正余弦定理题型总结(全)

合集下载

正余弦定理知识点及题型归纳

正余弦定理知识点及题型归纳

正余弦定理是三角学中的重要知识点,用于解决与三角形相关的问题。

下面是对正余弦定理的知识点及题型归纳:一、正弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有sinA/a = sinB/b = sinC/c。

2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。

3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。

二、余弦定理1. 定义:在任意三角形ABC中,设角A、B、C所对应的边分别为a、b、c,那么有cosA = (b ²+ c²- a²) / (2bc)。

2. 性质:-等式两边同时乘以任意非零常数,等式仍然成立;-等式两边同时除以相同的角,等式仍然成立;-等式两边同时取反函数,等式仍然成立。

3. 应用:-已知三个角的度数,求边长;-已知两个边的长度,求第三个边的长度;-已知一个角和一条边的长度,求另外两个角的度数;-已知一个角和两条边的长度,求第三个角的度数。

三、题型归纳1. 已知三个角的度数,求边长:-根据正弦定理或余弦定理,将已知的角度代入公式中,求解边长;-如果已知的是弧度制的角度,需要将其转换为角度制。

2. 已知两个边的长度,求第三个边的长度:-根据正弦定理或余弦定理,将已知的两个边的长度代入公式中,求解第三个边的长度;-如果已知的是弧度制的角度,需要将其转换为角度制。

3. 已知一个角和一条边的长度,求另外两个角的度数:-根据正弦定理或余弦定理,将已知的角度和边的长度代入公式中,求解另外两个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。

4. 已知一个角和两条边的长度,求第三个角的度数:-根据正弦定理或余弦定理,将已知的角度和两条边的长度代入公式中,求解第三个角的度数;-如果已知的是弧度制的角度,需要将其转换为角度制。

正余弦定理知识点总结及高考考试题型

正余弦定理知识点总结及高考考试题型

正余弦定理知识点总结及高考考试题型正余弦定理是初中数学中不可避免的知识点之一,也是高中数学中必须掌握的内容之一。

在实际应用中,正余弦定理有着广泛的应用,因此掌握正余弦定理在数学学习中是非常重要的。

本文将介绍正余弦定理的知识点及在高考考试中的应用。

一、正余弦定理的概念正余弦定理也叫余弦定理,是解题方法中的三角函数法。

它适用于求三角形的任意一边或角,无论是锐角三角形、直角三角形、钝角三角形都可以应用。

正余弦定理是指在一个三角形中,任意一边的平方等于另外两边的平方和与这两边对应的角的余弦值的积的两倍之差。

二、正余弦定理的公式设三角形ABC中,a、b、c是三角形的三边,A、B、C是三角形的三个内角,则正余弦定理的公式如下:①cosA=(b²+c²-a²)/2bc②cosB=(a²+c²-b²)/2ac③cosC=(a²+b²-c²)/2ab其中,a表示边BC对应的角,b表示边AC对应的角,c表示边AB对应的角。

三、正余弦定理的应用1、求任意三角形的边长求三角形的边长是初学者需要掌握的基本应用之一。

那么设一个三角形,已知除一边外的两边及夹角,用正余弦定理求另一边的长度。

例如:已知三角形ABC中,a=9,b=12,∠C=120°,求c。

解:根据正余弦定理中的公式③cosC=(a²+b²-c²)/2ab,可以推导出c²=a²+b²-2abcosC,代入数值:c²=9²+12²-2×9×12×cos120°。

cos120°=-0.5,所以c²=169,c=13。

因此,三角形ABC的边长c=13。

2、求三角形内的角度求出三角形的内角度量也是三角形解题的基本应用之一。

用正余弦定理解题时,需要掌握反三角函数的概念及应用。

(完整版)解三角形之正弦定理与余弦定理

(完整版)解三角形之正弦定理与余弦定理

正弦定理与余弦定理教学目标掌握正弦定理和余弦定理的推导,并能用它们解三角形正余弦定理及三角形面积公式.教学重难点掌握正弦定理和余弦定理的推导,并能用它们解三角形.知识点清单一. 正弦定理:1. 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,并且都等于外接圆的直径,即a b c2R( 其中R 是三角形外接圆的半径)sin A sinB sinC2. 变形:1)a b c a b csin sin sinC sin sin sinC 2)化边为角:a:b:c sin A:sin B:sinC;a sin A;b sin B a sin Ab sinBc sinC c sin C3)化边为角:a 2Rsin A, b 2Rsin B, c 2RsinC4)化角为边:sin A a;sin B b ; sin A asin B b sinC c sinC c5)化角为边:sin A a sinB b,sinC c2R2R2R3. 利用正弦定理可以解决下列两类三角形的问题:①已知两个角及任意—边,求其他两边和另一角;例:已知角B,C,a ,解法:由A+B+C=18o0 ,求角A,由正弦定理 a sinA; b sinB; b sin B c sin C a sin A; 求出 b 与cc sinC ②已知两边和其中—边的对角,求其他两个角及另一边。

例:已知边a,b,A,解法:由正弦定理 a sin A求出角B,由A+B+C=18o0 求出角C,再使用正 b sin B 弦定理 a sin A求出c边c sinC4. △ABC中,已知锐角A,边b,则① a bsin A 时,B 无解;② a bsin A 或 a b 时, B 有一个解;③ bsinA a b 时, B 有两个解。

如:①已知 A 60 ,a 2,b 2 3,求 B (有一个解 )②已知 A 60 ,b 2,a 2 3,求 B (有两个解 ) 注意:由正弦定理求角时,注意解的个数。

正余弦定理及解三角形整理(有答案)

正余弦定理及解三角形整理(有答案)

正余弦定理考点梳理:1.直角三角形中各元素间的关系:如图,在△ABC 中, C = 90°, AB =c , AC = b , BC = a 。

( 1)三边之间的关系: a 2+ b 2= c 2。

(勾股定理) A ( 2)锐角之间的关系: A + B = 90°; c( 3)边角之间的关系: (锐角三角函数定义)bsin A =cos B = a ,cos A = sin B = b , tan A = a。

CBcc b2.2.斜三角形中各元素间的关系:a如图 6-29 ,在△ ABC 中, A 、 B 、 C 为其内角, a 、 b 、c 分别表示 A 、 B 、C 的对边。

( 1)三角形内角和: A +B + C = _____( 2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

ab c2R 。

( R 为外接圆半径)sin A sin Bsin C3.正弦定理:a= b = c =2R 的常见变形:sin A sin B sin C(1)sinA ∶ sinB ∶ sinC = a ∶ b ∶ c ;(2)a= b c= a + b + csin=sin A + sin = 2R ;A sinBC sinB + sin C(3) a =2R sin_ A , b = 2R sin_ B , c = 2R sin_ C ;A = aB = bC = c(4)sin2R ,sin 2R , sin 2R .1114. 三角形面积公式: S = 2ab sin C = 2bc sin A = 2ca sin B .5.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

cos A b2c 2 a 2a 22c 22bccos A2bcba2c 2b 2余弦定理的公式:b 2 a 2 c 22accosB 或cos B .c2b2a22ba cosC2accosCb2a2c22ab6. ( 1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角.2、已知两边和其中一边的对角,求其他边角. ( 2)两类余弦定理解三角形的问题:1、已知三边求三角 .2、已知两边和他们的夹角, 求第三边和其他两角 .7. 判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式 .8. 解题中利用ABC 中A B C,以及由此推得的一些基本关系式进行三角变换的运算,如: sin( A B) sin C, cos( A B) cosC, tan(A B)tan C,sin A BcosC,cosAB sinC, tanAB cotC. 2222229.解斜三角形的主要依据是:设△ ABC的三边为 a、 b、c,对应的三个角为A、 B、C。

正余弦定理知识点及高考考试题型整理学生理

正余弦定理知识点及高考考试题型整理学生理

正、余弦定理一、知识总结 (一)正弦定理1.正弦定理:2,sin sin sin a b cR A B C===其中R 是三角形外接圆半径. 2.变形公式:(1)化边为角:(2)化角为边:(3)(4).3、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一)(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)在△ABC 中,已知a 、b 和A 时,解的情况如下:a =b sin A b sin A <a <b a ≥b a >b 1.余弦定理: 2222cos a b c bc A =+-2222cos c a b ab C =+-2222cos b a c ac B =+-2.变形公式:222222222cos ,cos ,cos .222b c a a c b a b c A B C ab ac ab+-+-+-===.注:2a >22c b +⇒A 是钝角;2a =22c b +⇒A 是直角;2a <22c b +⇒A 是锐角;2sin ,2sin ,2sin ;a R A b R B c R C ===sin ,sin ,sin ;222a b cA B C R R R ===::sin :sin :sin a b c A B C =2sin sin sin sin sin sin a b c a b c RA B C A B C ++====++3.余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):4.由余弦定理判断三角形的形状a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。

(注意:A是锐角/ △ABC是锐角三角形,必须说明每个角都是锐角)(三) ΔABC的面积公式:(1)1() 2a aS a h h a= 表示边上的高;(2)111sin sin sin() 2224abcS ab C ac B bc A RR====为外接圆半径;(3)1()() 2S r a b c r=++为内切圆半径(四) 实际问题中的常用角1.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下文的叫俯角(如图①)2.方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②)注:仰角、俯角、方位角的区别是:三者的参照不同。

正余弦定理题型总结(全)

正余弦定理题型总结(全)

正余弦定理题型总结(全)平面向量题型归纳(全)题型一:共线定理应用例一:平面向量→→b a ,共线的充要条件是()A.→→b a ,方向相同B. →→b a ,两向量中至少有一个为零向量 C.存在,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→→b a λλλλ变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→→b a //”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件变式二:设→→b a ,是两个非零向量()A.若→→→→=+b a b a _则→→⊥b aB. 若→→⊥b a ,则→→→→=+b a b a _ C. 若→→→→=+b a b a _,则存在实数λ,使得→→=a b λ D 若存在实数λ,使得→→=a b λ,则→→→→=+ba b a _例二:设两个非零向量→→21e e 与,不共线,(1)如果三点共线;求证:D C A e e e e e e ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e e e e e ,,,2,32,212121-=-=+=求实数k 的值。

变式一:设→→21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。

变式二:已知向量→→b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是() A.A,B,D B.A,B,C C.B,C,D D.A,C,D题型二:线段定比分点的向量形式在向量线性表示中的应用例一:设P 是三角形ABC 所在平面内的一点,,2+=则()A. +=B. +=C. +=D. ++=变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且++=2,那么()A. A =变式二:在平行四边形ABCD 中=,=,3=,M 为BC 的中点,则= ( 用,表示)例二:在三角形ABC 中,=,=,若点D 满足2=,则=( )A. ,3132+B. ,3235-C. ,3132-D. ,3231+变式一:(高考题) 在三角形ABC 中,点D 在边AB 上,CD 平分角ACB,a CB =,b CA =21==,则=CD ( )A. ,3231+B. ,3132b a +C. ,5453+ D. ,5354b a +变式二:设D,E,F 分别是三角形ABC 的边BC,CA,AB 上的点,且,2BD DC =,2EA CE =,2FB AF =则++,与( )A.反向平行B. 同向平行C.互相垂直D.既不平行也不垂直变式三:在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若μλ+=,其,,R ∈μλ则μλ+=变式四:在平行四边形ABCD 中,AC 与BD 交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,=,=则=( )A.,2141+ B. ,3132+ C. ,4121+ D. ,3231+题型三:三点共线定理及其应用例一:点P 在AB 上,求证:μλ+=且μλ+=1(,,R ∈μλ)变式:在三角形ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 和N,若,m =,n =则m+n=例二:在平行四边形ABCD 中,E,F 分别是BC,CD 的中点,DE 与AF 交于点H,设,a AB =,b BC =则= A. ,5452- B. ,5452+ C. ,5452+- D. ,5452--题型四:向量与三角形四心一、内心例一:O 是?ABC 所在平面内一定点,动点P满足),【∞+∈++=0λλ,则点P的轨迹一定通过?ABC 的()A.外心 B.内心 C.重心 D.垂心变式一:已知非零向量与满足0=?+AC AB,且21=AC AB ,则?ABC 为() A. 等边三角形 B. 直角三角形 C. 等腰非等边三角形 D.三边均不相等的三角形变式二:?=?+?+?P 为?ABC 的内心二、重心例一:O 是?ABC 内一点,=++,则为?ABC 的()A.外心B.内心C .重心 D.垂心变式一:在?ABC 中,G 为平面上任意一点,证明:?++=)(31O 为?ABC 的重心变式二:在?ABC 中,G 为平面上任意一点,若?+=)(31AC AB AO O 为?ABC 的重心三垂心:例一:求证:在?ABC 中,??=?=? O 为?ABC 的垂心变式一:O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足,R ∈++=λλ则点P 的轨迹一定通过?ABC 的()A.外心B.内心C.重心 D .垂心四外心例一:若O 是?ABC 的外心,H 是?ABC 的垂心,则OH ++=变式一:已知点O ,N ,P 在?ABC 所在平面内,且==++=,题型五:向量的坐标运算例一:已知A(-2,4),B(3,-1),C(-3,-4),且CB CN CA CM 2,3==,试求点M,N 和的坐标。

(完整版)正余弦定理及解三角形整理(有答案)

(完整版)正余弦定理及解三角形整理(有答案)

正余弦定理考点梳理:1.直角三角形中各元素间的关系:如图,在△ABC 中,C =90°,AB =c ,AC =b ,BC =a 。

(1)三边之间的关系:a 2+b 2=c 2。

(勾股定理) A(2)锐角之间的关系:A +B =90°; c (3)边角之间的关系:(锐角三角函数定义) b sin A =cos B =,cos A =sin B =,tan A =。

C B c a c b ba2.2.斜三角形中各元素间的关系: a如图6-29,在△ABC 中,A 、B 、C 为其内角,a 、b 、c 分别表示A 、B 、C 的对边。

(1)三角形内角和:A +B +C =_____(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。

(R 为外接圆半径)R CcB b A a 2sin sin sin ===3.正弦定理:===2R 的常见变形:asin A b sin B csin C (1)sin A ∶sin B ∶sin C =a ∶b ∶c ;(2)====2R ;a sin Ab sin B csin C a +b +csin A +sin B +sin C (3)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(4)sin A =,sin B =,sin C =.a 2Rb 2R c2R 4.三角形面积公式:S =ab sin C =bc sin A =ca sin B .1212125.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。

余弦定理的公式: 或.2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩222222222cos 2cos 2cos 2b c a A bc a c b B ac b a c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩6.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两边和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.7.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.8.解题中利用中,以及由此推得的一些基本关系式进行三角变换ABC ∆A B C π++=的运算,如:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-.sincos ,cos sin ,tan cot222222A B C A B C AB C+++===9. 解斜三角形的主要依据是:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C 。

正余弦定理知识点总结及高考考试题型

正余弦定理知识点总结及高考考试题型

正余弦定理知识点总结及高考考试题型一、正余弦定理的概念正余弦定理,又称余正定理、角-边-角定理,是指用三角形中的一个角和与它相对的两边的长度,来表示三角形中的另外两个角与其对应的两边之间的关系的公式。

二、正余弦定理的形式对于一个三角形ABC,设三个边分别为a、b、c,对应的角分别为A、B、C,将角A所对应的边称为边a,角B所对应的边称为边b,角C所对应的边称为边c。

(1)正弦定理:$\frac{a}{\sin A}=\frac{b}{\sinB}=\frac{c}{\sin C}$(2)余弦定理:$a^2=b^2+c^2-2bc\cos A$$b^2=a^2+c^2-2ac\cos B$$c^2=a^2+b^2-2ab\cos C$三、正余弦定理的应用正余弦定理是基本的三角函数之一,它们在高中数学教育中被广泛应用。

通常在三角形的求面积过程中被使用。

考生还需能够将它们应用在其他相关的三角形求解问题中。

例如,可以用正余弦定理解决以下问题:(1)求三角形的面积。

(2)判断三角形是否为等腰三角形,是否为等边三角形。

(3)确定三角形的内角度数。

(4)求解三角形的未知边和角。

四、正余弦定理在高考考试中的出现形式正余弦定理在高考考试中经常作为解决三角形问题的关键公式。

它们常表现为单独的选择题或解答题,也可能是复合型题目的一部分。

(1)选择题样例:已知三角形ABC的边长分别为11、12、13,若$\angle C$ 的角度等于$\frac{\pi}{2}$,则$\sin A+\cos B$ 等于()A. $\frac{24}{13}$B. $\frac{22}{13}$C. $\frac{20}{13}$D. $\frac{18}{13}$(2)解答题样例:已知$\triangle ABC$,且$AB=8, AC=6,BC=10$,则$\triangle ABC$的面积是多少?解:由余弦定理,$\cos A=\frac{b^2+c^2-a^2}{2bc}=\frac{100-36-64}{2×10×8}=-\frac{1}{8}$由正弦定理,$2S=\frac{1}{2}bc\sin A=24\sin A=24\sqrt{1-\cos^2 A}=24\sqrt{1-\frac{1}{64}}=\frac{48}{\sqrt{3}}$因此,$\triangle ABC$ 的面积为$\frac{24}{\sqrt{3}}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量题型归纳(全)题型一:共线定理应用例一:平面向量→→b a ,共线的充要条件是( )A.→→b a ,方向相 同 B. →→b a ,两向量中至少有一个为零向量 C.存在,R ∈λ→→=a b λ D 存在不全为零的实数0,,2121=+→→b a λλλλ变式一:对于非零向量→→b a ,,“→→→=+0b a ”是“→→b a //”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件变式二:设→→b a ,是两个非零向量( )A.若→→→→=+b a b a _则→→⊥b aB. 若→→⊥b a ,则→→→→=+b a b a _ C. 若→→→→=+b a b a _,则存在实数λ,使得→→=a b λ D 若存在实数λ,使得→→=a b λ,则→→→→=+ba b a _例二:设两个非零向量→→21e e 与,不共线,(1)如果三点共线;求证:D C A e e CD e e BC e e AB ,,,28,23,212121--=+=-= (2)如果三点共线,且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。

变式一:设→→21e e 与两个不共线向量,,2,3,2212121e e CD e e CB e k e AB -=+=+=若三点A,B,D 共线,求实数k 的值。

变式二:已知向量→→b a ,,且,27,25,2b a CD b a BC b a AB +=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D题型二:线段定比分点的向量形式在向量线性表示中的应用例一:设P 是三角形ABC 所在平面内的一点,,2BA BC BP +=则( )A. PB PA +=0B. PA PC +=0C. PC PB +=0D. PB PA PC ++=0变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且OC OB OA ++=20,那么( )A. OD A =0 B. OD A 20= C. OD A 30= D. OD A =02变式二:在平行四边形ABCD 中a AB =,b AD =,NC AN 3=,M 为BC 的中点,则=MN ( 用b a ,表示)例二:在三角形ABC 中,c AB =,b AC =,若点D 满足DC BD 2=,则=AD ( )A. ,3132c b +B. ,3235b c -C. ,3132c b -D. ,3231c b +变式一:(高考题) 在三角形ABC 中,点D 在边AB 上,CD 平分角ACB,a CB =,b CA =21==,则=CD ( )A. ,3231b a +B. ,3132b a +C. ,5453b a + D. ,5354b a +变式二:设D,E,F 分别是三角形ABC 的边BC,CA,AB 上的点,且,2BD DC =,2EA CE =,2FB AF =则CF BE AD ++,与BC ( )A.反向平行B. 同向平行C.互相垂直D.既不平行也不垂直变式三:在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,若AF AE AC μλ+=,其,,R ∈μλ则μλ+=变式四:在平行四边形ABCD 中,AC 与BD 交于点O,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,a AC =,b BD =则=AF ( )A.,2141b a + B. ,3132b a + C. ,4121b a + D. ,3231b a +题型三:三点共线定理及其应用例一:点P 在AB 上,求证:OB OA OP μλ+=且μλ+=1(,,R ∈μλ)变式:在三角形ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 和N,若,AM m AB =,AN n AC =则m+n=例二:在平行四边形ABCD 中,E,F 分别是BC,CD 的中点,DE 与AF 交于点H,设,a AB =,b BC =则=AH A. ,5452b a - B. ,5452b a + C. ,5452b a +- D. ,5452b a --变式:在三角形ABC 中,点M 是BC 的中点,点N 是边AC 上一点且AN=2NC,AM 与BN 相交于点P,若,PM AP λ=求λ的值。

题型四: 向量与三角形四心 一、 内心例一:O 是∆ABC 所在平面内一定点,动点P满足),【∞+∈++=0λλAC AB OA OP ,则点P的轨迹一定通过∆ABC 的( )A.外心 B.内心 C.重心 D.垂心变式一:已知非零向量AB 与AC满足0=⋅+BC AC AB,且21=⋅AC AB ,则∆ABC 为( ) A. 等边三角形 B. 直角三角形 C. 等腰非等边三角形 D.三边均不相等的三角形变式二:⇔=⋅+⋅+⋅0PB PA PC P 为∆ABC 的内心二、重心例一:O 是∆ABC 内一点,0=++OB OA OC ,则为∆ABC 的( )A.外心B.内心C .重心 D.垂心变式一:在∆ABC 中,G 为平面上任意一点,证明:⇔++=)(31GC GB GA GO O 为∆ABC 的重心变式二:在∆ABC 中,G 为平面上任意一点,若⇔+=)(31AC AB AO O 为∆ABC 的重心三垂心:例一:求证:在∆ABC 中,⇒⋅=⋅=⋅OA OC OC OB OBOA O 为∆ABC 的垂心变式一:O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足,R AC AB OA OP ∈++=λλ则点P 的轨迹一定通过∆ABC 的( )A.外心B.内心C.重心 D .垂心四外心例一:若O 是∆ABC 的外心,H 是∆ABC 的垂心,则OBOC OA OH ++=变式一:已知点O ,N ,P 在∆ABC 所在平面内,且==NCNB NA ++=0,PA PC PC PB PB PA ⋅=⋅=⋅,则O ,N ,P 依次是∆ABC 的( )A. 重心、外心 、垂心B. 重心、外心 、内心C. 外心 、重心、垂心 D . 外心 、重心、 内心题型五:向量的坐标运算例一:已知A(-2,4),B(3,-1),C(-3,-4),且CB CN CA CM 2,3==,试求点M,N 和MN的坐标。

变式一:已知平面向量向量),23,21(),1,3(=-=b a ,b 3)(-+=t a x ,b t a k y +-=其中t 和k 为不同时为零的实数,(1)若y x ⊥,求此时k 和t 满足的函数关系式k=f(t);(2)若y x //,求此时k 和t满足的函数关系式k=g(t).变式二:平面内给定3个向量)1,4(),2,1(),2,3(=-==c b a ,回答下列问题。

(1)求c b a 23-+;(2)求满足cn b m a +=的实数m,n;(3)若)2//()(a b c k a -+,求实数k ;(4)设)//()(),(b a c d y x d +-=满足且1=-,求d。

题型六:向量平行(共线)、垂直充要条件的坐标表示例一:已知两个向量)2,3(),21(-==b a ,,当实数k 取何值时,向量b a k 2+与b a 42-平行?变式一:设向量a,b 满足|a|=52,b=(2,1),且a 与b 反向,则a 坐标为_________例二:已知向量)10,(),5,4(),12,(k OC OB k OA -===→→→且A,B,C 三点共线,则k=( ) A:23 B:32 C:32- D:23-变式一:已知),31,(cos ),sin 23(αα==b a ,且a//b ,则锐角α为__________变式二:△ABC 的三内角A,B,C 所对边的长分别为a,b,c 设向量),,(),,(a c a b q b c a p --=+=若q p //,则∠C 的大小为( ) A:6π B:3π C:2πD:32π题型七:平面向量的数量积例一:(1)在Rt △ABC 中,∠C=90°,AC =4,则=⋅→→AC AB ( )A :-16 B:-8 C:8 D:16(2)(高)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则→→⋅CB DE 的值为______;→→⋅CB DE 的最大值为_______ (3)在△ABC 中,M 是BC 中点,AM =1,点P 在AM 上满足→→=PM AP 2,则)(→→→+⋅PC PB PA 等于( ) A:94-B:34- C:34 D:94变式一:(高) 如图所示,平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则→→⋅AC AP =_______变式二:在△ABC 中,AB=1,BC=2,AC=3,若O 为△ABC 的重心,则→→⋅AC AO 的值为________例二:(高)在矩形ABCD 中,AB=2,BC=2,点E 为BC 的中点,点F 在边CD 上,若2=⋅AF AB ,则BF AE ⋅的值是变式一:(高)在△ABC 中,090=∠A ,1=AB ,AC=2.设点P,Q 满足R AC AQ AB AP ∈-==λλλ,)1(,,若2-=⋅CP BQ ,则λ=( )A:31 B:32 C:34D:2例三:已知向量c b a ,,满足,2210====++c b a c b a 则=⋅+⋅+⋅a c c b b a变式一:在△ABC ,643===AC BC AB 则=⋅+⋅+⋅AB CA CA BC BC AB变式二:已知向量c b a ,,满足,21,0==⊥=++b a b a c b a 且=c变式三:已知向量c b a ,,满足,1,,),0=⊥⊥-=++a b a c b a c b a 若且([[=++2c b a题型八:平面向量的夹角例一:已知向量),0,2(),3,1(-==b a 则b a 与的夹角是例二:已知b a ,是非零向量且满足,)2(,)2b a b a b a ⊥-⊥-(则b a 与的夹角是变式一:已知向量c b a ,,,,,21c a b a c b a ⊥+===则b a 与的夹角是变式二:已知b a ,b a b a -==则b a a +与的夹角是变式三:若向量b a 与不共线,,)(,0b ba a cb a ⋅-=≠⋅且则c a 与的夹角是变式四:(高) 若向量βα与,11≤=且以向量βα与为邻边的平行四边形的面积为0.5,则βα与的夹角的取值范围是例二:1,2==,b a 与的夹角为045,求使向量b a λ+与b a +λ的夹角为锐角的λ的取值范围。

相关文档
最新文档