一氧化碳变换反应工艺流程

合集下载

一氧化碳的变换

一氧化碳的变换
上一页 下一页 返回
项目三 一氧化碳的变换
③催化剂要有一定的抗毒能力,也就是能耐气体中含有的少量有毒气体。 ④催化剂的机械性能要好,以免在使用中破碎或粉碎,增加变换阻力。 ⑤催化剂有一定的热稳定性,在一定温度范围内,不致因反应后温度升
高而损坏催化剂。 ⑥催化剂要防止发生副反应,主要是一氧化碳分解析碳和生成甲烷的反
综上所述,影响变换反应的因素有以下几种。 1.压力 如前所述,压力对变换反应的平衡几乎无影响,但加压变换有以下优点。 ①可加快反应速度和提高催化剂的生产能力,从而可采用较大空速提高
生产强度。
上一页 下一页 返回
项目三 一氧化碳的变换
②设备体积小,布置紧凑,投资较少。 ③湿变换气中水蒸气冷凝温度高,有利于热能的回收利用。 但提高压力会使系统冷凝液酸度增大,使析炭和生成甲烷等副反应易于
上一页 下一页 返回
项目三 一氧化碳的变换
反应温度按最佳温度进行可使催化剂用量最少,但要控制反应温度严格 按照最佳温度曲线进行在目前是不现实和难于达到的。目前在工业上是 通过特催化剂床层分段来达到使反应温度靠近最佳温度进行。但对于低 温变换过程,由于温升很小,催化剂不必分段。
3.汽气比 CO变换的汽气比一般是指H2O/CO比值或水蒸气/干原料气的比值(摩尔
一、一氧化碳Leabharlann 换的原理一氧化碳变换是在催化剂的作用下,且在一定的温度(高于催化剂的起始 活性温度)条件下,CO和水蒸气发生反应,将CO转化为H2和CO 2。其 化学反应式为:
这是一个可逆、放热、反应前后体积不变的化学反应。压力对反应平衡 没有影响,降低温度和增大水/气比(水/气比是指进口气体水蒸气的分子 数与总干气分子数之比)会有利于反应平衡向右移动。
其他副反应如下。

年产36万吨合成氨一氧化碳变换工段工艺设计

年产36万吨合成氨一氧化碳变换工段工艺设计

摘要本设计为年产36万吨合成氨一氧化碳变换工段工艺设计。

变换工序是合成氨中最重要的工序之一,在合成氨工艺的流程中起着非常重要的作用。

介绍氨的基本性质和用途,阐述了变换工段工艺发展概况,优化了合成变换的工艺流程。

确定本设计采用中变串低变的工艺流程,本次设计利用 ASPEN PLUS V.11对设计过程进行模拟,统筹多种因素合理安排合成工艺中的各种设备及其形式、参数,通过 ASPEN 软件中的 Simulation、Energy analysis 模块完成各部分及全过程的物料及能量衡算。

并对第一变换炉、第二变换炉、煤气换热器以及变换气换热器等主要设备进行选型计算,做出了合成氨变换工段中变串低变的工艺流程图和设备布置图。

所得结果基本满足设计要求,工艺流程可行。

关键词:合成氨一氧化碳 ASPEN PLUS V.11 中低温变换第一章绪论1.1氨的基本性质氨(Ammonia),一种氮和氢的化合物,NH是一种无色气体,有强烈的刺激性3气味,易溶于水,室温和大气压力1体积的水可以溶解700倍体积的氨,水溶液也称为氨水。

它被冷却加压成液体,液氨是一种制冷剂。

氨也是制造硝酸、肥料和炸药的重要原料。

氨对地球上的生命很重要,它是许多食物和肥料的重要成分,氨水也是所有药物的直接或间接成分。

氨有多种用途,但也有腐蚀性和其他危险性。

由于其广泛的用途,氨是世界上最大的无机化合物生产商之一,其中80% 以上用于制造化肥。

氨也是路易斯碱,因为它提供了孤对电子。

1.2 一氧化碳变换反应的意义与目的在合成氨的生产过程的原料中存在着有害的一氧化碳成分,因此就要除去一氧化碳,在这一过程中CO变换起着至关重要的作用。

反应所需的反应气来自天然气,但是天然气中含有一氧化碳成分。

在合成过程所需的原料,不能用一氧化碳,因为毒害作用,会使催化剂失效。

因此必须除去CO成分,这一目的需要在催化剂的促使下通过变换反应来完成。

使用催化剂的情况下,发生CO+H2O=CO2+H2反应。

CO变换工艺发展过程及趋势

CO变换工艺发展过程及趋势

CO变换工艺发展过程及趋势摘要本文介绍了CO变换工艺的发展过程和趋势,论述了变换催化剂、反应器、节能工艺和数字模型的发展,论述了变换工艺的发展方向,指出了需要研究和解决的问题。

关键词 CO变换;催化剂;合成气;节能前言一氧化碳变换(也称水煤气变换,water gas shift)是指合成气中的一氧化碳借助于催化剂的作用,在一定温度下与水蒸气反应,生成二氧化碳和氢气的过程。

通过变换反应既降低了合成气中的一氧化碳含量,又得到了更多氢气,调节了碳氢比,满足不同的生产需要(例如合成甲醇等)。

其工业应用已有90多年历史。

在合成气制醇、制烃催化过程中,低温水气变换反应通常用于甲醇重整制氢反应中大量CO的去除,同时在环境科学甚至在民用化学方面所起作用也不可忽视,如汽车尾气的处理、家用煤气降低CO的含量等。

本文将从CO 变换工艺的几个因素展开论述。

一、CO变换原理[1]一氧化碳变换反应是在催化剂存在的条件下进行的,是一个典型的气固相催化反应。

变换过程为含有C、H、O三种元素的CO和H2O共存的系统,在CO变换的催化反应过程中,主要反应为:CO+H2O=CO2+H2ΔH= - 41.2kJ/mol在某种条件下会发生CO分解等其他副反应,分别如下:2CO=C+CO22CO+2H2=CH4+CO2CO+3H2=CH4+H2OCO2+4H2=CH4+2H2O1.CO变换反应平衡受多种反应条件影响:(1)温度影响由于CO变换反应是个放热可逆反应,因此低温有利于平衡向右移。

(2)水碳比影响提高水碳比,可增加一氧化碳的转化率,有利于平衡向右移。

(3)原料气含CO2影响 CO2为反应产物,应尽量降低原料气中CO2的含量,确保平衡不向左移动。

2.CO变换反应速率受多种反应条件影响:(1)压力影响加压可提高反应物分压,在3MPa以下,反应速率与压力平方成正比。

(2)水碳比影响在水碳比低于4的情况下,提高水碳比可使变换反应速率加快。

一氧化碳低温变换工艺及应用

一氧化碳低温变换工艺及应用

一氧化碳低温变换工艺及应用陈劲松(湖北省化学研究所,湖北武汉430074)1前言众所周知,一氧化碳变换反应是放热反应,反应温度愈低愈利于反应进行,也就愈利于节汽、节能、提高设备能力。

因此降低催化剂的活性温度成为变换催化剂科技工作者的奋斗目标。

自1912年Fe—Cr变换催化剂问世以来,催化剂的性能日益完善,低温活性也愈来愈好,随之而来的变换工艺也取得了长足的进步,特别是Co—Mo耐硫变换催化剂的开发成功给变换工艺带来了一场革命,利用该催化剂我国80年代成功开发了部分低温变换工艺即中变串低变工艺,取得明显的经济效益。

在此基础上又继续开发了中变串双低变(中低低),中变串三低变(中低低低)工艺和全部使用Co—Mo系变换催化剂的全低变工艺,显然,从中变一中串低一中低低一中低低低一全低变,其节能效果也越来越好。

2 Co—Mo耐硫变换催化剂的性能钴钼系变换催化剂是当今耐硫变换催化剂的主体,萝:组分为1%~5%CoO,8%~15%MoO。

/7/A1。

0。

常见的工业产品有美国UCI公司的C25—2-02;丹麦Tops忙公司的SSK;德国BASF 公司的K8—1l等,我国也有近20家催化剂厂生产,国家牌号只有三个,即上海化工研究院的B301,湖北省化学研究所的B302Q、B303Q。

2.1催化剂的制备及硫化Co—Mo系耐硫宽温变换催化剂的制备已有很多专利文献报道,一般都用硝酸钴、钼酸铵的氨溶液浸渍活性氧化铝而成,这种类型的催化剂的组分大体相同,其活性高低、抗低硫性、抗毒性取决于表面活性中心结构,即与其制备工艺和硫化方法密切相关。

催化剂以盐类或氧化物形态提供,在使用时要用硫化氢或CS:进行活化即硫化。

将其转化为硫化物才具有活性,这一过程称为硫化,其主要反·】84·应为:CoO+H2S=CoS+H20 △Ho一一13.6 kJ/toolM003+2H2S十H2一MoS2+3Hz0 △H。

=一48.1 kJ/mol 我们对这类催化剂的硫化方法及硫化剂进行了研究,常用的硫化剂有:(1)二硫化碳硫化,向系统添an--硫化碳;(2)采用高硫煤或人造高硫煤造气以提高煤气中的硫化氢含量;(3)固体硫化剂(我所发明专利)硫化,固体硫化剂在煤气的作用下产生硫化氢。

一氧化碳变换技术交流

一氧化碳变换技术交流


• 但实际上完全按最适宜温度曲线操作是不可能的,因 为在反应开始时,最适宜温度最高(以中温变换为例, 要达到620℃以上),大大超过催化剂的耐热温度, 而且热量的来源是个问题。随着反应的进行,要不断 地、准确地按照最适宜温度的需要移出反应热是极为 困难的,见二 段CO变换的T-x图。 图中: CD即为最适宜温度曲线,AB为平衡曲线,EF线为第 一段绝热反应线,FG线表示段间间接换热降温过程。 GH线表示第二段绝热反应线。。 • 变换过程的温度应综合各个方面因素来确定,主要原 则是: • 1)、反应开始温度应高于催化剂活性温度10~20℃ 左右。另外必须要高于气体露点温度20℃以上(防止 原料气析水,一是使催化剂粉碎结块,二是腐蚀设 备)。
CS2+4H2 2H2S+CH4+246 kJ∕mol MoO3+2H2S+H2 MoS2+3H2O+48.1 kJ∕mol CoO+H2S CoS+H2O+13.4 kJ∕mol • 升温硫化一般采用循环硫化法,升温硫化阶段所需要的热 量主要靠电加热器提供。 • 3)国内外Co-Mo系耐硫变换催化剂的发展历程 • ⑴1969年德国BASF公司开发成功的K8-11耐硫变换催化 剂(镁铝尖晶石复合材料为载体),1978年首次实现工业 化的应用,用于重油部分氧化法制合成气流程和加压煤气 化制合成氨流程的CO变换。它的主要特点是以镁铝尖晶 石为载体,硫化后活性高,耐高水蒸汽分压,可在高压下使用, 抗毒物能力强,能再生,平均寿命 3~5年。
• 由于变换反应是放热反应,降低温度有利于平衡 向右移动,因此平衡常数随温度的降低而增大。 例如:250℃时为86.51,450℃时为:7.311。 • 在工业生产中,受催化剂装填量、设备投资的经 济效益等因素影响,反应不可能也没必要达到平 衡,只能尽可能接近平衡。 • 实际生产的流程组合中,一般利用高温段之后再 进行低温变换,就是为了提高反应平衡常数,从 而提高变换率,降低变换气CO含量。

一氧化碳变换工艺流程及设备

一氧化碳变换工艺流程及设备

脱硫剂
ZnO+H2S = ZnS+H2O
主要活性物质:ZnO 载体:Al2O3 促进剂:铜、钼、锰的氧化物生
不可再生,送往锌冶炼厂回收
职业教育应用化工技术专业教学资源库《甲醇生产技术》课程
模块三 一氧化碳变换
二、工艺流程及设备
徐州工业职业技术学院
第二节 一氧化碳变换工艺流程及设备
一、一氧化碳变换工艺流程
二、一氧化碳变换主要设备
1.变换炉
2.热交换器
3.变换气水冷器
4.余热回收器
三、氧化锌法
原理
转化吸收式脱硫——有机硫化物在氧化锌催化作用下与氢 发生转化反应,转化为硫化氢,然后被氧化锌吸收

实验十二一氧化碳中温—低温串联变换反应实验

实验十二一氧化碳中温—低温串联变换反应实验

实验十二 一氧化碳中温—低温串联变换反应实验一.实验目的一氧化碳变换反应是石油化工与合成氨生产中的重要过程,现代大型合成氨装置中一氧化碳的转化与净化采用中温—低温串联变换加甲烷化工艺。

本实验模拟中温—低温串联变换反应过程,不仅具有工艺类专业实验的典型特点,而且体现了本专业生产领域内的先进技术。

通过用直流流动法同时测定铜基与铁基催化剂的相对活性,并通过讨论与思考,要求达到:1.复习多相催化反应有关知识,初步接触工艺设计思想。

2.掌握气固相催化反应动力学实验研究方法及催化剂活性的评比方法。

3.获得两种催化剂上变换反应的速率常数k T 与活化能E 。

二.实验原理一氧化碳变换反应为CO+H 2O==CO 2+H 2反应必须在催化剂存在的条件下进行。

中温变换采用铁基催化剂,反应温度为350~500℃,低温变换采用铜基催化剂,反应温度为220~320℃。

设反应前气体混合物中各个组分干基摩尔分率为d CO y ,0、d CO y ,02、d H y ,02、d N y ,02;初始汽化比为R 0;反应后气体混合物中各组分干基摩尔分率为d CO y ,、d CO y ,2、d H y ,2、dN y ,2,一氧化碳的变换率为 )1()1(,0,0,,,0,,0,222d CO d CO d CO d CO d CO d CO d CO d CO y y y y y y y y --=+-=α (1)根据研究,铁基催化剂上一氧化碳中温变换反应本征动力学方程可表示为: )1(2222125.01OH CO P H CO CO CO T CO CO p p K p p p p k dW dN dW dN r -==-=-)(,)()1(15.0121h g mol p f k p p k i T CO CO T ∙=-=-β (2)铜基催化剂上一氧化碳低温变换反应本征动力学方程可表示为: )(,)()1(22.05.02.0222222hg mol p f k p p p p k r i T H CO O H CO T ∙=-=--β (3) 式中:r i ——反应速率,)(h g m ol ∙;i T k ——反应速率常数,)(hg m ol ∙; CO N 、2CO N ——一氧化碳、二氧化碳的摩尔流量,)(h g m ol ∙; W ——催化剂量(g );p i ——各组分的分压;K p ——以分压表示的平衡常数 )]218.2100604.1106218.0ln 3026.21102.02185(3026.2exp[273-⨯-⨯+-⨯=--T T T T K P (4) T ——反应温度,(K )。

一氧化碳的变换.

一氧化碳的变换.
❖ 氧化锌脱硫的反应速度主要是内扩散控制,所以氧化锌脱硫剂都做成高孔率的 小颗粒。
11
(二)、氧化锌法
❖氧化锌脱硫性能的好坏用硫容 量表示。所谓硫容就是每单位质 量氧化锌能脱除S的量。一些数 据如图所示。一些定性结论如下: 温度上升,硫容增加;空速增加, 硫容降低;汽气比上升,硫容下 降。
2、氧化锌脱硫剂:
100
ya,ya’ —分别为原料及变换气中一氧化碳的摩尔分率(干 基)
2
二、变换催化剂
❖ 1、中(高)变催化剂:

以三氧化二铁为活性中心
▪ 铬、铜、锌、钴、钾等氧化物,可提高催化剂的活性
▪ 镁、铝等氧化物,可提高催化剂的耐热和耐毒性能。
❖ 目前常见的中(高)变换催化剂有:
▪ 铁铬系催化剂:以FeO3加Cr2O3为助催化剂。 ▪ 钴钼系催化剂:针对重油含S量高的耐高S变换催化剂。
K
0 p
pH2O
/
pH2S
10
❖ 一些条件下平衡S含量的计算值如下:
水蒸气含量/%
0.50 10 20
平衡硫含量/10-6 200℃ 0.000025 0.00055 0.005
300℃ 0.0008 0.018 0.16
400℃ 0.009 0.20 1.80
❖ 实际上天然气等原料中水蒸气含量很低,所以即使温度在400℃也可满足S含量 <0.1× 10-6的要求。 200℃含水20%时,S<0.005× 10-6,因此氧化锌也用在变 换工序作变换催化剂的保护剂。
提高其稳定性。 ❖ (2)低变催化剂的还原: ❖ CuO+H2=Cu+H2O △H0298=-86.7kJ/mol ❖ CuO+CO=Cu+CO2 △H0298=-127.7kJ/mol
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一氧化碳变换反应工艺流程
一氧化碳变换流程有许多种,包括常压、加压变换工艺,两段中温变换(亦称高变)、三段中温变换(高变)、高-低变串联变换工艺等等。

一氧化碳变换工艺流程的设计和选择,首先应依据原料气中的一氧化碳含量高低来加以确定。

一氧化碳含量很高,宜采用中温变换工艺,这是由于中变催化剂操作温度范围较宽,使用寿命长而且价廉易得。

当一氧化碳含量大于15%时,应考虑将变换炉分为二段或多段,以使操作温度接近最佳温度。

其次是依据进入变换系统的原料气温度和湿度,考虑气体的预热和增湿,合理利用余热。

最后还要将一氧化碳变换和残余一氧化碳的脱除方法结合考虑,若后工序要求残余一氧化碳含量低,则需采用中变串低变的工艺。

一、高变串低变工艺
当以天然气或石脑油为原料制造合成气时,水煤气中CO含量仅为10%~13%(体积分数),只需采用一段高变和一段低变的串联流程,就能将CO含量降低至0.3%,图2-1是该流程示意图。

图2-1一氧化碳高变-低变工艺流程图
1-废热锅炉2-高变炉3-高变废热锅炉4-预热器5-低变炉6-饱和器7-贫液再沸器来自天然气蒸气转化工序含有一氧化碳约为13%~15%的原料气经废热锅炉1降温至370℃左右进入高变炉2,经高变炉变换后的气体中一氧化碳含量可降至3%左右,温度为420~440℃,高变气进入高变废热锅炉3及甲烷化进气预热器4回收热量后进入低变炉5。

低变炉绝热温升为15~20℃,此时出低变炉的低变气
中一氧化碳含量在0.3%~0.5%。

为了提高传热效果,在饱和器6中喷入少量软水,使低变气达到饱和状态,提高在贫液再沸器7中的传热系数。

二、多段中变工艺
以煤为原料的中小型合成氨厂制得的半水煤气中含有较多的一氧化碳气体,需采用多段中变流程。

而且由于来自脱硫系统的半水煤气温度较低,水蒸气含量较少。

气体在进入中变炉之前设有原料气预热及增湿装置。

另外,由于中温变换的反应放热多,应充分考虑反应热的转移和余热回收利用等问题。

图2-2为目前中小型合成氨厂应用较多的多段中温变换工艺。

半水煤气首先进入饱和热水塔1,在饱和塔内气体与塔顶喷淋下来的
130~140℃的热水逆流接触,使半水煤气提温增湿。

出饱和塔的气体进入气水分离器2分离夹带的液滴,并与电炉5来的300~350℃的过热蒸汽混合,使半水煤气中的汽气比达到工艺条件的要求,然后进入主热交换器3和中间换热器4,使气体温度升至380℃进入变换炉,经第一段催化床层反应后气体温度升至
480~500℃,经蒸汽过热器、中间换热器与蒸汽和半水煤气换热降温后进入第二段催化床层反应。

反应后的高温气体用冷凝水冷激降温后,进入第三段催化剂床层反应。

气体离开变换炉的温度为400℃左右,变换气依次经过主热交换器、第一水加热器、热水塔、第二热水塔、第二水加热器回收热量,再经变换气冷却器9降至常温后
图2-2 一氧化碳多段中温变换工艺流程
1-饱和热水塔2-气水分离器3-主热交换器4-中间换热器5-电炉6-中变炉7-水加热器
8-第二热水塔9-变换气冷却器10-热水泵11-热水循环泵12-冷凝水泵送下一工序。

三、中低低工艺
上述全低变工艺相比于传统中变工艺和低变工艺具有能抗硫、能耗低等优势,但也暴露出一段钴钼耐硫催化剂怕氧、怕油、易反硫化以及要求气体中硫化氢含量高,容易对设备造成腐蚀等弊病,难以维持长周期稳定生产。

鉴于此提出了“中-低-低”变换工艺,如图2-2所示,变换炉分为三段,各段间均采用气体与热水间接换热降温,一段采用铁-铬系中变催化剂,二、三段用钴-钼耐硫系催化剂。

为了加强热量回收,采用以饱和热水塔为中心,高效段间水加热器相结合的热量回收系统。

图2-3 中低低变换工艺流程
1-饱和热水塔2-水加热器3-气水分离器4-热交换器5-调温水加热器Ⅰ
6-电炉7-变换炉8-调温水加热器Ⅱ 9-冷却塔10-热水泵
四、全低变工艺
近20年来,在变换催化剂和变换技术的工业实践中发现Fe-Cr系中变催化剂的一些问题,最普遍的问题是相当多的中小型化肥厂每年大修时都对中变催化剂进行1/3~1/2不等的更换处理,不仅劳动强度大,而且增加了购买催化剂的费用。

经调查研究发现,无论是中串低工艺还是中低低工艺,Fe-Cr系催化剂都会表现出以下突出的缺点:①活性温度高,导致热损大,蒸汽消耗高,阻力相对也大;②相对于耐硫低变催化剂而言,易粉化,易被硫等毒物中毒,使用寿命
短;③在相同的生产能力前提下,使用Fe-Cr催化剂需要较大型的设备,因此一次性投资和维修费用均高于全低变工艺。

全低变工艺是针对传统中变、低变工艺存在的缺点,使用宽温区的钴钼耐硫低温变换催化剂取代传统的铁铬系耐硫变换催化剂,并且由于催化剂的起始活性温度低,使全低变工艺变换炉的操作温度大大低于传统中变炉的操作温度,使变换系统处于较低的温度范围内操作,入炉的汽气比大大降低,蒸汽消耗量大幅度减少。

但也由于入炉原料气的温度低,气体中的油污、杂质等直接进入催化剂床层造成催化剂污染中毒,活性下降。

全低变工艺流程如图2-4所示。

全低变工艺是将原中温变换系统热点温度降低100℃以上,从而非常有利于一氧化碳变换反应的平衡,实际吨氨蒸汽消耗量仅为250 kg左右,且热回收设备面积小。

该工艺带来的效益是显而易见的,具体优点如下:①原中变催化剂用量减少1/2以上,降低了床层阻力,提高了变换炉的设备能力。

②床层温度下降100~200℃,气体体积缩小25%,降低了系统阻力,减少了压缩机功率消耗。

③换热面积减少50%左右。

④从根本上解决了中变催化剂的粉化问题,改善了催化剂的装卸劳动卫生条件。

⑤提高了有机硫的转化能力,在相同操作条件和工况下全低变工艺比中串低或中低低工艺有机硫转化率提高5%。

⑥操作容易,启动快,增加了有效运行时间。

降低了对变换炉的材质要求,催化剂使用寿命长,一般可使用5年左右。

图2-4 钴钼耐硫系全低变工艺流程图
1-饱和热水塔2-水加热器3-气水分离器4-热交换器5-电炉
6-变换炉7-调温水加热器8-锅炉给水加热器9-热水泵
近年来开发的无饱和塔全低变流程的优点更为明显,从根本上杜绝了设备的腐蚀,减少了因变换腐蚀而导致的停车,设备减少,系统的阻力降低,压缩机出力提高,减少了原饱和塔循环热水泵的用电,降低了热水排放的能耗,减轻了对设备的腐蚀,更重要的是提高了有机硫的转化能力。

因为在传统的饱和热水塔工艺中,煤气中的各种有机硫通过循环热水溶解,再通过变换气释放出来。

无饱和塔流程可以解决这个问题,不仅精脱硫中的有机硫转化部分可以去掉,同时煤气中非COS等有机硫也不会串到后工段,对甲烷化或合成催化剂是极为有利的。

相关文档
最新文档