过程控制系统设计方案设计

合集下载

过程控制单回路控制系统设计

过程控制单回路控制系统设计

过程控制单回路控制系统设计设计流程:1.确定控制目标:首先,需要确定控制的目标,即需要控制的变量。

在温度控制系统中,控制目标是温度。

2.选择传感器:根据控制目标选择合适的传感器。

在温度控制系统中,可以选择温度传感器。

3.选择执行器:根据控制目标选择合适的执行器。

在温度控制系统中,可以选择加热器或制冷器作为执行器。

4.设计控制器:根据传感器和执行器的特性设计控制器。

常用的控制器包括比例控制器、积分控制器和微分控制器。

5.信号处理:将传感器获取到的数据进行处理,使其适合控制器的输入。

常见的信号处理操作包括放大、滤波和变换等。

6.反馈控制:将控制器的输出与传感器的反馈信号进行比较,并根据比较结果进行调节。

常见的反馈控制算法包括比例反馈控制、积分反馈控制和模糊反馈控制等。

7.参数调节:根据实际情况对控制器的参数进行调节,使得系统达到最佳性能。

8.系统集成:将传感器、执行器、控制器和信号处理器等各部分组装成一个完整的系统,并进行功能测试和性能评估。

关键要素:1.传感器:传感器用于将被控变量转换成电信号,常见的传感器有温度传感器、压力传感器和流量传感器等。

2.执行器:执行器用于根据控制信号调节被控变量,常见的执行器有阀门、电机和加热器等。

3.控制器:控制器根据传感器信号和设定值,计算出控制信号,并将其发送给执行器,常见的控制器有PID控制器和模糊控制器等。

4.信号处理器:信号处理器用于对传感器输出的信号进行放大、滤波和变换等处理,以提高控制系统的稳定性和抗干扰能力。

5.反馈控制:反馈控制通过比较传感器输出和设定值,根据比较结果调整控制信号,以实现控制目标。

6.参数调节:控制器的性能和稳定性很大程度上取决于其参数的选择和调节,通过对控制器参数的调节,可以提高控制系统的响应速度和稳定性。

过程控制单回路控制系统设计需要结合具体的应用场景和要求进行,根据控制目标选择合适的传感器、执行器和控制器,并通过信号处理和反馈控制等措施来提高系统的性能和稳定性。

过程控制系统课程设计

过程控制系统课程设计

过程控制系统课程设计1000字作为一种系统工程,过程控制系统对于工业自动化的实现至关重要。

本文将介绍一项过程控制系统课程设计,目的是通过实际操作、编程和调试提高主观能动性,深化理论学习,提升学生对过程控制系统的认识。

1. 实验目的通过本次课程设计的实验,学生将学习并掌握以下内容:1)了解过程控制系统的基本概念,熟悉控制系统的硬件结构和控制器的工作原理;2)掌握模拟信号的采集和处理技术,及其在过程控制系统中的应用;3)理解PID控制器的原理和调节方法,熟悉常用的控制算法;4)学习模拟量信号的传输及数字量信号的传输与控制,深入剖析过程控制系统中各种控制技术的特点及其应用;5)熟悉数据采集与通信技术,主控器的编程、调试和软硬件环境搭建方法。

2. 实验设备与材料本实验所需的设备及材料如下:1)PLC控制器(可使用Siemens S7-200、Schneider Zelio Logic等PLC控制器);2)功率放大器(使用1KW的功率放大器,用于控制实验装置的加热);3)温控器、温度传感器、压力传感器、流量传感器、液位传感器(包括普通型、电容型、毛细管型等);4)人机界面操作器/工控机、旋钮开关、LED、蜂鸣器等交互控制组件;5)驱动器/执行机构,接口电缆、相应的电源和电线等。

3. 实验内容及步骤(1)实验装置的搭建实验装置包括温度控制、压力控制、流量控制、液位控制等构件,以PID控制器为主要控制模式,控制对象为温度、压力、流量和液位,并通过PLC控制器进行控制。

搭建实验平台的具体步骤如下:1)选择和购买控制器和实验箱;2)安装和调试控制器与箱体之间的接口;3)加装驱动器/执行机构;4)安装、连接和调试传感器(温度、压力、流量、液位);5)调试控制器与各传感器、驱动器/执行机构之间的串联关系,确保各根信号电线的接法正确无误。

(2)模拟信号采集与处理本实验将设置4路模拟输入口,通过PLC控制器采集原始信号并处理。

过程控制系统课程设计报告

过程控制系统课程设计报告

过程控制系统课程设计报告题目:温度控制系统设计姓名:学号:班级:指导教师:温度控制系统设计一、设计任务设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。

二、预期实现目标通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。

三、设计方案(一)系统数学模型的建立要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。

数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。

在本系统中,被控量是温度。

被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。

在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。

在整个实验过程中,水量是不变的。

经过试验,得到下表所示的时间-温度表:表1 采样时间和对应的温度值以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线:图1 时间-温度曲线采用实验法——阶跃响应曲线法对温箱系统进行建模。

将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。

从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。

因此我们选用()1ske G s Ts τ-=+(式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。

(1)k 的求法:k 可以用下式求得:()(0)y y k x ∞-=(x :输入的阶跃信号幅值)(2)过程时间常数T 和滞后时间τ可用两点法求得:T=)](1ln[)](1ln[2*1*12t y t y t t ----τ=)](1ln[)](1ln[)](1ln[)](1ln[2*1*2*11*2t y t y t y t t y t ------选取系统终值100℃,t 1=90s ,对应)(1*t y =0.36,t 2=300s ,对应)(2*t y =0.86得到K=0.8,T=138.1, τ=28.3系统开环传递函数:K=11388.0+S(二)基于MATLAB 的PID 仿真(1)PID 控制算法目前大部分温度控制器还是采用PID 控制算法,PID 控制是比例—积分—微分控制,PID 控制是最早发展起来的、应用领域至今仍然广泛的控制策略之一。

过程控制系统课程设计(最终提交版)

过程控制系统课程设计(最终提交版)

*****大学《过程控制系统》课程设计文件设计小组名称:设计小组班级:设计小组成员:2016年6月20日一、方案设计依据、范围及相关标准设计依据一个典型的化工生产过程大致有三个组成部分:(1)原料预处理(2)化学反应(3)产物分离很显然,化学反应是化工生产过程的核心,化学反应器是化工生产装置中的关键设备。

反应器各部分控制的选择、设计与操作,涉及如何在工业规模上实现反应过程,以及最有效地把化工原料转化为尽可能多的目的产品,实现经济效益,以满足国民经济需要。

设计范围本设计包括:1、系统分析(包括控制需求分析、对象特性分析、工艺流程分析、系统安全要求等)2、基础控制系统及开车顺序控制系统的设计(包括控制回路、控制算法、被控变量、操纵变量、控制规律、阀门特性、顺序逻辑、安全保障等功能设计)3、安全系统的设计(包括声光报警、安全联锁、紧急停车、安全仪表等功能设计)4、绿色生产、节能减排降耗方面的考虑设计遵循的标准及规范HG/T20505-2000《过程测量和控制仪表的功能标志及图形符号》GB/T21109-2007《过程工业领域安全仪表系统的功能安全》HG20505-2000《过程检测和控制系统用文字代号和图形符号》HG20559-1993《管道仪表流程图设计规定》GB/Z18718-2002《热处理节能技术导则》GB12241-89《安全阀一般要求》HG/T20511-2014《信号报警及联锁系统设计规范》二、系统分析(包括控制需求分析、对象特性分析、工艺流程分析、系统安全要求等)一、需求分析1、进料流量及比例控制反应器共有两股连续进料。

要求选手设计控制系统克服每股进料的流量扰动。

同时,需要保证两股物料以一定比例进料。

2、反应器液位控制要求选手设计液位控制系统,保证液位处于80%,以获得较大的反应停留时间,保证反应充分进行。

3、反应器压力安全控制为保证反应安全,需要对压力进行安全控制系统的设计。

4、反应器组份控制为得到一定的转化率的产品,要求选手对反应器最终产物的组份进行控制。

典型过程控制系统设计

典型过程控制系统设计

3
4
5
6
图10-4 过热蒸汽温度串级控制
该控制系统是将减温器后的汽温信号
烟道气)而偏离给定值时,主汽温信
经测量、变送反馈至主调节器,
器随之动作,控制调节阀,从而使主汽
作为副被控参数构成副回路,当减
温水自身出现波动时,
比主汽温
能提前感受到它的影响,并使副调节
器及时动作,使减温水的干扰能够及
时动作,使减温水的干扰能够及时得
单元机组生产流程示意图(各单元说明。。。)
重点以锅炉汽包水位控制、过热蒸汽温度控制、锅炉燃烧控制为例讨论它们的控制方案。
1-汽轮机高压缸;2-汽轮机中、低压缸;3-汽包;4-炉膛;5-烟道;6-发电机;7-冷凝器;8-补充水;9-凝结水泵;10-循环水泵;11-低压加热器;12-除氧器;13-给水泵;14-高压加热器;15-给水调节机构;16-省媒器;17-过热器;18-减温器;
02
1.控制目标
精馏塔的过程控制
精馏过程的目的是利用混合液中各组分挥发度的不同,将各组分进行分离以达到规定的纯度。 1.2.1 精馏塔的控制目标及变量分析 精馏塔的控制目标通常表现在产品质量、产品产量及能量消耗三个方面。 产品质量 精馏操作的目的是将混合液中各组分分离为产品,产品质量必须符合规定的要求。 产品产量与经济效益 任何产品都要求在确保质量的前提下,尽可能提高产品的产量和降低成本、最大限度地提高经济效益 。
202X
第10章 典型生产过程控制 与工程设计
单击此处添加正文具体内容
了解电厂锅炉的各种控制要求,熟悉它们的控制方案;
01
掌握锅炉燃烧过程控制系统的设计方法;
了解精馏塔的控制任务, 熟悉各变量之间的关系;

过程控制系统的设计与实现

过程控制系统的设计与实现

过程控制系统的设计与实现随着工业自动化的不断提高和科技的不断发展,越来越多的企业和生产厂家开始采用过程控制系统,以提高生产效率和产品质量。

过程控制系统是指利用计算机、传感器等技术手段对工艺流程进行实时监测和控制的系统。

本文将着重讨论过程控制系统的设计与实现过程。

具体内容如下:一、需求分析进行过程控制系统的设计与实现,需要首先进行需求分析。

需求分析主要包括以下几个方面:1.生产需求:明确生产厂家的生产要求和目标,制定相应的生产计划。

2.设备要求:确定所需的硬件设备、软件系统及其规格和参数。

3.控制策略:根据生产需求和设备要求,确定相应的控制策略和规则。

4.安全性:保障系统的安全性和可靠性,防止系统被外界攻击或故障。

在需求分析阶段,我们需要与生产厂家充分沟通,了解其需求和要求,制定相应的控制方案,并确定相应的设计方向和目标。

二、系统设计在需求分析阶段完成后,需要对过程控制系统进行系统设计。

系统设计主要包括以下几个步骤:1.系统架构:确定过程控制系统的总体架构,包括硬件、软件和网络架构等。

2.功能设计:确定系统要实现的功能和特性,如控制、监测、报警等。

3.软件设计:设计系统所需要的软件,包括编写代码、测试程序、编写文档等。

4.硬件设计:根据系统架构和功能要求,设计硬件系统,选择合适的传感器、执行器、控制器等等。

5.集成测试:将软件、硬件、网络等各个部分进行集成测试,确保系统能够正常运行。

在系统设计阶段,需要充分考虑系统的可扩展性、灵活性和稳定性等要求。

三、系统实现系统实现是指将以上设计方案付诸实践的过程。

系统实现主要包括以下几个步骤:1.硬件搭建:根据设计方案,选择合适的硬件设备并进行搭建。

2.软件编码:根据设计方案,编写相应的代码并进行调试。

3.测试和调试:对已实现的系统进行测试和调试,确保系统能够正常运行。

4.安装和调试:将系统安装到实际生产环境中,并进行调试和实验,确保系统能够满足生产需求。

在系统实现阶段,需要根据系统设计方案进行具体实现,并进行现场实验和调试,确保系统能够正常运行。

过程控制系统课程设计

过程控制系统课程设计

过程控制系统课程设计过程控制系统课程设计引言:过程控制系统是工程技术中的重要组成部分,它负责对工业过程进行监控与控制,以确保工艺的稳定性和高效性。

在过程控制系统课程设计中,学生将探讨过程控制系统的原理与应用,并通过实践设计一个实际的过程控制系统。

一、绪论过程控制系统又称作工业控制系统,它广泛应用于化工、电力、机械制造等领域。

过程控制系统的主要目标是监控和控制工业过程,以确保产品质量、提高生产效率和降低能源消耗。

通过对传感器的采集和执行器的控制,过程控制系统可以实现自动化的生产。

二、过程控制系统的组成1.传感器与执行器:传感器负责采集工业过程中的各项参数,如温度、压力、流量等。

执行器则负责根据控制系统的指令,对工艺过程进行调节和控制。

2.控制器:控制器是过程控制系统的核心,它根据传感器采集到的数据,通过算法和控制策略进行分析和判断,产生相应的控制信号送往执行器。

3.人机界面:人机界面是人与过程控制系统之间的桥梁,它提供了一个直观、友好的操作界面,使操作人员可以实时地监控和控制生产过程。

三、过程控制系统的设计步骤1.确定系统的目标:在设计过程控制系统前,首先需要明确系统的目标,即要控制的工艺过程中所需达到的标准和要求。

2.收集和分析数据:通过传感器采集工艺过程中的数据,并进行数据分析,了解工艺过程的变化规律和特点。

3.建立模型:根据收集到的数据,建立工艺过程的数学模型,用于后续的控制系统设计。

4.选择控制策略:根据工艺过程的性质和目标要求,选择合适的控制策略,如PID控制、模糊控制、神经网络控制等。

5.设计控制算法:根据选择的控制策略,设计相应的控制算法,并将其实现在控制器中。

6.仿真和优化:使用仿真工具对设计好的控制系统进行仿真,并进行调整和优化,以使系统的性能符合要求。

7.实现与调试:根据控制器的设计方案,采购和安装相应的硬件设备,并进行调试和验证。

8.监控与维护:设计好的过程控制系统需要持续地进行监控和维护,以确保系统的稳定性和可靠性。

过程控制系统课程设计书

过程控制系统课程设计书

6. 撰写课程设计报告,总结设计过程和成 果。
02
过程控制系统基本原理
过程控制概念及分类
过程控制概念
过程控制是对生产过程中的各种工艺参数进行实时测量、调 节和控制,以确保生产过程的稳定、高效和安全。它是自动 化技术的重要组成部分,广泛应用于化工、冶金、电力、轻 工等工业领域。
过程控制分类
根据控制对象的不同,过程控制可分为温度控制、压力控制 、流量控制、液位控制等;根据控制策略的不同,过程控制 可分为开环控制和闭环控制;根据控制器结构的不同,过程 控制可分为单回路控制和多回路控制。
感谢观看
静态特性分析
01
研究被控对象在稳态工作条件下的输入输出关系,包括线性度
、死区、滞后等特性。
动态特性分析
02
研究被控对象在动态过程中的输入输出关系,包括时域响应、
频域响应等特性。
稳定性分析
03
研究被控对象在受到扰动后的恢复能力,包括稳定性判据、稳
定裕度等特性。
数学模型建立方法
01
机理建模法
根据被控对象的物理或化学原理 ,建立描述其动态行为的数学模 型。
系统辨识法
02
03
混合建模法
利用实验数据,通过系统辨识方 法确定被控对象的数学模型结构 和参数。
结合机理建模和系统辨识方法, 充分利用已知信息和实验数据, 建立更准确的数学模型。
模型参数辨识与校正
参数辨识方法
利用最小二乘法、梯度下降法等 优化算法,对实验数据进行拟合 ,得到模型参数的最优估计值。
模型校正方法
过程控制系统组成要素
被控对象
被控对象是指需要控制的工艺参数或设备,如温 度、压力、流量等。
控制器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程控制仪表与系统
题目:工业含硫废气控制系统案设计
学院:信息科学与工程学院
专业班级:测控技术与仪器1503班
学号:*********
学生姓名:哲
教师:飞
工业含硫废气控制系统案设计
摘要:多化工厂在厂区燃料燃烧和生产工艺过程中都会产生各种含有污染的有害气体,其中含硫的气体对环境造成的污染尤为重。

因此对含硫废气正确合理的处理至关重要。

在我国工业含硫废气一般多采用焚烧工艺,经焚烧炉焚烧,使污染性气体转换成安全物质。

经案论证后,本设计采用双闭环串级控制系统,控制目标温度在600-800℃设定尾气焚烧炉炉温波动围不超过±30℃。

该控制系统中运用PID算法,传感器将检测到的模拟信号送到变送器,变送器输出4~20mA的电流信号。

将变送器输出的标准信号送入控制器中,控制器通过分析比较所测参数与预设参数之后输出控制信号,执行器根据传送过来的信号进行变化,最终达到对系统温度的控制。

关键词:双闭环串级控制系统;炉温控制;流量控制;变送器
1 引言
含硫废气与加氢反应器出口过程器被加热至270-320℃左右与外补富氢气混合后进入加氢反应器在加氢催化剂的作用下转化为H2S。

加氢反应为放热反应,离开反应器的尾气-换热器换冷却后进入冷凝塔。

废气在冷凝塔中利用循环机冷水来降温。

70℃冷凝水自冷凝塔底部流出,经济冷泵加压后经急冷水冷却器用循环水冷却至40℃,循环至冷却塔顶。

部分急冷水经急冷水过滤器过滤后返回急冷水泵入口。

尾气中的水蒸气被冷凝,产生的酸性水由急冷水泵送至酸性水处理处。

为防止酸性水对设备的腐蚀,需向急冷水中注入氨根据ph值大小决定注入氨的量。

冷凝后的尾气离开冷凝塔进入回收塔,用30%的甲基二乙醇胺溶液吸收废气中的硫化氢,同时吸收部分二氧化碳。

吸收塔底富液用富液泵送至溶剂再生部分统一处理。

从塔顶出来的净化气经尾气分液罐分液后进入焚烧炉燃烧,有燃料气流量控制炉膛温度;废气中残留的硫化氢几乎全转化成二氧化硫,最后再对二氧化硫进行处理。

焚烧炉要控制温度在600-800℃,保证尾气可以充分燃烧,对环境和人的健康都没有危害。

温度控制系统可采用的法有双闭环串级控制系统、前馈控制系统、比值控制系统、前馈-反馈控制系统、分程控制系统等。

2 系统案设计
2.1系统分析
在含硫废气焚烧炉炉温控制系统的设计中,主被控参数是焚烧炉的炉膛温度。

瓦斯气流量和空气流量等参数的变化都会对温度控制形成干扰。

工业上正常生产时会产生温度过高和温度过低两种情况。

温度过高的影响因素有:瓦斯流量大、压力高,瓦斯带油或过程气S和H2S含量高等因素。

这时调节的法联系公司调度至稳定瓦斯压力。

加强瓦斯罐排凝。

还可能温度过低,原因可能是瓦斯压力过低,瓦斯带水,瓦斯流量小等。

措施是加强瓦斯排凝,加大流量。

同时本设计也充分考虑到控制环境存在腐蚀性以及易爆性,采用安全式设计,保证生产安全。

2.2案论证
本设计可采用的法有双闭环串级控制系统、前馈控制系统、比值控制系统、前馈-反馈控制系统。

下面为该系统的设计案分析。

2.3.1 案一:
采用双闭环串级控制系统。

本系统中,炉膛温度是主控参数,影响其温度的因素有很多,例如瓦斯压力,瓦斯带水,瓦斯流量等等。

本设计要通过控制空气的进入量还有瓦斯气的进入量来达到控制炉温的目的。

双闭环串级系统流
图1 双闭环串级系统流程图
2.3.1 案二:
采用前馈-反馈单回路控制系统择炉膛温度为被控参数,瓦斯气流量为前馈控制器的输入干扰,其他影响炉膛温度的因素作为系统的干扰变量。

当瓦斯气流量受到扰动后,反馈系统马上开始控制,使瓦斯流量不至于波动过大,从而使炉温度稳定。

具体控制系统框图如图2所示:
图2 单回路控制系统框图
综上所述,案1中副回路的设计,对系统的稳定性更有保障而且它的调节速度更快,追去额度更高。

双闭环比值控制器的引入是流量风容易控制,提高系统的控制性能。

在案2中一个前馈控制器只能抑制一个干扰对被控参数的影响,而在实际的工业生产过程中存在大量扰动因素,不可能仅对单一扰动进行控制,案二存在一定的弊端。

鉴于以上原因,本次设计采用双闭环串级控制系统。

根据双闭环串级控制系统框图,可以分析含硫废气焚烧炉炉温控制系统的生产工艺过程:当炉温度过低时,温度传感器检测到温度反馈回信号与设定值比较,产生的偏差促使执行器开始工作。

瓦斯气和空气的进气阀开度变大,是炉温度升高。

当温度过低时,反馈回来的温度信号与设定值比较,使调节阀开度减小,使炉温度下降从而达到稳定炉温度的作用。

双闭环串级控制系统框图如图3所示:
图3 双闭环串级控制系统框图
3 案设计的可行性
3.1 设计案对安全、环境及社会的影响
3.3.1 工业废气焚烧炉的选择
工业废气处理常选用的焚烧工艺,即焚烧炉分以下几种:
一、蓄热式热力焚烧炉(Regenerative Thermal Oxidizers,简称RTO)
工作原理:在高温下将废气中的有机物(VOCs)氧化成对应的二氧化碳和水,从而净化废气,并回收废气分解时所释放出来的热量,三室RTO废气分解效率达到99%以上,热回收效率达到95%以上。

RTO主体结构由燃烧室、蓄热室和切换阀等组成。

二、催化氧化炉(Catalytic Oxidizer)
工作原理:催化剂焚烧炉的设计是依废气风量,VOCs浓度及所需知破坏去除效率而定。

操作时含VOCs的废气用系统风机导入系统的换热器,废气经由换热器管侧而被加热后,再通过燃烧器,这时废气已被加热至催化分解温
度,再通过催化剂床,催化分解会释放热能,而VOCs被分解为二氧化碳及水气。

之后此一热且经净化气体进入换热器之壳侧将管侧未经处理的VOC废气加热,此换热器会减少能源的消耗,最后,净化后的气体从烟囱排到大气中。

四、直接热力焚烧炉(Direct Fired Thermal Oxidizer,简称DFTO)
工作原理:直接燃烧式焚烧炉,将废气、废液焚烧直接通入炉膛进行彻底焚烧,燃烧温度控制在1000~1150℃左右,最高不能超过1200℃,最低不能低于900℃。

焚烧后烟气温度可通过余热锅炉进行再利用产生蒸汽,烟气温度经过再利用后温度从1100℃降到300℃左右,最低不能低于280℃。

废气进口温度通常为常温,经过焚烧余热利用后温度300℃,即废气温升约280℃左右。

焚烧炉氧含量控制围10%~16%。

对进入焚烧炉的废气浓度理论上没有限制,而且浓度越高越经济,但要保证输送过程安全。

因为燃烧焚烧高,故焚烧效率比RTO更高,但是运行费用和投资成本也更高。

对比一下以上几种工艺的优缺点,如下表1所示:
表1 工艺优缺点对比
综上所述,考虑到二次污染及经济面原因,选取催化剂焚烧炉最为合适。

3.2 设计案的确定
由于生产过程中存在易燃易爆气体,综上所述,本次试验充分考虑拿到实际生产过程的安全性,可行性,选择采用双闭环串级控制系统。

由于所处条件易燃易爆,本实验采用两个气动调节阀,确保安全生产。

与此同时,焚烧炉所设置的位置要尽量远离工厂设备及人员工作和居住的
位置,同时也要保证良好的通风,提高设备使用率,使其能够对含硫废气充分处理,达到良好的效果。

参考文献
[1]再英,淮霞等.过程控制系统与仪表.机械工业出版社,2006,P209-315
[2]刚.基于PLC过程控制系统的设计与实现[J].电子设计工程,2018,6(19):29-32.
[3]肖贤. 电厂湿法烟气脱硫控制系统设计[D].理工大学,2018.
[4]剑,皖君.基于PLC和HMI的蓄热式锻造加热炉过程控制系统设计[J].热加工工艺,2018,47(11):163-165+169.
[5]车通. 机动车尾气检测流程控制系统设计与实现[D].东北大学,2009.
[6]熊虎. 基于PLC的污水处理自动控制系统设计[D].大学,2014.。

相关文档
最新文档