节能灯电子镇流器工作原理
电子镇流器工作原理

电子镇流器工作原理引言概述:电子镇流器是一种常见的电子器件,用于调节电流并提供稳定的电源给灯具。
它的工作原理涉及到多个方面,包括电子元件的工作原理、电磁学原理以及电路设计等。
本文将从五个大点来详细阐述电子镇流器的工作原理。
正文内容:1. 电子元件的工作原理1.1 电容器的作用:电容器在电子镇流器中起到滤波的作用,它能够平滑电流并减少电流的波动。
1.2 电感器的作用:电感器能够储存能量并提供稳定的电流给灯具,它通过改变电流的方向和大小来控制灯光的亮度。
1.3 二极管的作用:二极管在电子镇流器中起到整流的作用,它能够将交流电转换为直流电供给灯具。
2. 电磁学原理2.1 电磁感应:电子镇流器利用电磁感应的原理来产生稳定的电流。
当电流通过电感器时,会产生一个磁场,这个磁场会与电感器中的线圈相互作用,从而产生电磁感应。
2.2 电感耦合:电子镇流器中的电感器通常是通过电感耦合的方式连接在一起的,这样可以实现电流的传递和控制。
2.3 磁性材料的应用:电子镇流器中通常使用磁性材料作为磁场的增强器,这样可以增加电磁感应的效果,提高电子镇流器的效率。
3. 电路设计3.1 反馈电路:电子镇流器通常会采用反馈电路来控制电流的稳定性,它能够根据灯具的亮度变化来调整电流的大小。
3.2 控制电路:电子镇流器中的控制电路可以通过调整电流和电压的大小来控制灯具的亮度。
3.3 保护电路:电子镇流器中通常会有一些保护电路,用于保护电子元件和灯具,防止过电流、过电压等问题的发生。
4. 电子镇流器的工作原理与传统镇流器的比较4.1 效率比较:电子镇流器相对于传统镇流器来说,效率更高,能够提供更稳定的电源给灯具。
4.2 尺寸比较:电子镇流器相对于传统镇流器来说,体积更小,更适合于一些空间有限的场合。
4.3 调光性能比较:电子镇流器相对于传统镇流器来说,调光性能更好,能够实现更精细的灯光调节。
5. 电子镇流器的应用领域5.1 家庭照明:电子镇流器广泛应用于家庭照明中,能够提供稳定的电源给各种类型的灯具。
电子镇流器工作原理

电子镇流器工作原理电子镇流器是一种用于调节电流和稳定电压的电子设备。
它主要用于控制和调节电子器件或灯具的亮度和功率。
在本文中,我们将详细介绍电子镇流器的工作原理及其基本组成部分。
一、工作原理电子镇流器的工作原理基于电子元件的控制和调节电流的能力。
它通过改变电流的频率和幅度来调节灯具的亮度和功率。
下面是电子镇流器的工作原理的详细解释:1. 输入电源:电子镇流器通常接收交流电源作为输入。
这个交流电源可以是家庭用电,也可以是其他形式的交流电源。
2. 整流器:电子镇流器的第一个组成部分是整流器。
整流器将交流电源转换为直流电源。
这是通过使用二极管进行整流来实现的。
3. 滤波器:直流电源经过整流后,仍然存在一些脉动。
为了去除这些脉动,电子镇流器使用滤波器。
滤波器通常由电容器和电感器组成,可以平滑直流电源的输出。
4. 逆变器:经过滤波后,直流电源进一步转换为高频交流电源。
逆变器使用晶体管或场效应管等开关元件来控制电流的频率和幅度。
5. 控制电路:电子镇流器还包括一个控制电路,用于监测和调节输出电流。
控制电路可以根据需要调整电流的频率和幅度,以实现灯具的亮度和功率的调节。
6. 输出:调节后的电流通过输出端口供应给灯具或其他电子器件。
电子镇流器可以根据用户的需求提供不同的电流输出。
二、基本组成部分除了上述工作原理外,电子镇流器还由一些基本组成部分构成,这些组成部分共同协作以实现电子镇流器的正常工作。
以下是电子镇流器的基本组成部分:1. 整流器:整流器将输入的交流电源转换为直流电源。
它通常由二极管桥或整流电路组成。
2. 滤波器:滤波器用于去除直流电源中的脉动。
它通常由电容器和电感器组成。
3. 逆变器:逆变器将直流电源转换为高频交流电源。
它使用开关元件(如晶体管或场效应管)来控制电流的频率和幅度。
4. 控制电路:控制电路用于监测和调节输出电流。
它可以根据需要调整电流的频率和幅度。
5. 输出端口:输出端口将调节后的电流供应给灯具或其他电子器件。
电子镇流器工作原理

电子镇流器工作原理电子镇流器是一种用于调节电流的电子设备,主要用于LED灯等电子器件的驱动。
它通过控制电流的大小和频率,确保电子器件能够正常工作,延长其使用寿命。
本文将详细介绍电子镇流器的工作原理。
一、电子镇流器的基本原理电子镇流器的基本原理是通过改变电流的波形来实现对电子器件的驱动。
传统的电子镇流器采用电感和电容等元件来实现电流的变化,而现代的电子镇流器则多采用半导体器件来实现电流的调节。
二、电子镇流器的工作方式电子镇流器的工作方式可以分为两种:线性调光和脉宽调光。
1. 线性调光线性调光是通过改变电流的大小来实现对电子器件的亮度调节。
电子镇流器会根据用户的需求,调整电流的大小,从而改变电子器件的亮度。
线性调光的优点是调光范围大,亮度变化平滑,但效率相对较低。
2. 脉宽调光脉宽调光是通过改变电流的频率来实现对电子器件的亮度调节。
电子镇流器会以一定的频率开关电流,通过控制开关的占空比,来改变电子器件的亮度。
脉宽调光的优点是效率高,但调光范围相对较小,亮度变化不够平滑。
三、电子镇流器的组成部份电子镇流器主要由以下几个组成部份构成:1. 输入电源电子镇流器的输入电源普通为交流电源,其电压和频率根据不同的应用需求而有所差异。
输入电源提供了电子镇流器所需的能量。
2. 整流电路电子镇流器的整流电路用于将交流电源转换为直流电源。
通过整流电路,电子镇流器可以将交流电源的电流转换为直流电流,以供后续的电路使用。
3. 滤波电路滤波电路用于去除直流电源中的纹波,使得电子镇流器输出的电流更加稳定。
滤波电路通常由电感和电容等元件组成。
4. 控制电路控制电路是电子镇流器的核心部份,它通过控制电流的大小和频率,来实现对电子器件的驱动。
控制电路通常由微处理器或者其他控制芯片组成,可以根据用户的需求进行调节。
5. 输出电路输出电路将经过调节的电流输出给电子器件,驱动其正常工作。
输出电路通常由晶体管或者其他半导体器件组成。
四、电子镇流器的工作流程电子镇流器的工作流程可以简单描述如下:1. 输入电源将交流电转换为直流电,经过滤波电路去除纹波,得到稳定的直流电源。
节能灯镇流器电路原理

节能灯镇流器电路原理一、引言随着能源危机和环境保护意识的日益增强,节能问题越来越受到人们的重视。
在照明领域,传统的白炽灯已经被节能灯所替代。
而要让节能灯正常工作,镇流器的选择是必不可少的。
本文将对节能灯镇流器电路的原理进行详细介绍,并讲解其工作原理。
二、节能灯镇流器概述节能灯(Compact Fluorescent Lamp,CFL)是一种节能的照明设备,它由镇流器、荧光灯管和电子镇流器等部件组成。
其中,镇流器是节能灯的关键部件之一,其作用是把输入的交流电转换为适合荧光灯管工作的直流电。
为了进一步提高节能效果,电子镇流器已经成为节能灯的首选。
三、电子镇流器的工作原理电子镇流器是一种能够提供稳定输出电压和电流的电路。
它通过将输入的交流电转换为高频交流电,然后再将其变换为恒定的电流来启动和驱动荧光灯管工作。
下面是电子镇流器的工作原理图:(1)输入端电路电子镇流器通常采用全桥结构,其输入端电路如下图所示:[图1:电子镇流器输入端电路]在图中,L1和L2是输入端的线圈,C1和C2是输入端的电容器,D1至D4是输入端的二极管。
通过输入端的电路,交流电可以转换为直流电进行后续处理。
(2)逆变器电路电子镇流器的逆变器电路如下所示:[图2:电子镇流器逆变器电路]在图中,逆变器电路采用了MOS管和电感线圈,它的作用是将直流电转换为高频交流电。
通过逆变器电路,可以将电子镇流器的工作频率提高到10kHz以上。
(3)谐振电路电子镇流器的谐振电路如下所示:[图3:电子镇流器谐振电路]在图中,T1和T2是谐振变压器,C3和L3是谐振电路的电容器和电感线圈。
谐振电路的作用是将高频交流电变换为稳定的大小电流,以驱动荧光灯管工作。
通过以上三个电路的协同作用,电子镇流器可以将输入的交流电转换为恒定的电流,从而驱动荧光灯管正常工作。
四、电子镇流器的特点电子镇流器相比于传统的磁性镇流器具有以下特点:(1)节能:电子镇流器可以将输入的交流电转换为高频交流电,提高能源利用率。
节能灯的工作原理

节能灯的工作原理节能灯,作为一种高效节能的照明产品,其工作原理是通过将电能转换为光能,同时尽量减少能量的损耗,从而达到节能的目的。
节能灯的工作原理主要包括电能转换、光能发射和节能控制三个方面。
首先,节能灯的电能转换是通过电子元件来实现的。
与传统的白炽灯不同,节能灯采用的是电子镇流器来控制电流,使得电能的转换效率更高。
电子镇流器能够将交流电转换为直流电,并且通过高频振荡来稳定电流,从而减少能量的损耗。
这种电能转换的方式不仅能够提高节能灯的亮度,还能够延长其使用寿命。
其次,节能灯通过光能发射来实现照明的功能。
节能灯内部包含荧光粉和放电管,当电流通过放电管时,激发荧光粉发出可见光。
相比于白炽灯的发光原理,节能灯的光能发射更加高效,光线更加柔和均匀。
而且,节能灯的光能发射过程中并不会产生过多的热量,这也是其节能的一个重要原因。
最后,节能灯的节能控制是通过智能电路来实现的。
现代的节能灯大多配备了智能控制芯片,能够根据环境的亮度和人体活动来自动调节光线的亮度,从而达到节能的效果。
在无人活动或环境光线充足时,节能灯会自动降低亮度或者关闭部分光源,以减少能量的消耗。
这种智能节能控制方式不仅方便实用,还能够有效地降低能源浪费。
综上所述,节能灯的工作原理主要包括电能转换、光能发射和节能控制三个方面。
通过高效的电能转换、光能发射和智能的节能控制,节能灯能够实现高效节能的照明效果,为人们的生活和工作提供了便利,也为环保节能事业做出了积极的贡献。
希望通过对节能灯工作原理的了解,能够更好地推广和应用节能灯,共同为节能减排事业贡献力量。
220v节能灯的工作原理

220v节能灯的工作原理
节能灯的工作原理是通过利用电子器件来实现电能的高效转换和发光效果。
下面是详细的工作原理:
1. 节能灯的核心组件是电子镇流器,它通过转换电路将交流电源的电能转换为适合节能灯工作的直流电能。
电子镇流器包括整流电路、滤波电路和逆变电路。
2. 当交流电源接通时,整流电路将交流电转换为直流电。
滤波电路会将转换后的电流进行平滑处理,以确保输入到逆变电路的电流稳定。
3. 逆变电路将直流电源转换为高频交流电源。
这样做是为了激发节能灯中的荧光粉,使其产生发光效果。
逆变电路中的开关元件通常采用三极管或场效应管。
4. 高频交流电驱动荧光粉发光。
节能灯的荧光粉包覆在灯管内表面,当高频交流电通过荧光粉时,荧光粉会吸收电能并转化为可见光。
不同的荧光粉会发射不同波长的光,从而产生具有不同颜色的光。
5. 节能灯的灯管内有一对电极,当高频交流电经过灯管时,电极产生电场,促使气体放电。
放电时,气体中的电子与汞蒸汽碰撞,激发汞蒸汽的原子和离子,从而产生紫外线。
紫外线激发荧光粉发光,并且透过灯管的荧光粉发射出可见光。
通过以上工作原理,节能灯可以在较低的功率下产生较大的发光效果,从而实现能效的提升和节能的目的。
电子镇流器工作原理

电子镇流器工作原理电子镇流器是一种用于调节和控制电流的电子装置,常用于照明设备中。
它的主要作用是将电源提供的交流电转换成直流电,并且稳定输出电流,以供给灯具使用。
本文将详细介绍电子镇流器的工作原理及其相关知识。
一、电子镇流器的基本原理电子镇流器的基本原理是通过半导体元件来控制电流的流动和调节。
它主要由三个部份组成:整流电路、滤波电路和调光电路。
1. 整流电路:电子镇流器的输入电源通常是交流电,而灯具需要的是直流电。
因此,整流电路的作用是将输入的交流电转换成直流电。
常用的整流电路有整流二极管桥等。
2. 滤波电路:由于整流电路输出的直流电仍然存在一定的波动,滤波电路的作用是去除这些波动,使输出的直流电更加稳定。
常用的滤波电路有电容滤波器、电感滤波器等。
3. 调光电路:电子镇流器通常具有调光功能,可以根据需要调节灯具的亮度。
调光电路的作用是通过控制电流的大小来实现灯具的调光效果。
常用的调光电路有PWM调光、电压调光等。
二、电子镇流器的工作过程电子镇流器的工作过程可以分为以下几个步骤:1. 输入电源:电子镇流器的输入电源通常是交流电,其电压和频率根据具体的应用场景而定。
输入电源经过整流电路后,输出的是一个波动较小的直流电。
2. 滤波处理:输出的直流电经过滤波电路进行处理,去除其中的波动,使电流更加稳定。
滤波电路通常由电容器和电感器组成,能够有效地滤除高频噪声和纹波。
3. 调光功能:电子镇流器通常具有调光功能,可以根据需要调节灯具的亮度。
调光电路根据输入的控制信号,通过改变电流的大小来实现调光效果。
常用的调光方法有PWM调光和电压调光。
4. 输出电流:经过整流和滤波处理后,电子镇流器输出的是一个稳定的直流电流。
这个直流电流经过电子镇流器的输出端口,供给灯具使用。
输出电流的大小和稳定性对于灯具的亮度和寿命都有重要影响。
三、电子镇流器的优势和应用1. 节能:相比传统的电感镇流器,电子镇流器具有更高的能量转换效率,能够更好地利用电能,从而实现节能的目的。
电子镇流器的原理

电子镇流器的原理电子镇流器是一种用来控制电流的电气设备,它主要用于LED灯和荧光灯等光源的供电。
相比传统的电感式镇流器,电子镇流器有着更高的效率和更低的功率损耗,因此在现代照明系统中得到了广泛的应用。
电子镇流器的原理是利用电子元件来控制电流的流动,从而使电流符合光源的工作要求。
它主要通过半导体器件和电容器来调整交流电源输入的电流和电压,以匹配LED灯或者荧光灯的工作需求。
在电子镇流器中,有三个主要的电子元件,分别是场效应晶体管(FET)、电容器和电感。
其中FET用来控制电流的开关,电容器用来储存电能并平滑电流,而电感则用来限制电流的变化速度。
这些元件的协同作用使得电子镇流器可以稳定地输出符合光源需求的电流。
电子镇流器的工作原理大致可分为三个阶段。
首先是导通阶段,当外部电压施加在电子镇流器上时,FET导通,电流开始流过电子镇流器。
此时,电容器开始储存电能,而电感则限制电流的变化速度。
其次是关断阶段,在一定的时间间隔内,FET被关断,电容器释放储存的电能,向负载供应电流。
最后是充电阶段,当FET再次导通时,电容器开始重新储存电能,从而使整个循环再次开始。
电子镇流器的工作原理可以通过如下公式进行描述:V = L(di/dt) + Ri + 1/C∫i dt在这个公式中,V代表电子镇流器的输入电压,L代表电感的感值,R代表电子镇流器的内阻,C代表电容器的容值,i代表电流,t代表时间。
通过这个公式,可以看出电子镇流器是通过电感和电容器的协同作用来稳定地输出符合光源需求的电流。
除了基本的工作原理外,电子镇流器还有一些特殊的功能和保护功能。
比如过压保护、过流保护和短路保护等,这些保护功能可以有效地保护电子镇流器和光源不受电网突发故障的影响,提高了整个照明系统的可靠性。
总之,电子镇流器是一种使用电子元件来控制电流的电气设备,它通过场效应晶体管、电容器和电感的协同作用,稳定地输出符合光源需求的电流。
同时,电子镇流器还具有一些特殊的保护功能,可以有效地保护电子镇流器和光源不受电网突发故障的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
节能灯电子镇流器工作原理这几年来,电子镇流荧光灯行业持续大发展,产品水平不断提高,中国在世界上作为节能灯大国的地位已经确立;中国还要进一步成为节能灯强国,这就需要对产品技术和相应的技术基础理论进行进一步的探索。
在对灯用三极管损坏机理的深入研讨中,笔者感到这以前对荧光灯电子镇流工作原理的描述越来越满足不了需要,甚至其中还有谬误之处,有必要对其进行更深入仔细的研究探讨。
为避免复杂的数学推导,本文用较多的实测波形图加以说明。
电子镇流器工作最基本的原理是把50HZ 的工频交流电,变成20-50KHZ 的较高频率的交流电,半桥串联谐振逆变电路中上下两个三极管在谐振回路电容、电感、灯管、磁环的配合下轮流导通和截止,把工频交流电整流后的直流电变成较高频率的交流电。
但是,具体工作过程中,不少书刊上把谐振回路电容充放电作为主要因素来描述,甚至认为“振荡电路的振荡频率是由振荡电路充放电的时间常数决定的”。
我们感到谐振回路电容充电和放电是变流过程中的一个重要因素,但是,振荡电路的振荡频率却不能说就是由振荡电路的充放电时间常数决定的,电路工作状态下可饱和脉冲变压器(磁环)磁导率变化曲线的饱和点和三极管的存储时间ts 是工作周期的重要决定因素。
三极管开关工作的具体过程中,不少书刊认为“基极电位转变为负电位”使导通三极管转变为截止,”T1(磁环)饱和后,各个绕组中的感应电势为零”“VT1 基极电位升高VT2 基极电位下降”;我们认为实际工作情况不是这样的。
一、三极管开关工作的三个重要转折点:1、三极管怎样由导通转变为截止——第一个转折点:不管是图1 用触发管DB3 产生三极管的起始基极电流Ib,还是基极回路带电容的半桥电路由基极偏置电阻产生三极管VT2 的起始基极电流Ib,三极管的Ib 产生集电极电流Ic,通过磁环绕组感应,强烈的正反馈使Ic 迅速增长,三极管导通,那么三极管是怎样由导通转变为截止的?图1 原理图图2 磁环磁化曲线与三极管Vce、Ic、Ib实践证明,三极管导通后其集电极电流Ic 增长,其导通转变为截止的过程有两个转折点,首先是可饱和脉冲变压器(磁环)磁导率μ的饱和点。
图2 中上面为磁环磁化曲线(B-H)及磁导率μ-H 变化曲线,μ=B/H,所以μ就是B-H 曲线的斜率,开始时μ随着外场H 的增加而增加,当H 增大到一定值时μ达到最大,其最大值为μ-H 曲线的峰值即可饱和脉冲变压器磁导率的峰值。
此后,外场H 增加μ减小。
在电子镇流荧光灯电路中,磁环工作在可饱和状态,它在每次磁化过程中其μ值必须过其峰值。
在初期可饱和脉冲变压器(磁环)磁导率随着Ic 的增长而增长(图2);Ic增长到一定值,可饱和脉冲变压器的磁导率μ过图2 中峰值点,磁环绕组感应电压V 环=-Ldi/dt,而磁环绕组电感量(此公式还说明了磁环尺寸在这方面的作用),也就是说磁环绕组感应电压与可饱和脉冲变压器(磁环)磁导率μ成正比,磁环绕组感应电压V 环过峰值(关于磁环绕组内电流的情况在本文后面说明,这里先以实测波形图说明),三极管基极电流Ib 同步过峰值(图2、图3),图2 下半部分为三极管Vce、Ic、Ib 波形图,图2 上半部分和下半部分有一根垂直的联线,把基极电流Ib 的峰值点和可饱和脉冲变压器的磁导率μ的峰值点联系到了一起,这是外部电路改变三极管工作状态的重要信号点,也就是三极管由导通转变为截止的第一个转折点。
随着V 环的下降Ib 也下降,但这时基区内部的电压仍然是正的,当磁环绕组感应电压V 环低于基区内部的电压时(基区外电路所加电压下降到低于基区内部的电压但仍然是正的),少数的载流子就从基区流出.基极电流反向为负值Ib2(图3 红色曲线2);图3 显示了三极管基极电流Ib 峰值(红色曲线2)和磁环绕组感应电压峰值(兰色曲线1)是同步的,过峰值后基极电流反向为负值。
在这期间,基区电流(称为IB2)是负,但是 VCE 维持在饱和压降VCEsat(图4 兰色曲线1),而IC 电流正常流动(图4 红色曲线2),这时期对应存储时间(Tsi)。
在这段时间Vbe 始终是正的,但是基区电流(称为IB2)是负的。
有的书上说导通管的关闭是因为其基极电位转变为负电位,也有的书上说“T1(磁环)饱和后,各个绕组中的感应电势为零”,这不符合实际情况,从波形图上我们可以清楚地看到这段时间Vbe 始终是正的。
导通管的基极电位转变为负电位是在Ic 存储结束,流过磁环绕组的电流达到峰值-Ldi/dt 等于零的时刻之后,而不是在Ic 存储刚开始的时刻。
图3磁环绕组感应电压V环及三极管基极电流Ib图4三极管电压Vce及基极集电极电流IbIc不少书刊说导通管的关闭是因为其基极电位转变为负电位,这里多加几幅插图加以说明。
从图5可以看到在整个三极管集电极电流Ic导通半周期内,其基极电压Vbe都是正的,一直到Ic退出饱和开始下降;从图6可以看到在整个三极管集电极电流Ic导通半周期内,其磁环绕组感应电压V环也都是正的,一直到Ic退出饱和开始下降才开始下降变负。
图5三极管集电极电流Ic及基极电压Vbe图6三极管集电极电流Ic及磁环绕组感应电压V环比较图5和图6可以看到在三极管集电极电流Ic接近最大值,也就是三极管进入存储工作阶段时Vbe>V环,这也可以用来解释IB2是负值的原因。
基极电流反向为负值是因为三极管进入存储工作阶段时Vbe>V环,但是,由于V环是正的,而不是负的,所以基极电流反向电流是“流”出来的,而不是“抽”出来的。
磁环次级绕组电压是由流经电感的电流-di/dt 所决定,过零点在峰值点,即电流平顶点(图7);经过电感流向灯管的电流IL,在磁环绕组和扼流电感上产生感应电压,其过零点为IL 的峰值顶点(di/dt=0)(图8),这里也可以看到V 环变负的真正时间。
图7 磁环次级绕组电流及两端电压图8 电感电流及两端电压VL2、三极管从存储结束退出饱和,到三极管被彻底关断(tf):第二个转折点及第三个转折点(1)、三极管进入存储时间阶段,Ib 变为负值并一直维持(图4 绿色曲线A);三极管存储结束退出饱和:当Ib 负电流绝对值开始减小的时刻(图4 绿色曲线A),也就是Ic 存储结束开始减小(图4 红色曲线2),Vce 离开饱和压降Vcesat开始上升的时刻(图4 兰色曲线1),这也就是三极管由导通转变为截止的第二个转折点。
整个过程也由两部分组成,开始很快降低,后面还有很长一段电流很小的拖尾。
当没有残余电荷在基区里面时,IB2衰减到零,而IC也为零,这是下降时间,三极管被彻底关断,BC结承担电路电源电压,一般应为310V左右(图4绿色曲线A上毛刺对应的时刻兰色曲线1Vce值为314V))。
也就是三极管由导通转变为截止的第三个转折点。
在第二个转折点到第三个转折点之间这段时间,Vce离开饱和压降Vcesat,开始上升到电路电源电压。
(图4兰色曲线1)(2)、电感电流IL 与上下两个三极管集电极电流Ic1、Ic2 的关系,C3R2 的作用(关断过程之二):在第二个转折点与第三个转折点之间Ic1Ic2 的波形有一个缺口,IL 波形没有缺口图9 上管集电极电流Ic1 与下管集电极电流Ic2 之间的缺口图10 流过R2C3 的电流和Vce 电压波形三极管Ic 存储结束,电流开始快速下降,后面还有很长一段电流很小的拖尾;在这个时候另一个三极管仍然是截止的,还没有开始导通,这样就会造成一个电流缺口(图9)。
但是电感L 上的电流是不可能中断的,这个缺口由上管CE之间的R2C3 的充放电电流来填补(图10)。
上管从Ic 存储结束,Vce 开始上升,整个过程也有二部分组成,开始很快降低,后面还有很长一段电流很小的拖尾,Vce 从零上升到310V,C3 也得充电到310V,其充电电流即为填补缺口的那部分电流(图10),电感L 中的电流得以平滑过渡。
Vce 从零上升到310V,C3 也得以充电到310V 的那一时刻,其充电电流被关断。
VT1 从截止转为导通时,R2C3 放电,其放电电流填补电流缺口。
对于这一点,有的书上是这样说的:“C3R2 组成相位校正网络,使输出端产生的基频电压同相”说的应该就是这个意思。
R2C3 的存在,实际上也避免了两个三极管电流的重叠,即一个三极管尚未关断,另一个三极管已经导通,所谓“共态导通”的问题,提供了一个“死区时间”。
3、三极管是怎样由截止转变为导通的?有的书刊上说是三极管基极通过磁环次级绕组“得到正电位的激励信号电压而迅速导通”,实际上三极管Ic 存储结束的这一时刻开始,磁环次级绕组的电压即过零开始变为正电位,但是直到VT2被彻底关断那一刻以前VT1 一直没有开通(图5、图6)。
图5、图6 中可以清楚地看到三极管产生集电极电流Ic 的时刻落后于基极电压Vbe(磁环绕组感应电压V 环)变正的时刻一段时间。
确切地说,三极管产生集电极电流Ic(开始开通)的准确时刻应该是另一个三极管被彻底关断的时刻。
从整个电子镇流荧光灯电路来说,这也就是前面所说三极管由导通转变为截止的第三个转折点。
从时间上来说三极管产生集电极电流Ic(开始开通)的准确时刻也就是R2C3 上的充放电电流终了的时刻,而这个时刻正是另一个三极管被彻底关断的时刻。
从波形图上看,三极管产生集电极电流Ic(开始开通)的时刻,正是电感L两端电压的峰值点(图11)。
另一管Ic 的开通:电感L 中的电流不能突变,而此时Vbe 已为正,三极管产生一个反向电流,此时也正好是电感L 两端电压的峰值点(图11)。
图11 Ic 的开通正好是电感L 两端电压的峰值点图12 BE 并联反向二极管三极管Vce、Ic 波形图为什么在电子镇流荧光灯电路中三极管的上升时间tr 我们不予以关注?从上面对三极管集电极电流Ic 的开通过程就可以得到答案。
在这里,三极管集电极电流Ic 的上升过程不符合三极管的上升时间tr 的定义,因此tr 在这里也就失去了它原来的意义。
由于三极管Ic 存储结束的这一时刻开始,磁环次级绕组的电压即过零开始变为正电位,但是在R2C3 上的充放电电流终了的时刻那一刻以前,正常情况下VT1一直没有开通;必须注意的是,当线路调整不好的时候,这里Ic 会产生一个有害的毛刺。
二、三极管集电极电流Ic 初始值的讨论:带电感负载的开关三极管,在三极管关断时因电感产生反电动势会受到一个高电压。
但是,在目前国内大量采用的电子镇流荧光灯半桥电压反馈电路中,开关三极管电压的选择,是不考虑这个反电动势的;在实际生产中,用世界上最好的示波器去观察,也看不到高于整流滤波后电源电压的波形;对于灯用三极管设计生产厂家来说,三极管的电压参数选取得是否合理,关系到如何真正做到“低成本、高可靠”;如果不切实际地把三极管的电压参数选高了,用户最需要的电流特性就会受到影响。