态处理;支持自动更新处理;数据挖掘与挖掘评价是紧密结合的两个过程,采用后续数据集中数据对挖掘结果进行评价,评价结果不符合要求则修正挖掘过程或重新挖掘以适应应用环境的改变。

核心技术:滑动窗口技术;动态数据窗口;评价

动态数据挖掘过程

1. 动态数据采集

?时间关联性强 -- 滑动窗口,某时刻的历史快照

?时间关联性不太强或者离散数据 -- 数据库SQL语句 WHERE time between T - 2 and T ( T为当前时间)

2. 动态数据处理

包括消除噪声、缺失数据处理、类型转换、特征提取以及数据降维处理等。

考虑到边界数据可能被忽略,结合重叠窗口技术,采用动态数据窗口,让重叠部分的数据(边界数据) 重复计算。

3. 数据挖掘

?时间性要求不强:只是为了获取新颖的知识,可用传统的挖掘算法

?时间性要求较强:效率要高

合理的挖掘布局算法, 即什么时候启动挖掘。

挖掘过程处理数据与未处理数据以及目标数据集之间的数据平滑问题:K标号法(初始标号为0,每参与一次挖掘过程则将TDi的标号值加1,直到标号变为K( K ∈ N ) , 在每次启动挖掘时只使用标号值小于K的数据。)

4. 挖掘测试

问题解答

随着科学研究与工程应用领域的不断扩大,多维度动态数据处理与分析已成为目前信息处理、动态数据建模及可视化建模中重要的研究课题。由于实际中往往会因各种因素造成信息数据缺失、信息对象机理知识不完整或多维空间中部分特征量损失等带来信息不完整,因此,进行多维度动态数据处理技术以及利用不完整信息建模的研究具有重要的理论和实际应用价值。采用数据挖掘和非线性系统建模技术,针对多维度动态数据的特性,研究非线性动态系统中具有空间和过程特征的数据挖掘模型和挖掘算法,以及基于软测量技术的不完整信息数据的完整性、一致性处理方法,实现多维度动态数据的有效挖掘、不完整信息建模和非线性动态系统演化规律的模拟。论文提出了一种较为完整的多维度动态数据挖掘系统理论架构,构造了多维度动态信息表示模型,建立了基于支持向量回归机的时间序列挖掘模型、连续输入/出的过程神经网络挖掘模型、多聚合过程神经网络挖掘模型及径向基过程神经网络挖掘模型等四种智能动态数据挖掘模型,构建了基于多元统计方法、克里格插值方法、数据过滤技术的不完整信息数据的补齐算法、网格化及数据过滤算法,采用相空间重构技术构建智能挖掘模型的训练样本集,并提出了量子粒子群算法结合梯度下降的神经网络训练算法,有效实现了对神经网络初始权值、阈值和隐含层节点数的优化。由挖掘模型实现不完整信息建模,最终达到满意的应用结果提出了一种新的数据挖掘形式——动态数据挖掘(DDM),寻求在不断更替产生的动态数据信息中找出能被应用的知识。给出动态数据挖掘的体系结构,并分析了动态数据挖掘实现过程,运用滑动窗口与动态数据窗口动态采集与处理动态新增数据,同时运用后续数据进行挖掘结果评价,用K标号法平滑地使用动态目标数据集进行数据挖掘,得出了一个动态数据挖掘测试算法。

动态数据窗口随着信息技术的进一步发展, 对知识的新颖性要求越来越强。我们处在每天都有大量新鲜信息产生的社会中, 如果采用原来的针对静态数据源(如数据仓库)进行知识提取的数据挖掘技术来分析这些不断产生的信息可能无法满足现实应用要求, 因为传统的数据挖掘可能挖掘到的是过时或失效的知识。社会在不断进步, 时代在不断改变, 信息的时效性变得越来越短。为了能充分把握新颖性的信息, 对实际应用数据源( 数据库、序列数据或流式数据等) 在其运行的同时进行数据动态提取并加以分析来得到相关知识是十分必要的。这方面的工作有持续数据挖掘、流式数据挖掘和W eb在线数据挖掘。当然实际生活中还有许多

与时间关系不大且不涉及W eb在线的各种应用, 针对这些应用数据源进行动态实时挖掘也是十分必要的。为此, 本文提出了一种动态数据挖掘方法, 给出了动态数据挖掘的体系机构, 并分析了动态数据挖掘过程。

1动态数据挖掘问题

在实际应用数据源运行过程中动态提取数据用于知识发现时, 关键的是如何选取当前数据集, 如何保持与历史数据平滑过渡, 以及如何平滑地获取后续数据集。所以动态数据挖掘是集过去、现在与未来于一体的动态的过程, 下面给出一些相关定义: 给定实际运行数据源, 将其称为动态数据源( Dynam icDa ta Source, DDS), DDS中的数据记为di ( i为数据标志号, i=1,2,3…… ) 。

定义1 设当前时间点为T, 存在数( R+ ), DDS 中在T 时刻以前生成的所有

di 组成的数据集合称为历史数据集, 记为Do ld。

定义2设当前时间点为T, 存在数, DDS 中在T 时刻到T 时刻生成的所有di组成的数据集合称为当前数据集, 记为Dc urrent。

定义3 设当前时间点为T, 存在数为正有理数, DDS 中在T时刻以后生成的所有di组成的数据集合称为称为后续数据集, 记为Dnew。

定义4 在DDS中运用当前数据集Dcurrent与历史数据集Do ld 结合后续数据集Dnew 进行分析, 提取出其中有意义的、新颖的、关键的知识与规则的过程称为动态数据挖掘( Dynam icDa taM in ing, DDM )。

从以上定义可以看出, 动态数据挖掘与传统从以上定义可以看出, 动态数据挖掘与传统的基于数据仓库的数据挖掘有很大的不同, 传统的数据挖掘主要是基于历史数据集进行挖掘, 提取出隐藏在其中的知识, 而动态数据挖掘是集过去现在与未来于一体的知识提取的过程。为了便于进一步研究动态数据挖掘问题, 下面就动态数据挖掘的体系结构进行分析。动态数据挖掘主要体现在它能动态地从DDS中提取数据进行分析, 找出其中的知识与规则, 从而更加及时新颖地为企事业单位或各管理部门提供决策方案, 其实现过程大致可分为动态数据采集、数据处理、数据挖掘、挖掘评价几个过程。

动态数据挖掘关键是要解决后续数据集D new的动态采集以及动态处理问题, 本文提出一种基于滑动窗口的动态数据采集方法, 来保证新旧数据的平滑以及数据的及时或实时获取, 运用动态数据窗口进行数据的实时动态处理; 由于动态数据挖掘在运行过程中, DDS 也在运行, 即后续数据集D new在不断增加, 鉴于此, 在数据处理以及后续的数据挖掘过程中必须要有较高的处理效率并且能支持自动更新处理; 数据挖掘与挖掘评价是紧密结合的两个过程, 采用后续数据集中数据对挖掘结果进行评价, 评价结果不符合要求则修正挖掘过程或重新挖掘以适应应用环境的改变, 尤其在对事务进行统计分析或趋势预测分析时显得尤为重要。

图1动态数据挖掘体系结构

3 动态数据采集

动态数据采集( Dynam ic Data A cqu isition, DDA ) 是指在动态运行数据源中动态地获取其中的历史的当前的或者即将生成的数据集。对于从历史数据集或当前数据集中获取数据可以一次提取完成, 但对于还未生成或正在生成的数据

获取就只能分步来不停地获取, 为了保证获取数据的平滑性, 采用滑动窗口作

为动态数据获取窗口。

3. 1 滑动窗口

滑动窗口( SlidingW indow, SW )在计算机网络通信、时间序列数据挖掘、移动数据流数据挖掘等方面都有应用。

本文借鉴这一技术来实现数据的动态获取。世间万物都是处于时空中的, 事物的产生、发展以及灭亡都与时间有关联;为此, 对于动态数据源的数据动态获取中滑动窗口度量均可采用时间来确定。下面给出滑动窗口的相关定义。

定义5在DDS 中, 按照数据di ( i 为数据标识号, i为正整数Z+ ) 的生成时间分成窗口大小为( t为时间段, 且t≦n) 的数据段Dk ( k为自然数 N ), 每个

数据段为一个数据窗口, n为数据门限值。

定义6对于正数 n( n为Z+ , 且n ≧ 1), 某时刻T, 有数据段集D = {D1, D2,

?, Dn } 落入到窗口大小为t的窗口SW中, 该窗口每隔t时间向前移动s ( s为Z+ ,

1≤s≤n )

个数据窗口大小的位置, 称窗口SW 为滑动窗口。

为了说明滑动窗口动态采集数据的功能, 方便起见, 图3以滑动窗口大小为两个数据窗口每次移动一个窗口为例进行

3. 2动态数据采集分析

数据窗口是基于时间段来划分的, 为了能快速及时地从DDS中获取数据, 如果数据是时间性关联不是很强的数据或者是离散性数据, 往往是通过数据库来保存的, 这就需要存储DDS的数据库存储数据的产生时间, 这样就能采用数据库查询语言快速检索到满足要求的数据。动态数据处理动态数据处理( Dynam ic Data Processing, DDP)是相对于传统的数据挖掘的数据处理过程而言的。传统的数据挖掘只是针对特定的数据固定的数据集进行; 而动态数据挖掘中, 为了找出新

颖的、最近的、感兴趣的知识, 在数据处理过程中也要求能动态处理各实时数据。动态数据处理包括消除噪声、缺失数据处理、类型转换、特征提取以及数据降维处理等。处理可采用传统的数据预处理数据变换、规约等方法, 主要在于如何动态处理动态数据采集过程传来的动态实时数据。由于动态数据采集传来的数据都是基于时间段的实时数据, 考虑到在数据处理过程中, 边界数据可能被忽略,

结合重叠窗口技术, 选择一种动态数据窗口来处理动态实时数据。

4. 1动态数据窗口

针对固定的有限数据集合进行聚类分析时第一次提出了动态数据窗口( Dynam ic DataW indow, DDW )概念,并第一次运用窗口重叠移动进行聚类分析。将一个有

限数据集合Z = { z1, z2, ?, zn } RC 划分成( 2k - 1) 个数据窗口,

第i个与第i+ 1个窗口的部分重叠, 让重叠部分的数据(边界数据) 重复计算,

一个一个窗口处理下去直到处理完毕。这样数据窗口的部分重叠克服了k m eans方法难以发现各种不同大小的聚类的缺点, 使得每个数据窗口分界处的样本点在接下来选取密度点时贡献一样大, 而且选出的密度点不因k 值的变动而变化很大。

动态数据挖掘处理的是从动态数据采集窗口传来的动态实时数据, 数据量在不停的增加。动态数据处理窗口每隔t时间间隔就传过来s 个数据窗口的实时数据, 为了使各数据di都被分析处理到, 定义动态数据窗口大小s, 对DDW 进行如下划分: 0 ~ s为第1个窗口; v ~ s+ v为第2个窗口( 0 < v

个窗口; s + v ~ 2s+ v为第4个窗口第i个与第i + 1个窗口的部分重叠, 随着数据窗口的向前移动, 我们可以不断地实时处理动态数据, 如图4所示。

图4动态数据窗口的重叠划分示意图

4. 2动态数据处理分析

图4中的* 代表样本点, 重叠窗口划分中的v 值根据具体情况而定, 如果时间段划分较长, 则选取v 为接近s的某个值为宜, 因为时间段长, 在很短的时间内可能就有很多样本数据存在; 选取较小v 值会使重复处理的数据量增大从而造成大量的时间耗费。当v = s时表示在不进行特征提取、数据降维等数据变换与规约处理时以提高数据处理的效率, 比如只需要类型转换、部分缺失数据处理或消除噪声等数据预处理方面。

下面以动态数据流特征提取为例说明动态数据处理过程:

对于从动态数据采集中滑动窗口传来的m 维流式数据x 1, x 2, ?, xi , ?序列, 到达数据处理窗口的时间为t1, t2, ?,ti, ?序列, 由定义5与定义6可

知: s = ( ti - ti- 1 ) /, 记x i ={D( i- 1) &s+ k | 0 < k < s, i N, k N }。方便起见取动态数据窗口窗口大小为2s, v 取为s; 则对于该流式数据

的处理过程为, 从m 维流式数据集x i 中提取出特征项, 后从流式数据集x i ?x i+ 1 中提取出特征项, 再从流式数据集xi+ 1 中提取出特征项, ??, 这样

依次一个窗口一个窗口处理下去, 处理结果送交目标数据集(删除重复的特征项)。

5数据挖掘与挖掘测试

在动态数据挖掘中通过将数据挖掘与挖掘测试两个过程充分结合起来, 就能动

态地实现对动态数据处理生成的动态目标数据集进行挖掘。

5. 1数据挖掘

对于动态数据挖掘, 对于时间性要求不是很强的领域, 及只是为了获取新颖知

识, 可以运用传统的挖掘算法实现, 通过设定一个时间门限值? ( ? R+ ), 每经过一个门限值时间?就启动一次挖掘, 只要在下一次启动之前完成即可;

对于时间性要求较强的领域, 则为了体现挖掘的价值, 即要求在实际结果产生

之前要能得到需要的挖掘结果; 故对于动态数据挖掘来说, 必须要有较高的挖

掘处理效率。

另外对于动态的目标数据集进行数据挖掘, 还需要处理好挖动态数据处理分析

图4中的* 代表样本点, 重叠窗口划分中的v 值根据具体情况而定, 如果时间段划分较长, 则选取v 为接近s的某个值为宜, 因为时间段长, 在很短的时间内可能就有很多样本数据存在; 选取较小v 值会使重复处理的数据量增大从而造成

大量的时间耗费。当v = s时表示在不进行特征提取、数据降维等数据变换与规约处理时以提高数据处理的效率, 比如只需要类型转换、部分缺失数据处理或消除噪声等数据预处理方面。

5数据挖掘与挖掘测试

在动态数据挖掘中通过将数据挖掘与挖掘测试两个过程充分结合起来, 就能动

态地实现对动态数据处理生成的动态目标数据集进行挖掘。

5. 1数据挖掘

对于动态数据挖掘, 对于时间性要求不是很强的领域, 及只是为了获取新颖知

识, 可以运用传统的挖掘算法实现, 通过设定一个时间门限值? ( ? R+ ), 每经过一个门限值时间?就启动一次挖掘, 只要在下一次启动之前完成即可;

对于时间性要求较强的领域, 则为了体现挖掘的价值, 即要求在实际结果产生

之前要能得到需要的挖掘结果; 故对于动态数据挖掘来说, 必须要有较高的挖

掘处理效率。

另外对于动态的目标数据集进行数据挖掘, 还需要处理好挖掘过程处理数据与

未处理数据以及目标数据集之间的数据平滑问题。为了能实现挖掘目标数据集的数据平滑, 可以采用一种对已用数据进行标号的K标号法来实现对目标数据的动

态控制, 其思想是: 对于目标数据集TDS = {TD1, TD2, ?,TDj } ( j N ) , 初

始标号为0, 每参与一次挖掘过程则将TDi 的标号值加1, 直到标号变为K (K N ), 在每次启动挖掘时只使用标号值小于K 的数据。

5. 2挖掘测试

动态数据挖掘中的挖掘测试可以充分利用具有动态实时的后续数据的优点, 采

用后续数据对挖掘结果进行动态检测。

如果检测结果符合要求则可进行决策, 否则就调整挖掘过程中的某些步骤以及

时转换挖掘寻找新的决策指导。实际上对于挖掘结果进行智能评估是一个相当困难的问题, 对于不同的挖掘类型有不同的挖掘结果标识, 很难用一个具体的实

现算法来对所有的挖掘结果进行评价, 对于RC 空间的结果集相对好实现, 在5.

3节就是结合挖掘评估来自动智能地实现动态的挖掘。

5. 3数据挖掘的动态实现

为了能智能动态地实现在动态目标数据集挖掘找出所需要的知识, 就需要一个合理的挖掘布局算法, 即什么时候启动挖掘。鉴于挖掘结果集不属于RC 空间时其评估方式根据结果类型不同而不同, 本文只对挖掘结果集属于RC 空间进行分析, 给出一个动态数据挖掘测试算法( Dynam ic Data M in ingTesting A lgorithm, DDMTA)。

对于挖掘结果集属于RC, 这时采用实际结果与挖掘结果之间的平均误差与设定的最大误差#m ax比较以及重启挖掘时间?来确定。算法如下:

输入: 挖掘结果集R i = ( r1, r2, ?, rt ), 实际结果Zi =( z1, z2, ?, z t ), 最大误差#m ax, 重启挖掘时间?输出: Ri+ 1。

动态数据挖掘适用于动态数据聚类分析、动态趋势预测、动态关联规则提取、专家系统知识学习、动态数据统计分析等方面; 在与数据库集成上也是一个十分有效的策略。

结语

本文针对传统的数据挖掘不能满足对动态数据源的数据分析要求, 提出了动态数据挖掘形式, 给出了动态数据挖掘的体系结构; 为了体现以及适应对动态数据的数据挖掘, 对于动态数据采集过程、动态数据处理过程、数据挖掘的动态实现以及动态挖掘评价都作了分析并给出了实现思想; 在动态数据采集中采用滑动窗口平滑采集数据, 再通过动态数据窗口动态处理数据采集过程送来的动态实时数据; 在数据挖掘过程中, 通过一种K标号法保证数据挖掘过程的动态平滑性; 通过结合后续数据集来动态评价挖掘结果, 给出了RC 空间的动态数据挖掘

测试算法DDMTA算法。

动态数据挖掘在取证,城市空间,生产过程质量控制,冶金自动化,油气分布及产出等方面有很广泛的应用,其发展前景很好,运用到的计算机,统计知识越来越多,正在不断发展完善的路上

参考文献

动态数据挖掘倪志伟科学出版社

数据挖掘导论美pangning

数据挖掘与数据建模廖琴陈志宏赫志峰国防工业出版社

数据挖掘研究(china data mining research,cdmr)院等

专家系统

专家系统发展概

述 院系:化工学院化工机械系 班级:10自动化(1) 姓名:李正智 学号:1020301016 日期:2013年10月1日 专家系统发展概述 摘要:回顾了专家系统发展的历史和现状。对目前比较成熟的专家系统模型进行分析,指出各自的特点和局限性。最后对专家系统的热点进行展望并介绍了新型专家系统。 关键词:专家系统;知识获取;数据挖掘;多代理系统;人工神经网络 Abstract:The history and recent research ofexpertsystem was reviewed. Severalwell-researched expertsystemmodelswereintroduced respectively, and their featuresand limitationswere analyzed. Finally, the hotspotofexpertsystem wasoverlookedand future research direction ofexpertsystem wasdiscussed. Key words:expertsystem; knowledge acquisition; datamining; multi-agentsystem; artificialneuralnetwork 近三十年来人工智能(Artificial Intelligence,AI)获得了迅速的发展,在很多学科领域都获 得了广泛应用,并取得了丰硕成果。作为人工智能一个重要分支的专家系统在20世纪60年代初期产生并发展起来的一门新兴的应用科学,而且正随着计算机技术的不断发展而日臻完善和成熟。一般认为,专家系统就是应用于某一专门领域,由知识工程师通过知识获取手段, 将领域专家解决特定领域的知识,采用某种知识表示方法编辑或自动生成某种特定表示形式存放在知识库中;然后用户通过人机接口输入信息、数据或命令,运用推理机构控制知识库及整个系统,能像专家一样解决困难的和复杂的实际问题的计算机(软件)统。 专家系统有三个特点:1.启发性,能运用专家的知识和经验进行推理和判断;2.透明性,能解决本身的推理过程,回答用户提出的问题;3.灵活性,能不断地增长知识,修改原有知识。 1 专家系统的产生与发展 专家系统按其发展过程大致可分为三个阶段[1~3],即初创期(1971年前)、成熟期(1972)1977年)和发展期(1978年至今)。 1.1 初创期 人工智能早期工作都是学术性的,其程序都是用来开发游戏的。尽管这些努力产生了如国际象棋、跳棋等有趣的游戏[4],但其真实目的在于在计算机编码中加入人的推理能力,以

数据挖掘领域的十大经典算法原理及应用

数据挖掘领域的十大经典算法原理及应用 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1.C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV 机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面

大学数据挖掘期末考试题

第 - 1 - 页 共 4 页 数据挖掘试卷 课程代码: C0204413 课程: 数据挖掘A 卷 一、判断题(每题1分,10分) 1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。( ) 2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘。( ) 3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。( ) 4. 当两个点之间的邻近度取它们之间距离的平方时,Ward 方法与组平均非常相似。( ) 5. DBSCAN 是相对抗噪声的,并且能够处理任意形状和大小的簇。( ) 6. 属性的性质不必与用来度量他的值的性质相同。( ) 7. 全链对噪声点和离群点很敏感。( ) 8. 对于非对称的属性,只有非零值才是重要的。( ) 9. K 均值可以很好的处理不同密度的数据。( ) 10. 单链技术擅长处理椭圆形状的簇。( ) 二、选择题(每题2分,30分) 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( ) A.分类 B.聚类 C.关联分析 D.主成分分析 2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A.MIN(单链) B.MAX(全链) C.组平均 D.Ward 方法 3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。 A 分类 B 预测 C 关联规则分析 D 聚类 4.关于K 均值和DBSCAN 的比较,以下说法不正确的是( ) A.K 均值丢弃被它识别为噪声的对象,而DBSCAN 一般聚类所有对象。 B.K 均值使用簇的基于原型的概念,DBSCAN 使用基于密度的概念。 C.K 均值很难处理非球形的簇和不同大小的簇,DBSCAN 可以处理不同大小和不同形状的簇 D.K 均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN 会合并有重叠的簇 5.下列关于Ward ’s Method 说法错误的是:( )

最新数据挖掘考试题目——关联分析资料

数据挖掘考试题目——关联分析 一、10个选择 1.以下属于关联分析的是() A.CPU性能预测B.购物篮分析 C.自动判断鸢尾花类别D.股票趋势建模 2.维克托?迈尔-舍恩伯格在《大数据时代:生活、工作与思维的大变革》一书中,持续强调了一个观点:大数据时代的到来,使我们无法人为地去发现数据中的奥妙,与此同时,我们更应该注重数据中的相关关系,而不是因果关系。其中,数据之间的相关关系可以通过以下哪个算法直接挖掘() A.K-means B.Bayes Network C.C4.5 D.Apriori 3.置信度(confidence)是衡量兴趣度度量()的指标。 A.简洁性B.确定性 C.实用性D.新颖性 4.Apriori算法的加速过程依赖于以下哪个策略() A.抽样B.剪枝 C.缓冲D.并行 5.以下哪个会降低Apriori算法的挖掘效率() A.支持度阈值增大B.项数减少 C.事务数减少D.减小硬盘读写速率 6.Apriori算法使用到以下哪些东东() A.格结构、有向无环图B.二叉树、哈希树 C.格结构、哈希树D.多叉树、有向无环图 7.非频繁模式() A.其置信度小于阈值B.令人不感兴趣 C.包含负模式和负相关模式D.对异常数据项敏感 8.对频繁项集、频繁闭项集、极大频繁项集的关系描述正确的是()[注:分别以1、2、3代表之] A.3可以还原出无损的1 B.2可以还原出无损的1 C.3与2是完全等价的D.2与1是完全等价的 9.Hash tree在Apriori算法中所起的作用是() A.存储数据B.查找 C.加速查找D.剪枝 10.以下不属于数据挖掘软件的是() A.SPSS Modeler B.Weka C.Apache Spark D.Knime 二、10个填空 1.关联分析中表示关联关系的方法主要有:和。 2.关联规则的评价度量主要有:和。 3.关联规则挖掘的算法主要有:和。 4.购物篮分析中,数据是以的形式呈现。 5.一个项集满足最小支持度,我们称之为。 6.一个关联规则同时满足最小支持度和最小置信度,我们称之为。

数据挖掘十大待解决问题

数据挖掘领域10大挑战性问题与十大经典算法 2010-04-21 20:05:51| 分类:技术编程| 标签:|字号大中小订阅 作为一个数据挖掘工作者,点可以唔知呢。 数据挖掘领域10大挑战性问题: 1.Developing a Unifying Theory of Data Mining 2.Scaling Up for High Dimensional Data/High Speed Streams 3.Mining Sequence Data and Time Series Data 4.Mining Complex Knowledge from Complex Data 5.Data Mining in a Network Setting 6.Distributed Data Mining and Mining Multi-agent Data 7.Data Mining for Biological and Environmental Problems 8.Data-Mining-Process Related Problems 9.Security, Privacy and Data Integrity 10.Dealing with Non-static, Unbalanced and Cost-sensitive Data 数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

学习18大经典数据挖掘算法

学习18大经典数据挖掘算法 本文所有涉及到的数据挖掘代码的都放在了github上了。 地址链接: https://https://www.360docs.net/doc/603251269.html,/linyiqun/DataMiningAlgorithm 大概花了将近2个月的时间,自己把18大数据挖掘的经典算法进行了学习并且进行了代码实现,涉及到了决策分类,聚类,链接挖掘,关联挖掘,模式挖掘等等方面。也算是对数据挖掘领域的小小入门了吧。下面就做个小小的总结,后面都是我自己相应算法的博文链接,希望能够帮助大家学习。 1.C4.5算法。C4.5算法与ID3算法一样,都是数学分类算法,C4.5算法是ID3算法的一个改进。ID3算法采用信息增益进行决策判断,而C4.5采用的是增益率。 详细介绍链接:https://www.360docs.net/doc/603251269.html,/androidlushangderen/article/details/42395865 2.CART算法。CART算法的全称是分类回归树算法,他是一个二元分类,采用的是类似于熵的基尼指数作为分类决策,形成决策树后之后还要进行剪枝,我自己在实现整个算法的时候采用的是代价复杂度算法, 详细介绍链接:https://www.360docs.net/doc/603251269.html,/androidlushangderen/article/details/42558235 3.KNN(K最近邻)算法。给定一些已经训练好的数据,输入一个新的测试数据点,计算包含于此测试数据点的最近的点的分类情况,哪个分类的类型占多数,则此测试点的分类与此相同,所以在这里,有的时候可以复制不同的分类点不同的权重。近的点的权重大点,远的点自然就小点。 详细介绍链接:https://www.360docs.net/doc/603251269.html,/androidlushangderen/article/details/42613011 4.Naive Bayes(朴素贝叶斯)算法。朴素贝叶斯算法是贝叶斯算法里面一种比较简单的分类算法,用到了一个比较重要的贝叶斯定理,用一句简单的话概括就是条件概率的相互转换推导。 详细介绍链接:https://www.360docs.net/doc/603251269.html,/androidlushangderen/article/details/42680161 5.SVM(支持向量机)算法。支持向量机算法是一种对线性和非线性数据进行分类的方法,非线性数据进行分类的时候可以通过核函数转为线性的情况再处理。其中的一个关键的步骤是搜索最大边缘超平面。 详细介绍链接:https://www.360docs.net/doc/603251269.html,/androidlushangderen/article/details/42780439 6.EM(期望最大化)算法。期望最大化算法,可以拆分为2个算法,1个E-Step期望化步骤,和1个M-Step最大化步骤。他是一种算法框架,在每次计算结果之后,逼近统计模型参数的最大似然或最大后验估计。

数据挖掘之专家系统

《数据挖掘》期末总结 ——专家系统 有关专家系统: 定义: 是一个(或一组)能在某特定领域内,以人类专家水平去求解该领域中困难问题的计算机智能程序系统。 构成: 完整的专家系统包括人机接口、推理机、知识库、数据库、知识获取器和解释机构六部分,如下图: 用户领域专家知识工程师 其核心在于推理机与知识库和综合数据库的交互作用,使得问题得以解决。 工作过程: 1)根据用户的问题对知识库进行搜索,寻找有关的知识;(匹配)2)根据有关的知识和系统的控制策略形成解决问题的途径,从而构成一个假设方案集合;

3)对假设方案集合进行排序,并挑选其中在某些准则下为最优的假设方案;(冲突解决) 4)根据挑选的假设方案去求解具体问题;(执行) 5)如果该方案不能真正解决问题,则回溯到假设方案序列中的下一个假设方案,重复求解问题; 6)循环执行上述过程,直到问题已经解决或所有可能的求解方案都不能解决问题而宣告“无解”为止。 企业、政府机构用的专家系统都是有严密的逻辑、也涉及大量的数据分析、并且是经过领域专家、工程师的经验校验,详细用户需求分析后的结果。 而实际上,在我们的日常生活中,也不经意的在思维过程中用到了专家系统,譬如在游戏“你来描述我来猜”的过程中,我们就可以抽取出一个专家系统——、 动物识别专家 在推理过程中,会同时推出几个结论。如:有毛发、会吃肉、有斑点——首先推出金钱豹有黑色条纹——再推出老虎有蹄——再推出斑马

有关学科总结 一学期结束,静下心复习总结时,才发现,这一学期无数次与数据挖掘打交道。 还记得《应用统计学》第一次作业:谈谈统计学与数据挖掘的关系。 还记得《管理信息系统》中CRM(客户关系管理系统),客户细分时提到的数据挖掘;决策支持系统以及BI中用到的数据挖掘。 还记得《信息系统分析与设计》做需求分析时要用到数据挖掘。 还记得跟老师做项目,查找信息可视化及知识图谱原理时,再一次提到数据挖掘。 就像课堂上说的:“互联网的时代,我们缺的不再是数据本身,而是海量数据包含的、隐含的信息,而这一信息的获取,除了我们敏锐的观察力从数据本身看到以外,还有太多有价值的信息需要我们运用相当的工具去深入挖掘——数据挖掘,理所应当成为了时代的必须,也是我们取胜的必须”。 《数据挖掘》课程本身更多的是给我们一种思想,一种看待、解决问题的新途径。通过课程的学习,我们不再简简单单的追求数据,我们会更多的去思考数据。 《应用统计学》也在讲数据处理,但应用统计学更多的是对已知数据分布的描述和趋势的预测,抑或是结论的检验。而《数据挖掘》所讲的数据是更倾向于如何把表面无关的数据建立联系,并从中获取有用信息。《应用统计学》是现状的描述和预测的检验,而《数据挖

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

数据挖掘算法

数据挖掘的10大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在 构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm

数据挖掘概述

数据挖掘概述 阅读目录 ?何为数据挖掘? ?数据挖掘背后的哲学思想 ?数据挖掘的起源 ?数据挖掘的基本任务 ?数据挖掘的基本流程 ?数据挖掘的工程架构 ?小结 回到顶部何为数据挖掘? 数据挖掘就是指从数据中获取知识。 好吧,这样的定义方式比较抽象,但这也是业界认可度最高的一种解释了。对于如何开发一个大数据环境下完整的数据挖掘项目,业界至今仍没有统一的规范。说白了,大家都听说过大数据、数据挖掘等概念,然而真正能做而且做好的公司并不是很多。

笔者本人曾任职于A公司云计算事业群的数据引擎团队,有幸参与过几个比较大型的数据挖掘项目,因此对于如何实施大数据场景下的数据挖掘工程有一些小小的心得。但由于本系列博文主要是结合传统数据挖掘理论和笔者自身在A云的一些实践经历,因此部分观点会有较强主观性,也欢迎大家来跟我探讨。 回到顶部数据挖掘背后的哲学思想 在过去很多年,首要原则模型(first-principle models)是科学工程领域最为经典的模型。 比如你要想知道某辆车从启动到速度稳定行驶的距离,那么你会先统计从启动到稳定耗费的时间、稳定后的速度、加速度等参数;然后运用牛顿第二定律(或者其他物理学公式)建立模型;最后根据该车多次实验的结果列出方程组从而计算出模型的各个参数。通过该过程,你就相当于学习到了一个知识--- 某辆车从启动到速度稳定行驶的具体模型。此后往该模型输入车的启动参数便可自动计算出该车达到稳定速度前行驶的距离。 然而,在数据挖掘的思想中,知识的学习是不需要通过具体问题的专业知识建模。如果之前已经记录下了100辆型号性能相似的车从启动到速度稳定行驶的距离,那么我就能够对这100个数据求均值,从而得到结果。显然,这一过程是是直接面向数据的,或者说我们是直接从数据开发模型的。 这其实是模拟了人的原始学习过程 --- 比如你要预测一个人跑100米要多久时间,你肯定是根据之前了解的他(研究对象)这样体型的人跑100米用的多少时间做一个估计,而不会使用牛顿定律来算。 回到顶部数据挖掘的起源 由于数据挖掘理论涉及到的面很广,它实际上起源于多个学科。如建模部分主要起源于统计学和机器学习。统计学方法以模型为驱动,常常建立一个能够产生数据的模型;而机器学习则以算法为驱动,让计算机通过执行算法来发现知识。仔细想想,"学习"本身就有算法的意思在里面嘛。

大数据常用的算法

大数据常用的算法(分类、回归分析、聚类、关联规则) 在大数据时代,数据挖掘是最关键的工作。大数据的挖掘是从海量、不完全的、有噪声的、模糊的、随机的大型数据库中发现隐含在其中有价值的、潜在有用的信息和知识的过程,也是一种决策支持过程。其主要基于人工智能,机器学习,模式学习,统计学等。通过对大数据高度自动化地分析,做出归纳性的推理,从中挖掘出潜在的模式,可以帮助企业、商家、用户调整市场政策、减少风险、理性面对市场,并做出正确的决策。目前,在很多领域尤其是在商业领域如银行、电信、电商等,数据挖掘可以解决很多问题,包括市场营销策略制定、背景分析、企业管理危机等。大数据的挖掘常用的方法有分类、回归分析、聚类、关联规则、神经网络方法、Web 数据挖掘等。这些方法从不同的角度对数据进行挖掘。 (1)分类。分类是找出数据库中的一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到摸个给定的类别中。可以应用到涉及到应用分类、趋势预测中,如淘宝商铺将用户在一段时间内的购买情况划分成不同的类,根据情况向用户推荐关联类的商品,从而增加商铺的销售量。 (2)回归分析。回归分析反映了数据库中数据的属性值的特性,通过函数表达数据映射的关系来发现属性值之间的依赖关系。它可以应用到对数据序列的预测及相关关系的研究中去。在市场营销中,回归分析可以被应用到各个方面。如通过对本季度销售的回归分析,对下一季度的销售趋势作出预测并做出针对性的营销改变。 (3)聚类。聚类类似于分类,但与分类的目的不同,是针对数据的相似性和差异性将一组数据分为几个类别。属于同一类别的数据间的相似性很大,但不同类别之间数据的相似性很小,跨类的数据关联性很低。(4)关联规则。关联规则是隐藏在数据项之间的关联或相互关系,即可以根据一个数据项的出现推导出其他数据项的出现。关联规则的挖掘过程主要包括两个阶段:第一阶段为从海量原始数据中找出所有的高频项目组;第二极端为从这些高频项目组产生关联规则。关联规则挖掘技术已经被广泛应用于金融行业企业中用以预测客户的需求,各银行在自己的ATM 机上通过捆绑客户可能感兴趣的信息供用户了解并获取相应信

数据挖掘案例分析--啤酒与尿布讲课稿

前言 “啤酒与尿布”的故事是营销届的神话,“啤酒”和“尿布”两个看上去没有关系的商品摆放在一起进行销售、并获得了很好的销售收益,这种现象就是卖场中商品之间的关联性,研究“啤酒与尿布”关联的方法就是购物篮分析,购物篮分析曾经是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长! 商品相关性分析是购物篮分析中最重要的部分,购物篮分析英文名为market basket analysis(简称MBA,当然这可不是那个可以用来吓人的学位名称)。在数据分析行业,将购物篮的商品相关性分析称为“数据挖掘算法之王”,可见购物篮商品相关性算法吸引人的地方,这也正是我们小组乐此不疲的围绕着购物篮分析进行着研究和探索的根本原因。 购物篮分析的算法很多,比较常用的有A prior/ ?’ p r i ?/算法、FP-tree结构和相应的FP-growth算法等等,上次课我们组的邓斌同学已经详细的演示了购物篮分析的操作流程,因此在这里我不介绍具体的购物篮分析算法,而是在已经获得的结果的基础上剖析一下数据身后潜藏的商业信息。目前购物篮分析的计算方法都很成熟,在进入20世纪90年代后,很多分析软件均将一些成熟的购物篮分析算法打包在自己的软件产品中,成为了软件产品的组成部分,客户购买了这些软件产品后就等于有了购物篮分析的工具,比如我们正在使用的Clementine。 缘起 “啤酒与尿布”的故事可以说是营销界的经典段子,在打开Google搜索一下,你会发现很多人都在津津乐道于“啤酒与尿布”,可以说100个人就有100个版本的“啤酒与尿布”的故事。故事的时间跨度从上个世纪80年代到本世纪初,甚至连故事的主角和地点都会发生变化——从美国跨越到欧洲。认真地查了一下资料,我们发现沃尔玛的“啤酒与尿布”案例是正式刊登在1998年的《哈佛商业评论》上面的,这应该算是目前发现的最权威报道。 “啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。 在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布”故事的由来。 当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal (个人翻译--艾格拉沃)提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提出了商品关联关系的计算方法——A prior算法。沃尔玛从上个世纪90年代尝试将A prior算法引入到POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。 “啤酒和尿布”的故事为什么产生于沃尔玛超市的卖场中

数据挖掘关联规则分析报告

关联规则分析报告 2009年7月8日 目录 一前言 (1) 二数据预处理 (1) 三前7710条真实数据分析 (2) 1商品按小类分析 (2) 2商品按中类分析 (4) 3商品按大类分析 (4) 4分析比较 (5) 四后44904条随机数据分析 (5) 1商品按小类分析 (5) 2商品按中类分析 (7) 3商品按大类分析 (8) 4分析比较 (8) 五52614条混合数据分析 (8) 1商品按小类分析 (8) 2商品按中类分析 (11) 3商品按大类分析 (11) 4分析比较 (12) 六总结 (12)

一前言 使用关联规则挖掘算法分析购物清单时,会产生不止“啤酒→尿布”的单一关联规则,而将出现涉及多种商品的“纵横交错”的多条关联规则。针对这一实际问题,本文利用学生日常购物记录数据进行关联分析,通过概念分层从不同粒度上分析商品之间的关联性,从而找到商品之间的关联规则,实现优化超市货物摆放次序的目的。 二数据预处理 1)在SQL server 2000 查询分析器里执行下面的SQL语句 declare @sql varchar(8000) set @sql = 'select zid ,xh' select @sql = @sql + ' , max(case goodsid when ''' + goodsid + ''' then goodsid end) [' + 'n'+ goodsid + ']' from (select distinct goodsid from rcxfjl) as a set @sql = @sql + ' into table_a from rcxfjl group by zid,xh' exec(@sql) 2)在PB里将有购买记录的列改为”yes” for i=1 to dw_1.rowcount() for li_index=1 to long(dw_1.object.datawindow.column.count) if integer(dw_1.getitemstring(i,dw_1.describe('#' + string(li_index) + ".name")))>0 then dw_1.setitem(i,dw_1.describe('#' + string(li_index) + ".name"),"yes") end if next next 3)将处理好的数据直接导出到Excel中 4)将Excel表中的空格替换成”?”(在weka中?表示缺省值)

数据挖掘中十大经典算法

数据挖掘十大经典算法 国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和Barnard 将支持向量机和其他分类器进行了比较。 4. The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 5. 最大期望(EM)算法 在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。 6. PageRank PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里?佩奇(Larry Page)。因此,PageRank里的page不是指网页,而是指佩奇,即这个

大学数据挖掘期末考试题

:号学 题目-一 - -二 二 三四五六七八九十总成绩复核得分 阅卷教师 :名姓班 级 业专 院 学院学学科息信与学数 题试试考末期期学季春年学一320数据挖掘试卷 课程代码:C0204413课程:数据挖掘A卷 一、判断题(每题1分,10分) 1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。() 2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘。() 3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。() 4. 当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似。() 5. DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。() 6. 属性的性质不必与用来度量他的值的性质相同。() 7. 全链对噪声点和离群点很敏感。() 8. 对于非对称的属性,只有非零值才是重要的。() 9. K均值可以很好的处理不同密度的数据。() 10. 单链技术擅长处理椭圆形状的簇。() 二、选择题(每题2分,30分) 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分 离?() A. 分类 B.聚类 C.关联分析 D.主成分分析 2. ()将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A. MIN(单链) B.MAX(全链) C.组平均 D.Ward方法 3. 数据挖掘的经典案例“啤酒与尿布试验”最 主要是应用了()数据挖掘方法。 A分类B预测C关联规则分析D聚类 4. 关于K均值和DBSCAN的比较,以下说法不正确的是() A. K均值丢弃被它识别为噪声的对象,而DBSCAN —般聚类所有对 象。 B. K均值使用簇的基于原型的概念,DBSCAN使用基于密度的概念。 C. K均值很难处理非球形的簇和不同大小的簇,DBSCAN可以处理不同大小和不同形状的簇 D. K均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN会合并有重叠的簇 5. 下列关于 Ward 'Method说法错误的是:() A. 对噪声点和离群点敏感度比较小 B. 擅长处理球状的簇 C. 对于Ward方法,两个簇的邻近度定义为两个簇合并时导致的平方误差 D. 当两个点之间的邻近度取它们之间距离的平方时,Ward方法与组平均非常相似 6. 下列关于层次聚类存在的问题说法正确的是:() A. 具有全局优化目标函数 B. Group Average擅长处理球状的簇 C. 可以处理不同大小簇的能力 D. Max对噪声点和离群点很敏感 7. 下列关于凝聚层次聚类的说法中,说法错误的事: () A. 一旦两个簇合并,该操作就不能撤销 B. 算法的终止条件是仅剩下一个簇 2 C. 空间复杂度为O m D. 具有全局优化目标函数 8规则{牛奶,尿布}T{啤酒}的支持度和置信度分别为:()

数据挖掘主要算法

朴素贝叶斯: 有以下几个地方需要注意: 1. 如果给出的特征向量长度可能不同,这是需要归一化为通长度的向量(这里以文本分类为例),比如说是句子单词的话,则长度为整个词汇量的长度,对应位置是该单词出现的次数。 2. 计算公式如下: 其中一项条件概率可以通过朴素贝叶斯条件独立展开。要注意一点就是的计算方法,而由朴素贝叶斯的前提假设可知, = ,因此一般有两种,一种是在类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本的总和;第二种方法是类别为ci的那些样本集中,找到wj出现次数的总和,然后除以该样本中所有特征出现次数的总和。 3. 如果中的某一项为0,则其联合概率的乘积也可能为0,即2中公式的分子为0,为了避免这种现象出现,一般情况下会将这一项初始化为1,当然为了保证概率相等,分母应对应初始化为2(这里因为是2类,所以加2,如果是k类就需要加k,术语上叫做laplace 光滑, 分母加k的原因是使之满足全概率公式)。 朴素贝叶斯的优点: 对小规模的数据表现很好,适合多分类任务,适合增量式训练。 缺点: 对输入数据的表达形式很敏感。 决策树: 决策树中很重要的一点就是选择一个属性进行分枝,因此要注意一下信息增益的计算公式,并深入理解它。 信息熵的计算公式如下:

其中的n代表有n个分类类别(比如假设是2类问题,那么n=2)。分别计算这2类样本在总样本中出现的概率p1和p2,这样就可以计算出未选中属性分枝前的信息熵。 现在选中一个属性xi用来进行分枝,此时分枝规则是:如果xi=vx的话,将样本分到树的一个分支;如果不相等则进入另一个分支。很显然,分支中的样本很有可能包括2个类别,分别计算这2个分支的熵H1和H2,计算出分枝后的总信息熵H’=p1*H1+p2*H2.,则此时的信息增益ΔH=H-H’。以信息增益为原则,把所有的属性都测试一边,选择一个使增益最大的属性作为本次分枝属性。 决策树的优点: 计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征; 缺点: 容易过拟合(后续出现了随机森林,减小了过拟合现象); Logistic回归: Logistic是用来分类的,是一种线性分类器,需要注意的地方有: 1. logistic函数表达式为: 其导数形式为: 2. logsitc回归方法主要是用最大似然估计来学习的,所以单个样本的后验概率为: 到整个样本的后验概率:

数据挖掘算法摘要

国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. 不仅仅是选中的十大算法,其实参加评选的18种算法,实际上随便拿出一种来都可以称得上是经典算法,它们在数据挖掘领域都产生了极为深远的影响。 1. C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进: 1) 用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足; 2) 在树构造过程中进行剪枝; 3) 能够完成对连续属性的离散化处理; 4) 能够对不完整数据进行处理。 C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。 2. The k-means algorithm 即K-Means算法 k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 3. Support vector machines 支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种監督式學習的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.C Burges的《模式识别支持向量机指南》。van der Walt 和 Barnard 将支持向量机和其他分类器进行了

相关文档
最新文档