水煤气变换反应
水煤气的变换工艺

作为液氮洗的处理气体,CO在整个流程中可以控制即 通过控制变换工艺使CO含量降低至0.4%,可以有效的减 少液氮洗去燃料气管网的CO气量!
哪一种更经济!
液氮洗冷量:
▪ ①高压氮气产生J-T效应而获得了液氮洗工序所需的绝大 部分冷量。
▪ ②从空分装置引入的液氮向液氮洗工序提供补充冷量。 ▪ ③燃料气和回收氢气的冷量回收。
(五)手段 1.氨变换:
全部变换工艺:指将全部水煤气引入一氧化碳变换工
段进行处理;
气化 ( 45.7%)
中变炉( 4%) 低变炉(1%)
甲醇洗
甲醇驰放气
2.甲醇变换:
部分变换工艺:指将一部分水煤气引入变换工段进行 一氧化碳变换处理;
气化 ( 45.7%)
中变炉(6%)
(20%)
甲醇洗
副线
(1)甲醇变换CO含量的确定 水煤气经净化处理制得的新鲜气满足甲醇生产的需要,
液氮洗工艺流程简图
二.变换工艺原理
(一)CO变换反应
本系统采用中串低变换工艺流程,变换触煤采用耐硫宽
温C0—M0系变换催化剂,反应式如下:
CO+H2O(汽)
CO2+H2+41.19kJ/mol
(二)影响变换反应的因素
1.温度
由于变换反应为放热反应,从反应平衡上看应该是温 度越低越有利于反应的进行,但温度低了反应速度也降低 了,达到同样的反应深度就需要较长的反应时间,这就增 加了催化剂的装填量,提高了成本。
脱盐水加热器 锅炉给水加热器
洗氨塔 水冷器
二分
变换废锅
变换废锅副产蒸汽压力等级的选择 ?
1.根据全厂的蒸汽管网选择及后续装置对蒸汽等级的要求; (加脱盐水降温)
水煤气变换反应

2011-2012学年第二学期《专外与文献检索》课程考查成绩细则成绩:《专外与文献检索》课程考查低温水煤气变换反应研究进展摘要:低温水煤气变化反应由于它在许多工业过程起着重要作用,引起了研究者的极大兴趣,一直是研究领域的一个热点问题。
本文简要介绍了低温水煤气反应与起反应机理,对国内外水煤气变换反应催化剂研究进展进行概括与总结,重点陈述了负载金超微粒子催化剂的发展、催化机理、制备方法及载体的选取。
关键字:水煤气变换反应反应机理催化剂负载金催化剂低温水煤气变换反应( Water- Gas Shift Reaction, 简称WGSR) 的工业应用已有90多年历史,在以煤、石油和天然气为原料的制氢工业和合成氨工业具有广泛的应用,在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应中大量CO 的去除,同时在环境科学甚至在民用化学方面起作用也不可忽视,如汽车尾气的处理、家用煤气降低CO的含量等。
近年来由于在燃料电池电动车上的应用,这一经典化学反应的研究再次引起国内外同行极大关注。
本文在参阅大量文献资料的基础上,简要介绍了国内外水煤气变换反应催化剂研究的进展。
1.WGSR的反应机理WGSR是一放热反应, 较低的反应温度有利于化学平衡, 但反应温度过低则会影响反应速率[1],从纯化学的角度来看,WGSR反应的正向反应是水合反应,逆向反应是一个加氢及脱水反应,对于这类反应的研究,具有一定的代表性。
CO+H2=CO2+H2△H=-41.1kJ/mol水煤气变换反应属于中等程度放热。
按照操作温度, 可分为低温水气变换反应( 180~250℃) 和中温水气变换反应( 220~350℃) 。
虽然近年来人们对WGSR 进行了广泛而深的研究, 但但鉴子各个研究者的实验手段及催化剂制备等方面的差异, 使得不同的研究者对其有着不同的看法。
截止目前, 已见报导的低变反应机理类型主要有以下四种[2]:(1)氧化还原机理H2O+M=H2+MO MO+CO=CO2+MM为铜系金属,MO为与M相对应的金属氧化物(2)三途反应机理H2O+(CO)=CO2+H2CO+(H2O)=CO2+H2CO+MO=CO2+M H2O+M=H2+MOH2O+M=H2+MO(CO)、(H2O)表示被吸附的CO、H2O,M为铜系金属,MO为与M相对应的金属氧化物。
三年高考(2017-2019)化学真题分项版解析——专题15 化学反应原理综合(解析版)

H2,故 x>0.5,由此可判断最终平衡时体系中 H2 的物质的量分数介于 0.25~0.50,故答案为 C;
(3)根据水煤气变换[CO(g)+H2O(g)=CO2(g)+H2(g)]并结合水煤气变换的反应历程相对能量可知,
CO(g)+H2O(g)的能量(-0.32eV)高于 CO2(g)+H2(g)的能量(-0.83eV),故水煤气变换的 ΔH 小于 0;活化能
(g)+2HI(g) ③ ΔH3=___________kJ·mol −1。
(2)某温度下,等物质的量的碘和环戊烯(
)在刚性容器内发生反应③,起始总压为 105Pa,平
衡时总压增加了 20%,环戊烯的转化率为_________,该反应的平衡常数 Kp=_________Pa。达到平
衡后,欲增填标号)。
A.通入惰性气体
B.提高温度
C.增加环戊烯浓度
D.增加碘浓度
(3)环戊二烯容易发生聚合生成二聚体,该反应为可逆反应。不同温度下,溶液中环戊二烯浓度与反
应时间的关系如图所示,下列说法正确的是__________(填标号)。
A.T1>T2 B.a点的反应速率小于c点的反应速率 C.a点的正反应速率大于b点的逆反应速率 D.b点时二聚体的浓度为0.45 mol·L−1
(4)环戊二烯可用于制备二茂铁(Fe(C5H5)2,结构简式为
),后者广泛应用于航天、化工等领
域中。二茂铁的电化学制备原理如下图所示,其中电解液为溶解有溴化钠(电解质)和环戊二烯 的 DMF 溶液(DMF 为惰性有机溶剂)。
该电解池的阳极为____________,总反应为__________________。电解制备需要在无水条件下进
水煤气变换反应(WGSR)AuFe2O3催化剂的相关影响因素

水煤气变换反应(WGSR)Au/Fe 2O 3催化剂的相关影响因素薛学良(郑州大学化工与能源学院,河南郑州450001)摘要:通过H2-TPR、CO-TPD-MS、BET、XRD、UV-VIS、XRF等表征手段,初步考察Au/Fe 2O 3催化剂具有高催化活性的原因,并分析讨论催化剂的制备方法、助剂、金载荷量、、沉淀剂种类、烘焙温度、沉淀PH值、氢气氛处理等对Au/Fe 2O 3催化性能的影响,关键词:水煤气变换反应,Au/Fe 2O 3催化剂,助剂,金载荷量,沉淀剂种类,烘焙温度,沉淀PH值,氢气氛处理引言水煤气变换反应(WGSR)是三效催化剂用于汽车尾气净化处理时发生的一个重要反应。
不仅能有效促进CO的消除,而且生成的H 2也有利于去除NO X 。
甲醇燃料电池汽车的研制正在兴起,但制氢过程产生的CO会对铂电极造成严重的毒害作用。
可利用水蒸气将C0变换成H 2和CO 2,或再引入氧气选择性氧化CO。
鉴于WGSR在尾气治理过程中的重要性以及在甲醇燃料电池汽车上原料气(H 2)净化的应用前景,近年来该反应再次引起国内外研究者的极大兴趣。
目前,负载型金催化剂正受到人们的极大关注。
它对许多反应显示出优异的催化性能,如CO,H 2氧化、烃类催化燃烧、NOX直接分解或用CO还原、CO 2加氢反应、氯氟烃的催化分解以及不饱和烃的选择加成等。
国外对低温水煤气变换反应金催化剂作了较多研究。
自从Andreeva 等首次报道了Au/Fe 2O 3具有较高的低温水煤气变换反应催化活性后,人们对金催化剂的制备和微观结构进行了大量的研究,发现金催化剂的活性受制备方法的影响较大。
国内迄今未见负载型金催化剂用于该反应的研究报道。
由于金为贵金属,其价格相对较昂贵。
文献[]系统地考察了制备参数、预处理条件以及金负载量对Au/Fe 2O 3催化剂的低温水煤气变换活性影响。
但金催化剂在催化过程中易失活,稳定性差,制约了其在化工领域中的应用。
水煤气变换(1)

⽔煤⽓变换(1)反应⼯程课程设计⼀.对课题的概述⼀氧化碳和氢⽓都是会燃烧的⽓体,⼯业上把这样的混合⽓叫“⽔煤⽓”。
CO 和H2因为⽔(H2O)的分⼦⾥有⼀个氧(O)原⼦和两个氢(H)原⼦,⽔⼀遇上⽕热的煤(C),氧原⼦⽴刻被煤(C)夺⾛了,结果⽣成⼀氧化碳(CO)和氢⽓(H2)。
⽔煤⽓⼀种低热值煤⽓。
由蒸汽与灼热的⽆烟煤或焦炭作⽤⽽得。
主要成分为氢⽓和⼀氧化碳,也含有少量⼆氧化碳、氮⽓和甲烷等组分;各组分的含量取决于所⽤原料及⽓化条件。
主要⽤作台成氨、合成液体燃料等的原料,或作为⼯业燃料⽓的补充来源。
⼯业上,⽔煤⽓的⽣产⼀般采⽤间歇周期式固定床⽣产技术。
炉⼦结构采⽤UGI ⽓化炉的型式。
在⽓化炉中,碳与蒸汽主要发⽣如下的⽔煤⽓反应:C+H2O→CO+H2C+2H2O→CO2+2H2以上反应均为吸热反应,因此必须向⽓化炉内供热。
通常,先送空⽓⼊炉,烧掉部分燃料,将热量蓄存在燃料层和蓄热室⾥,然后将蒸汽通⼊灼热的燃料层进⾏反应。
由于反应吸热,燃料层及蓄热室温度下降⾄⼀定温度时,⼜重新送空⽓⼊炉升温,如此循环。
当⽬的是⽣产燃料⽓时,为了提⾼煤⽓热值,有时提⾼出炉煤⽓温度,借以向热煤⽓中喷⼊油类,使油类裂解,即得所谓增热⽔煤⽓。
近年来,正在开发⾼温⽓冷堆的技术,⽤氦为热载体将核反应热转送⾄⽓化炉作为热源,以⽣产⽔煤⽓。
在⼯业⽣产中绝⼤多数的化学反应过程是在变温条件下进⾏。
这⼀⽅⾯由于化学反应过程都伴随着热效应,有些热效应还相当⼤,即使采⽤各种换热⽅式移⾛热量(放热反应)或者输⼊热量(吸热反应),对于⼯业反应器都难以维持等温。
特别是⽓固相固定床催化反应器,要想达到等温更为困难。
另⼀⽅⾯许多反应过程等温操作的效果并不好,⽽要求有⼀最佳温度分布。
如⼯业上进⾏合成氨,合成甲醇之类的可逆放热反应,便属于这种情况。
再者,对于⼀些复杂反应、其主、副反应的活化能⼤⼩不同,温度的⾼低对主、副反应速率的影响也不同。
所以,可通过改变温度的⽅法来改变产物的分布,使⽬的产物的收率最⼤。
水煤气变换催化剂

水煤气变换催化剂摘要:水煤气变换反应(WGRS)在化工生产中起着积极而重要的作用,一是人们研究的课题之一。
催化反应进行的催化剂是近年来的研究热点。
本文对各种催化剂的制备及性能、影响因素做了详细的阐述,并就我国低温水煤气变换催化剂的研发提出了一些见解。
关键词:水煤气;催化剂;发展0 引言众所周之,氢是工业领域中一种至关重要的天然材料,它已经在合成氨工业中广泛应用,分解高分子的天然油脂和脱硫。
除此之外,氢也是一种不平常的燃料,它的能量密度或者发热量远高于其他气体或者液体燃料。
氢的天然存在量很少,需要工业大量合成,水煤气变换反应是工业用氢气的主要来源。
水煤气变换反应(CO+H2O==CO+H2,△H=一41.9 Kmol/mo1),在合成氨、合成甲醇等制氢工业中)是一重要的反应过程。
水煤气变换反应速度相对较慢,需高性能的催化剂使放映得以进行。
工业化的变换催化剂均是固体催化剂,如铁系高温变换催化剂、铜锌系低温变换催化剂、钴钼系耐硫宽温变换催化剂等,且均采用固定床反应器[1]。
国外对气一水溶液体系水煤气变换反应一直没有间断过研究,研究主要从两个方面进行。
一是对各种无机化合物作为催化剂反应系统的效能进行考察,另一方面是对各种贵金属有机化合物作为催化剂进行研究,无机化合物作为催化剂的反应体系适用性较好,对氧气有一定的承受能力,而金属有机化合物作为催化剂的反应体系,对氧非常敏感,几乎要求在无氧条件下进行,PPM 级的杂质氧就能使催化剂失活[2],国内在这方面的研究也在不断进行。
1 水煤气变换反应关于水煤气变换反应的反应机理,目前普遍接受的是表面氧化还原机理,可表示为[3]:H 2O(g)一H2O(S) (1)H2O(S)一OH(S)+H(S) (2) OH(S)一O(S)+H(S) (3)2H(S)一H2(g) (4)CO(g)一CO(S) (5)CO(S)+O(S)一CO(S) (6)CO2(S)一CO2(g) (7)式中,g表示气态,S表示表面吸附态。
高三化学反应原理试题精编(二)

高三化学反应原理试题精编(二)1.(2019全国Ⅰ卷)水煤气变换[CO(g)+H2O(g)=CO2(g)+H2(g)]是重要的化工过程,主要用于合成氨、制氢以及合成气加工等工业领域中。
回答下列问题:(1)Shibata曾做过下列实验:①使纯H2缓慢地通过处于721 ℃下的过量氧化钴CoO(s),氧化钴部分被还原为金属钴(Co),平衡后气体中H2的物质的量分数为0.0250。
②在同一温度下用CO还原CoO(s),平衡后气体中CO的物质的量分数为0.0192。
根据上述实验结果判断,还原CoO(s)为Co(s)的倾向是CO_________H2(填“大于”或“小于”)。
(2)721 ℃时,在密闭容器中将等物质的量的CO(g)和H2O(g)混合,采用适当的催化剂进行反应,则平衡时体系中H2的物质的量分数为_________(填标号)。
A.<0.25 B.0.25 C.0.25~0.50 D.0.50 E.>0.50(3)我国学者结合实验与计算机模拟结果,研究了在金催化剂表面上水煤气变换的反应历程,如图所示,其中吸附在金催化剂表面上的物种用标注。
可知水煤气变换的ΔH________0(填“大于”“等于”或“小于”),该历程中最大能垒(活化能)E正=_________eV,写出该步骤的化学方程式_____________________________________。
(4)Shoichi研究了467 ℃、489 ℃时水煤气变换中CO和H2分压随时间变化关系(如下图所示),催化剂为氧化铁,实验初始时体系中的P H2O和P CO相等、P CO2和P H2相等。
计算曲线a 的反应在30~90 min 内的平均速率v (a)=___________kPa·min −1。
467 ℃时P H2和P CO 随时间变化关系的曲线分别是___________、___________。
489 ℃时P H2和P CO 随时间变化关系的曲线分别是___________、___________。
高三化学一轮复习【化学反应过程与能量变化】

ΔH=-1.02 eV·mol-1 D.增大压强或升高温度均
能加快反应速率,并增 大DMF平衡转化率
123456789
解析 从图中可以看出,在正向进行的三个吸热反应中,其能垒分别为:[-1.23- (-2.16)]eV=0.93 eV、[-1.55-(-1.77)]eV=0.22 eV、[-1.02-(-2.21)]eV=1.19 eV。 从以上分析知,该历程中最小能垒为0.22 eV,是由(CH3)2NCH2OH*转化为(CH3)2NCH2 的反应,化学方程式为(CH3)2NCH2OH* ===(CH3)2NCH2+OH*,A正确; 该历程中最大能垒(活化能)为1.19 eV, B不正确; 该反应的总反应是由(CH3)2NCHO(g)转化为N(CH3)3(g),但1.02 eV为单个(CH3)2NCHO(g) 反应时放出的热量,所以热化学方程式为(CH3)2NCHO(g)+2H2(g)===N(CH3)3(g) +H2O(g) ΔH=-1.02NA eV·mol-1,C不正确; 增大压强或升高温度均能加快反应速率,但升高温度平衡逆向移动,不能增大
根据题图可写出热化学方程式Mg(s)+I2(g)=== MgI2(s) ΔH=-364 kJ·mol-1①和Mg(s)+Cl2(g) ===MgCl2(s) ΔH=-641 kJ·mol-1②,根据盖 斯定律,由②-①得MgI2(s)+Cl2(g)===MgCl2(s) +I2(g) ΔH=-277 kJ·mol-1,D项正确。
123456789
8.一定条件下,在水溶液中1 mol Cl-、 (x=1、2、3C、l4O)的-x 能量(kJ)相对 大小如图所示。下列有关说法正确的是 A.这些离子中结合H+能力最强的是A B.A、B、C、D、E五种微粒中C最稳定
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011-2012学年第二学期《专外与文献检索》课程考查成绩细则成绩:《专外与文献检索》课程考查低温水煤气变换反应研究进展摘要:低温水煤气变化反应由于它在许多工业过程起着重要作用,引起了研究者的极大兴趣,一直是研究领域的一个热点问题。
本文简要介绍了低温水煤气反应与起反应机理,对国内外水煤气变换反应催化剂研究进展进行概括与总结,重点陈述了负载金超微粒子催化剂的发展、催化机理、制备方法及载体的选取。
关键字:水煤气变换反应反应机理催化剂负载金催化剂低温水煤气变换反应( Water- Gas Shift Reaction, 简称WGSR) 的工业应用已有90多年历史,在以煤、石油和天然气为原料的制氢工业和合成氨工业具有广泛的应用,在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应中大量CO 的去除,同时在环境科学甚至在民用化学方面起作用也不可忽视,如汽车尾气的处理、家用煤气降低CO的含量等。
近年来由于在燃料电池电动车上的应用,这一经典化学反应的研究再次引起国内外同行极大关注。
本文在参阅大量文献资料的基础上,简要介绍了国内外水煤气变换反应催化剂研究的进展。
1.WGSR的反应机理WGSR是一放热反应, 较低的反应温度有利于化学平衡, 但反应温度过低则会影响反应速率[1],从纯化学的角度来看,WGSR反应的正向反应是水合反应,逆向反应是一个加氢及脱水反应,对于这类反应的研究,具有一定的代表性。
CO+H2=CO2+H2△H=-41.1kJ/mol水煤气变换反应属于中等程度放热。
按照操作温度, 可分为低温水气变换反应( 180~250℃) 和中温水气变换反应( 220~350℃) 。
虽然近年来人们对WGSR 进行了广泛而深的研究, 但但鉴子各个研究者的实验手段及催化剂制备等方面的差异, 使得不同的研究者对其有着不同的看法。
截止目前, 已见报导的低变反应机理类型主要有以下四种[2]:(1)氧化还原机理H2O+M=H2+MO MO+CO=CO2+MM为铜系金属,MO为与M相对应的金属氧化物(2)三途反应机理H2O+(CO)=CO2+H2CO+(H2O)=CO2+H2CO+MO=CO2+M H2O+M=H2+MOH2O+M=H2+MO(CO)、(H2O)表示被吸附的CO、H2O,M为铜系金属,MO为与M相对应的金属氧化物。
(3)Langmuir-Hinshelwood机理CO+( )=(CO) H2O+( )=(H2O)(CO)+(H2O)=(CO2)+(H2) (CO2)=CO2+( )(H2)=H2+( )( )表示催化剂表面未被吸附活泼部位,(CO)、(H2O)、(CO2)、(H2)表示被吸附的CO、H2O、CO2、H2。
(4)甲酸型中间络合物机理CO+H2O=(H2CO2)=H2+CO2(H2CO2)表示吸附在催化剂表面且与甲酸具有相同化学计量式的中间和活化络合物。
2 .催化剂活性评价(1)催化剂活性用CO转化率表示CO 转化率( %) =( 1- Vco' /Vco)( 1+Vco') ×100%式中Vco为原料气中CO 的体积百分数, Vco' 为变换气中CO 的体积百分数。
(2)催化剂的选择性催化剂的选择性=变化气中氢气的量/原料中一氧化碳的量*100%3.WGSR反应催化剂的研究进展水煤气变换反应常常借助于催化剂而进行。
人们早期工作的着眼点, 是铁系氧化物催化剂,然而由于这一催化体系活性较底,必须在高温下进行操作,造成变换率降低, 这样就限制之中催化剂的应用,随后人们研制出以铜系氧化物为主体的变换催化剂,但这一催化剂仍存在缺陷。
进年来整体式( 构件型) 蜂窝状WGSR 催化剂与负载型催化剂引起了人们极大兴趣,尤其是负载金超微粒子催化剂[3]。
3.1铜催化剂低变反应所选用的催化剂, 是活性高而缺陷少的CuO-ZnO系催化剂其操作温度控制在150℃-250℃之间。
在这类催化剂中一般具有第三组分, 早期人们常常选用氧化铬, 但由于制备这种催化剂时, 会生成相当量的Cr+6而在催化剂使用之前的还原过程中, 可使Cr+6变成Cr+3 , 从而放出大量的热, 使催化剂烧结, 造成环境污染, 故近期人们所采用的催化剂多以CuO,ZnO,Al2O3 为主要组份。
Rothman Kama, CordeliaSelomulya[4]研究在低温水煤气变换反应催化剂Cu/ZnO中加入La以及不同La含量对催化剂稳定性与催化活性的影响,得出在催化剂加入2.3wt%La,Cu/ZnO 催化性能显著提高且优于CuO/ZnO/Al2O3催化剂。
马宇飞、张少华[5]通过简单的制备方法原位合成的Cu/α-MoC1-x,在低温200℃-300℃CO传化率达到65%以上,明显高于单纯Mo2C的催化活性,同时对催化剂样品的结构表征结果表明,铜促进了α-MoC1-x的形成,这应是其较高低温催化活性的原因。
RuiSia, Joan Raitanob等[6]研究通过不同方法制备的纳米级Cu–CeO2对低温条件下水煤气变换反应的催化性能,结果表明只有具有Cu–[Ox]–Ce的催化剂才氧化铈表面的氧空位结合,表现出较高的催化活性。
3.2 整体式( 构件型) 蜂窝状WGSR 催化剂许多相互隔离且均匀分布的直孔或曲孔的蜂窝状陶瓷或金属载体, 将催化活性组分均匀地分布在孔道的内壁, 改变了传统催化剂的形状, 从根本上克服了传统颗粒状催化剂及其采用的固定床反应器存在的局限,流动阻力小, 催化效率高, 可以实现大空速、小体积的化工强化过程, 单位反应器体积的表面积大, 反应速率快[7]。
杜霞茹,高典楠,袁中山等[8]采用微分反应器,研究了新型Re/Pt/Ce0. 8Zr0. 2O2蜂窝催化剂上低温水煤气变换反应的动力学行为。
利用非线性最小二乘法处理正交设计的实验数据,获得了动力学方程的模型参数。
得出反应速率对CO、H2O、H2和CO2的反应级数分别为0. 09、0. 88、-0. 54和-0. 11,与传统的Cu基低变催化剂上的反应级数相差较大,低温水煤气变换反应在两种催化剂上遵循不同的反应机理的结论。
3.3负载Ru、Pt超微粒催化剂朱剑,付启勇,杜玉扣等[9]制备了中孔分子筛SBA-15,以SBA-15为载体采用真空浸渍法制备了负载型Ru基水煤气变换反应的催化剂。
利用透射电子显微镜、X-射线粉末衍射等方法对样品进行了表征。
结果表明添加适量的La2O3助剂可以显著提高催化剂的低温活性,当Ru和La2O3的负载量分别为4%和8%时,催化剂对CO转化率在255℃和265℃下分别达到56%和98%。
Hajime Iida、Akira Igarashi等[10]研究催化剂Pt/TiO2低温水煤气变换反应的催化性能,采用TEM, XPS, TPD, FT-IR 等方法测定了催化剂的结构。
结果表明催化剂的催化性能受到载体与Pt相互作用的极大影响。
3.4.负载金超微粒子催化剂近几年来, 有关金催化剂的研究开发引起了人们的极大兴趣[11-13]。
负载型金催化剂的突出特点是具有较高的低温催化活性、较好的抗中毒性和稳定性,同时作为一种贵金属催化剂, 金催化剂的价格要远远低于铂和钯。
金原子位于周期表第IB 族,分子量为79,与Cu 和Ag为同族元素。
金的表面与表面分子之间的相互作用力很弱。
在单晶金的表面, 连极具反应活性的分子如氢、氧等, 都不易吸附, 然而对纳米金属负载催化剂来说,其表面的化学吸附及反应活性却随结构明显地发生变化,超微颗粒金常被负载于载体上,,大多含有几千个原子,形成粒度很小的金颗粒,这种小的颗粒很容易吸附简单分子。
但是更为重要的是当金属粒子小到一定程度以后, 金属本身的电子性质将发生变化, 从而导致其化学和物理性质出现突变。
正是由于这些性质上的突变使得高分散金催化剂的研究成为催化领域中一个新的热点。
3.4.1.负载型金催化剂的制备方法负载型金催化剂大概有浸渍法(Impregnation 简称IMP法)、共沉淀法(Coprecipitation简称CP法)、光化学沉积法(Photochemical deposition 简称PCD法)、沉积-沉淀法(简称DP法)、化学蒸发沉积法(Chemical vapor deposition 简称CVD法)、离子交换法(Ion exchange 简称IE 法)、金属有机配合物固载法(Organo-metal-complex grafting 简称OMCG法)、共溅镀法这几种制备方法[14]。
3.4.2.负载型金催化剂廖卫平,董园园,金明善等[11] 采用共沉淀法制备了不同锆铈摩尔比的Ce1-x Zr x O2(x=0, 0.1,0.3,0.5,0.7,1.0)氧化物,并以改性的浸渍法制备了金担载量1%(质量分数)的Au/Ce1-x Zr x O2催化剂.考察了催化剂在低温CO氧化和水煤气变换反应中的催化性能.应用氮物理吸附、X 射线衍射、透射电镜和H2程序升温还原等技术对氧化物载体及其负载金催化剂进行了表征。
得出ZrO2载体较大的孔径使金在载体表面分散均匀而粒子较小,与Au/CeO2和Au/Ce1-x Zr x O2相比, Au/ZrO2具有更好的低温CO氧化活性和水煤气变换活性,而Au/Ce1-x ZrxO2在高温下的水煤气变换反应中表现出更好的催化性能的结论。
李锦卫,陈崇启,林性贻,郑起[12]采用共沉淀法制备了系列Au/α-Fe2O3-MOx(M=Zr、Al、Mg、Ca、Ba)催化剂,通过N2物理吸附、XRD、H2-TPR和CO2-TPD-MS等手段对催化剂的物化性质进行表征,考察了富氢下低温水煤气变换(WGS)反应中助剂对Au/α-Fe2O3催化剂性能的影响,发现助剂ZrO2能有效提高Au/α-Fe2O3催化剂在富氢气氛下低温WGS反应活性和稳定性,反应温度150℃时CO转化率可达88. 45%,且催化剂具有较高的稳定性。
张燕杰, 詹瑛瑛等[13] 采用一种简便的水热法合成了一系列ZrO2,并采用沉积-沉淀法制得相应 1.0% Au/ZrO2催化剂, 在模拟甲醇重整气气氛下评价了它们的低温水煤气变换(WGS) 反应催化性能. 结果发现, 于150℃水热合成的ZrO2负载的Au 催化剂活性最佳,240℃反应时CO转化率达87%, 明显高于相同反应条件下Au 负载量较高的Au/Fe2O3, Au/CeO2及Au/CeZrO4催化剂。
廉红蕾,潘维成等[15] 系统考察了各种制备参数对ZnO负载的纳米金催化剂上低温水煤气变换反应性能的影响。
结果表明,不同的制备方法、沉淀剂种类、焙烧温度及金负载量均对催化剂的催化性能有较大的影响。