一氧化碳变换
一氧化碳变换操作说明

一氧化碳变换流程叙述一、一氧化碳变换工艺过程说明从SHELL来的煤气化装置的粗合成气(温度:168℃,压力:3.8MPa(g),湿基CO:55.6%,干基CO:69.07%)进入煤气原料气分离器04S001,分离出夹带的液相水后进入原料气过滤器04S002,其中装有吸附剂,可以将粗合成气中的粉尘等对催化剂有害的杂质除掉。
然后粗合成气分成三部分。
一部分占总气量28.5%的粗合成气进入煤气预热器04E001,与第三变换炉04R003出口变换气换热至210℃,后进入蒸汽混合器04S003,进入该混合器前来自蒸汽管网的过热蒸汽(4.275MPa,282℃)与粗合成气混合。
进蒸汽混合器的蒸汽量由调节阀FV-04005调节,该蒸汽量与28.5%的粗合成气量是比例控制,保证进入一变的气、汽比不低于1.09,原料气管线设有TV-04003调节阀旁路(测温点TE-04003在一变的入口。
混合后的粗合成气进入煤气换热器04E002管侧与来自第一变换炉04R001出口的变换气换热。
合成气温度由TV-04003控制在约245℃左右,进入第一变换炉04R001进行变换反应(一变入口湿基CO:33.1%)。
控制第一变换炉出口变换气温度小于等于460℃,(干基CO:18.27%湿基CO:12.5)。
第一变换炉出口变换气在煤气换热器04E002(此换热器富裕量较大,壳侧设一150的旁路)与入第一变换炉的粗合成气换热,后与另一部分占总气量32%的粗合成气相混合。
随后进入1#淬冷过滤器04S004,在此用来自低压锅炉给水泵82P003A/B约11.78吨/时的低压锅炉给水(4.2 MPa,150℃)激冷到235℃后,保证进入二变的气、汽比不低于0.53。
入第二变换炉04R002的变换气温度由TIC-04006控制(测温点设在二变的入口)。
第二变换炉出口温度为351.4℃(干基CO:18.96%;湿基CO:14.7%)。
另外,占总气量39.5%的粗合成气与第二变换炉出口变换气相混合(原料气与变换气混合前设一分析调节阀AIC-04001,保证出变换的CO含量控制在指标以内)。
一氧化碳的变换技术62.

一氧化碳的变换技术一、一氧化碳的变换的意义无论以固体、液体或气体原燃料所制取的煤气中均含有CO 。
CO 不是合成氨所需要的直接原料,而且对氨合成催化剂有毒害,因此必须清除。
生产中通常分两步法除去。
首先,利用CO 和水蒸气,在催化剂的作用下,发生化学反应,产生氢气和后工序易于脱除的CO 2,这一过程称为一氧化碳的变换,变换后的气体称为变换气。
因此,一氧化碳的变换,既是原料气的净化过程,又是原料气制造的继续(产生氢气)。
第二步,在后工序中采用铜氨液洗涤法、甲烷化或液氮洗涤法脱除变换气残余的微量CO 。
二、CO 变换基本原理和变换工艺条件的选择:1 CO 变换基本原理1)、变换反应可以用下式表示:催化剂CO +H2O(汽2+H 2+Q该反应是可逆、放热、等体积反应,降低反应温度,增加水蒸汽的添加量或者移走生成物中的CO 2,都会使反应向正方向移动。
只有在催化剂的作用下才有较快的反应速度。
2)变换反应是放热反应,反应热随温度的升高而有所减少,在227℃时反应热为:9522cal/mol ,在423℃时反应热为:9054cal/mol 。
3)变换反应的化学平衡在一定条件下,当变换反应的正、逆反应速度相等时,反应即达到平衡状态,其平衡常数为:Kp=(P CO2*P H2)/(P CO *P H2O )注: P CO2、P H2、P CO 、P H2O 各组分的平衡分压(或平衡组成)。
Kp 值越大,说明原料气中CO 转化越完全,达到平衡时变换气中残余的CO含量越少。
由于变换反应是放热反应,降低温度有利于平衡向右移动,因此平衡常数随温度的降低而增大。
250℃时为86.51,450℃时为:7.311。
在工业生产中,受催化剂装填量、设备投资的经济效益等因素影响,反应不可能也没必要达到平衡,只能尽可能接近平衡。
实际的流程组合中,一般利用高温段之后再进行低温变换,就是为了提高反应平衡常数,从而提高变换率,降低变换气CO含量。
一氧化碳变换综述

的氧化铬、氧化铝、氧化锰、氧化钡等, 它们的存在,可增加催化剂抗烧结的作用, 延长催化剂使用寿命,增长催化剂的成型 性能和机械强度。 目前,中小型氮肥厂的低变催化剂均采用 Co-Mo系催化剂。Co-Mo系变换催化剂是 以Co, Mo为有效组份,以Al2O3为骨架, 碱金属或稀土金属的氧化物为辅助催化剂。 Co-Mo系变换催化剂使用前必须先进行硫 化,生成CoS, MoS2才能获得高的活性。 1.3.2 低变催化剂的主要成分
全低变的工艺流程
半水煤气 油 分 离 器 活 性 炭 滤 油 器
变 换 气 换 热 器
煤 气 换 热 器
第 一 变 换 炉
变换气 工段
变 换 气 冷 却 器
淬 冷 过 滤 器
淬 冷 过 滤 器
第 二 变 换 炉
Ⅰ
Ⅱ
半水煤气首先进入油水分离器,脱除部分固体和液体杂质后 进入活性炭滤油器,进一步脱除杂质。经净化的半水煤气 进入变换气换热器与从第二变换炉出来的变换气进行逆向 热交换,使其温度上升到180 ℃左右,变换气温度下降到 160 ℃左右。出变换气换热器的半水煤气再进入煤气换热 器与从第一变换炉出来的变换气进行逆向热交换,变换气 自身的温度下降到300 ℃左右,半水煤气升温到200 ℃左 右。出煤气换热器的半水煤气与来自管网的中压水蒸气混 合,一方面使半水煤气温度上升到变换反应温度,另一方 面使半水煤气增湿,并达到设计要求所需要的汽气比进入 第一变换炉发生变换反应,在第一变换炉内CO的变换率 可达到60%左右。经第一变换炉变换后出来的变换气进入 煤气换热器与半水煤气逆向换热后进入淬冷过滤器I,逆 向与喷淋下来的冷却水换热并使冷却水汽化,此时变换气 的温度下降到230 ℃左右,冷却水和变换气换热后汽化, 从而使蒸汽含量达到设计要求,湿变换气进入第二变换炉 第一段催化剂床层进行变换反应。经第二变换炉第一段催 化剂床层变换反应后CO的变换率可达到85%左右,温度
一氧化碳的变换

上一页 下一页 返回
项目三 一氧化碳的变换
但水蒸气用量是变换过程中最主要的消耗指标,尽量减少其消耗对过程 的经济性具有重要意义。同时水蒸气比例过高,还将造成催化剂床层阻 力增加,CO停留时间缩短,余热回收设备负荷加重等。
平衡常数是温度的函数,可通过范特荷莆方程式计算:
不同温度下一氧化碳变换反应的平衡常数见表3-3 -2。
(三)平衡含量的计算
以1 mol湿原料气为基准,
分别为初始组成中CO,
H2O ,CO2和H2的体积分数,xD为CO的平衡转化率(或变换率),则各组 分的平衡含量分别为:
上一页 下一页 返回
项目三 一氧化碳的变换
②平衡变换率是变换反应达到化学平衡时,有多少CO(干)进行了变换反 应。平衡只是一种理想状态,所以,平衡变换率可用来衡量CO变换的 最大程度。
二、一氧化碳变换反应的化学平衡
(一)变换反应的热效应 变换反应的标准反应热△ H298 ,可以用有关气体的标准生成热数据进
行计算:
上一页 下一页 返回上一页 下一ຫໍສະໝຸດ 返回项目三 一氧化碳的变换
温度对反应平衡的计算可以通过范特荷莆方程式计算。所以,根据气体 的组分及各温度的平衡常数,可以计算出经过一氧化碳变换后气体的平 衡组成。
2.压力的影响 一氧化碳变换反应是等分子反应。反应前后气体分子数相同,气体总体
积不变。若为理想气体,压力对反应的平衡没有影响。日前的工业操作 条件下:压力在4 MPa以下,温度为200℃~500℃时,压力对变换反应没 有显著的影响。 3.蒸汽添加量的影响
一氧化碳变换技术交流

℃
• 但实际上完全按最适宜温度曲线操作是不可能的,因 为在反应开始时,最适宜温度最高(以中温变换为例, 要达到620℃以上),大大超过催化剂的耐热温度, 而且热量的来源是个问题。随着反应的进行,要不断 地、准确地按照最适宜温度的需要移出反应热是极为 困难的,见二 段CO变换的T-x图。 图中: CD即为最适宜温度曲线,AB为平衡曲线,EF线为第 一段绝热反应线,FG线表示段间间接换热降温过程。 GH线表示第二段绝热反应线。。 • 变换过程的温度应综合各个方面因素来确定,主要原 则是: • 1)、反应开始温度应高于催化剂活性温度10~20℃ 左右。另外必须要高于气体露点温度20℃以上(防止 原料气析水,一是使催化剂粉碎结块,二是腐蚀设 备)。
CS2+4H2 2H2S+CH4+246 kJ∕mol MoO3+2H2S+H2 MoS2+3H2O+48.1 kJ∕mol CoO+H2S CoS+H2O+13.4 kJ∕mol • 升温硫化一般采用循环硫化法,升温硫化阶段所需要的热 量主要靠电加热器提供。 • 3)国内外Co-Mo系耐硫变换催化剂的发展历程 • ⑴1969年德国BASF公司开发成功的K8-11耐硫变换催化 剂(镁铝尖晶石复合材料为载体),1978年首次实现工业 化的应用,用于重油部分氧化法制合成气流程和加压煤气 化制合成氨流程的CO变换。它的主要特点是以镁铝尖晶 石为载体,硫化后活性高,耐高水蒸汽分压,可在高压下使用, 抗毒物能力强,能再生,平均寿命 3~5年。
• 由于变换反应是放热反应,降低温度有利于平衡 向右移动,因此平衡常数随温度的降低而增大。 例如:250℃时为86.51,450℃时为:7.311。 • 在工业生产中,受催化剂装填量、设备投资的经 济效益等因素影响,反应不可能也没必要达到平 衡,只能尽可能接近平衡。 • 实际生产的流程组合中,一般利用高温段之后再 进行低温变换,就是为了提高反应平衡常数,从 而提高变换率,降低变换气CO含量。
一氧化碳的变换

二、一氧化碳变换反应的化学平衡
(一)变换反应的热效应 变换反应的标准反应热△ H298 ,可以用有关气体的标准生成热数据进
行计算:
上一页 下一页 Байду номын сангаас回
其他副反应如下。
下一页 返回
项目三 一氧化碳的变换
(一)甲烷化反应 在一氧化碳与水蒸气共存的系统中,是含有C, H, O三个元素的系统。
从热力学角度,不但可能进行式(3一3一1)的变化反应,而且还可进行其 他反应,如:
上一页 下一页 返回
项目三 一氧化碳的变换
这一点与甲烷蒸气转化、煤气化等系统中所出现的反应式有相似之处。 但是,由于所用催化剂对反应式(3 -3-1)具有良好的选择性,从而抑制了 其他反应的发生。在计算反应系统平衡组成时,采用反应式(3-3-1)的平 衡关系,其结果基本符合实际情况。从以上反应式看,降低温度和增加 压力有利于生成甲烷的反应。但在实际生成中采用的工艺条件下,这一 副反应是不会发生的。降低床层的热点温度、增加水/气、提高空速都可 以抑制甲烷化副反应的影响。
还可进行其他反应:
由于所用的催化剂对变换反应有良好的选择性,可抑制其他反应的发生, 因此副反应发生的概率很小。
(二)变换反应的平衡常数 一氧化碳变换反应通常是在常压或压力不太高的条件下进行,故平衡常
数计算时各组分用分压表示已足够精确。因此平衡常数KD可用下式计算:
上一页 下一页 返回
项目三 一氧化碳的变换
平衡常数是温度的函数,可通过范特荷莆方程式计算:
不同温度下一氧化碳变换反应的平衡常数见表3-3 -2。
一氧化碳的变换.

11
(二)、氧化锌法
❖氧化锌脱硫性能的好坏用硫容 量表示。所谓硫容就是每单位质 量氧化锌能脱除S的量。一些数 据如图所示。一些定性结论如下: 温度上升,硫容增加;空速增加, 硫容降低;汽气比上升,硫容下 降。
2、氧化锌脱硫剂:
100
ya,ya’ —分别为原料及变换气中一氧化碳的摩尔分率(干 基)
2
二、变换催化剂
❖ 1、中(高)变催化剂:
▪
以三氧化二铁为活性中心
▪ 铬、铜、锌、钴、钾等氧化物,可提高催化剂的活性
▪ 镁、铝等氧化物,可提高催化剂的耐热和耐毒性能。
❖ 目前常见的中(高)变换催化剂有:
▪ 铁铬系催化剂:以FeO3加Cr2O3为助催化剂。 ▪ 钴钼系催化剂:针对重油含S量高的耐高S变换催化剂。
K
0 p
pH2O
/
pH2S
10
❖ 一些条件下平衡S含量的计算值如下:
水蒸气含量/%
0.50 10 20
平衡硫含量/10-6 200℃ 0.000025 0.00055 0.005
300℃ 0.0008 0.018 0.16
400℃ 0.009 0.20 1.80
❖ 实际上天然气等原料中水蒸气含量很低,所以即使温度在400℃也可满足S含量 <0.1× 10-6的要求。 200℃含水20%时,S<0.005× 10-6,因此氧化锌也用在变 换工序作变换催化剂的保护剂。
提高其稳定性。 ❖ (2)低变催化剂的还原: ❖ CuO+H2=Cu+H2O △H0298=-86.7kJ/mol ❖ CuO+CO=Cu+CO2 △H0298=-127.7kJ/mol
一氧化碳变换反应工艺流程

一氧化碳变换反响工艺流程一氧化碳变换流程有很多种,包含常压、加压变换工艺,两段中温变换(亦称高变)、三段中温变换(高变)、高 -低变串连变换工艺等等。
一氧化碳变换工艺流程的设计和选择,第一应依照原料气中的一氧化碳含量高低来加以确立。
一氧化碳含量很高,宜采纳中温变换工艺,这是因为中变催化剂操作温度范围较宽,使用寿命长并且价廉易得。
当一氧化碳含量大于 15%时,应试虑将变换炉分为二段或多段,以使操作温度靠近最正确温度。
其次是依照进入变换系统的原料气温度和湿度,考虑气体的预热和增湿,合理利用余热。
最后还要将一氧化碳变换和剩余一氧化碳的脱除方法联合考虑,若后工序要求剩余一氧化碳含量低,则需采纳中变串低变的工艺。
一、高变串低变工艺当以天然气或石脑油为原料制造合成气时,水煤气中CO含量仅为 10%~13%(体积分数),只要采纳一段高变和一段低变的串连流程,就能将 CO含量降低至0.3%,图 2-1是该流程表示图。
图 2-1一氧化碳高变 -低变工艺流程图1-废热锅炉2-高变炉3-高变废热锅炉4-预热器5-低变炉6-饱和器7-贫液再沸器来自天然气蒸气转变工序含有一氧化碳约为13%~15%的原料气经废热锅炉1降温至 370℃左右进入高变炉 2,经高变炉变换后的气体中一氧化碳含量可降至3%左右,温度为 420~440℃,高变气进入高变废热锅炉3及甲烷化进气预热器 4 回收热量后进入低变炉 5。
低变炉绝热温升为 15~20℃,此时出低变炉的低变气中一氧化碳含量在 0.3%~0.5%。
为了提升传热成效,在饱和器6中喷入少许软水,使低变气达到饱和状态,提升在贫液再沸器7中的传热系数。
二、多段中变工艺以煤为原料的中小型合成氨厂制得的半水煤气中含有许多的一氧化碳气体,需采纳多段中变流程。
并且因为来自脱硫系统的半水煤气温度较低,水蒸气含量较少。
气体在进入中变炉以前设有原料气预热及增湿装置。
此外,因为中温变换的反响放热多,应充足考虑反响热的转移和余热回收利用等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力学的影响
最佳操作温度
高温加快反应速度
Te 平衡温度 Tm 最适宜操作温度 E1正反应活化能 E2逆反应活化能
平衡温度和最适宜温度的关系随温度的关系 使反应沿最适宜温度曲线进行时反应器利用率最大、 催化剂用量最少
气体组成
1. 温 度
(1)热力学角度考虑 变换反应是放热反应,对一定的原料气初始组成,温度的
降低,平衡向正反应方向移动,Kp值增大,变换气中CO的平 衡含量降低。
所以,当原料气组成一定时,温度越低,平衡变换率越高。
低温条件下变换后残余CO含量可以有较大的降低。
(2)动力学角度 T↑r ↑(反应速度) 从反应动力学可知,温度升高,反应速度常数增大,对
4、催化剂参与
在工业上如何实现?工艺流程如何安排?
CO+H2O H2+CO2
该反应需要在催化剂存在下进行,依据目前开发的催 化剂活性温度,其反应温度在200-400℃之间,中变催化 剂在280-400℃ ,低变催化剂为200-320 ℃
200-400℃
变换 反应器
200-400℃
变换 反应器
加 热
温度/℃ Kp
200
250
300
350
400
227.9 86.51 39.22 20.34 11.7
450 7.311
500 4.878
结论:随着温度的升高,平衡常数降低。即温度对平 衡有影响,T Kp
3、变换率及平衡变换率
一氧化碳的反应程度
以1mol湿原料气为基准,xp为CO 的平衡转化率,可计算平衡组成
组分 初始组成 平衡浓度
CO ya ya-yaxp
H2O yb
yb-yaxp
CO2 yc
yc+yaxp
H2 yd yd十yaxp
平衡常数和平衡 转化率的关系
当T和原料气组成已知时,即可通过T计算出Kp,求出xp
不同温度及水蒸气比例下,干变换气中CO平衡含量, 摩尔分数
温度℃
H2O/CO, 摩尔比
1
0.028866
600
0.180547
0.082407
0.052123
0.037937
备注 原料干基组成:CO:31.7% CO2:8% H2: 40% N2:20.3%
结论:在原料气组成一定的条件下,随着温度的降低,变换 气中CO的平衡含量降低,CO 转化率提高;水蒸气的加入量 对转化率有影响,水蒸气的加入量 , CO转化率 。
常温
冷 却
常温
常温
换 热 器 常温
达到反应温度的途径
水蒸气的加入---饱和器和热水器
原料气+水蒸气
低温变换气
水蒸气
原料气
低温原 料气
直接加入蒸气
热 水
热 热水器 水 变换气的热量传给
水,使水升温。
饱和器
高温变 换气
饱和器的方法
200-400℃
变换 反应器
反应系统
变
换
换
工
热
换热系统
段
器
原
则
热
流
水
变换气
难点:方案的确定和流程的布置
第一节 一氧化碳变换的基本原理及热力学
一、化学平衡和平衡转化率 1、热效应
反应热:⊿H298,R=-4.868-1.2184T+1.1911×10-3T2-4.0625×10-6T3
温度/℃ 25
200 250 300 350 400 450
⊿H298,R -41.18 -40.07 -39.67 -39.25 -38.78 -38.32 -37.86 kJ/mol
21-24
CH4 0.8-1.3 0.2-0.4
都含有CO,但氨的合成和尿素生产中都不需要 CO,应将其除去。
CO水蒸气变换反应,简称CO变换反应:
CO+H2O H2+CO2
任务
(1)气体的净化(脱除CO)。
(2)有效气体氢气和二氧化碳的制备。
(3)大部分有机硫转换成无机硫(H2S)。
反应 特点
1、可逆:化学平衡的问题,转化率问题? 2、放热 3、等体积
0.015234
0.008030
0.005436
400
0.099126
0.024781
0.013469
0.009210
450
0.120184
0.036818
0.020748
0.014310
500
0.141059
0.050849
0.029791
0.020951
550
0.161286
0.066249
0.040362
500 -37.3
结论:放热反应,反应热随温度的升高而降低
2、化学平衡常数
K p Pco2 PH2 yco2 yH2
Pc o PH2O
yco yH2O
log
kp
3994.704 T
12.220227log T
0.004462T
0.67814*106T 4
36.72508
反应速度有利,但平衡常数随温度的升高而变小,即CO
平衡含量增大,反应推动力变小,对反应速度不利。
rco
dNCO dW
k0
e
xp(
Ec
RgT
)
pco
pco2
0.5
1
pco2 pH2
K p pco pH2O
B系列中变催化剂本征动力学方程
低温可降低平衡一氧化碳含量
注:实际生产中,可测定原料气和变换气中的CO,且视为干基, 一氧化的转化率:
xp
ya ya (1
ya ya
)
100%
原料气 中CO含
量
变换气 中CO含
量
生产中用途:可测定原料气和变换气中的CO,判断问题; 确定催化剂用量
二、工艺条件对变换反应的影响
P100
温度
压力 影响因素 空速
3
5
7
150
0.009538
0.001757
0.000065
0.000035
200
0.016999
0.002137
0.000216
0.000120
250
0.027313
0.003017
0.000576
0.000316
300
0.059030
0.008375
0.004314
0.002900
350
0.078495
器
饱 和
加入水蒸气和 热量回收系统
程 构 成
原料气 器
本章基本要求:任务、原理
1 变换反应原理及其特点
2 工艺条件对反应的影响关系
重点
3
中变催化剂、低变催化剂、耐硫变换催化剂 组成、使用条件、还原(硫化)、钝化原理
4 中变流程、中低低、中串低、全低变的流程组 织原则、流程特点以及主要设备的结构和作用
第三章 一氧化碳变换 p87
变换工段装置
氨合成
H2+N2
尿素合成 CO2+2NH3
NH3
CO(NH2)2+H2O
需要H2和N2 需要NH3和CO2
脱硫后原料气体成分
方法
固体燃料气化 甲烷转化工艺
CO 28-30 12-13
H2 35-39 53-58
气体成分%
CO2
N2
7-8.2 17-18
6-8