误差的定义及分类

合集下载

误差理论与数据处理期末_简答

误差理论与数据处理期末_简答
微小误差的取舍原则:1/3修约:小于总标准差的1/3~1/10的可以略去
第四章
测量不确定度的基本概念:测量都有误差——测量结果具有不确定性;寻找最佳评定方式——科学评价测量质量——测量不确定度;测量不确定度小——测量质量高——使用价值高——测量水平高
测量不确定度定义:测量结果变化的不肯定,表征被测量真值在某一个范围内的一个估计,表示被测量的分散性;
一元线性回归,目的:确定两个变量之间的关系 方法:最小二乘法
变量之间的关系类型:函数关系(具有确定性,具有明确的数学表达式),相关关系(变量之间存在密切联系)
回归分析的目的:寻求多个变量之间能反映事物内部规律的数学表达式
(2)各类误差的特征及处理方法;
(3)对测量结果进行评定
第二章
随机误差产生的原因:测量装置,环境,人员因素。(均属于不确定因素)
粗大误差产生的原因:测量人员的主观原因,外界条件的客观原因
系统误差产生的原因:测量装置,环境,测量方法,测量人员
系统误差的特征:误差的绝对值和符号保持不变,条件改变时,误差按一定规律变化
5)展伸不确定度:给出一个测量结果的区间,使被测量的值大部分位于其中,为此需用展伸不确定度(也有称为扩展不确定度)表示测量结果。
展伸不确定度由合成标准不确定度,乘以包含因子k得到,记为U,即;
第五章
最小二乘法可解决的问题:参数的最可信赖估计,组合测量的数据处理,拟定经验公式,回归分析。
简述最小二乘法原理:测量结果的最可信赖值应在残余误差平方和(在不等精度应为权残余误差平方和)为最小的条件下求出,这就是最小二乘法原理。(等精度最小二乘法原理 )=最小,不等精度最小二乘法原理 =最小
5)测量的精度。
① 准确度:表征测量结果接近真值的程度。系统误差大小的反映

误差与有效数字

误差与有效数字
误差和有效数字
1.误差
(1)定义:在测量中,测出的数值(测量值)与真实值之 间的差异叫做误差 (2)分类:系统误差和偶然误差。 (3)系统误差: ①产生:仪器本身不精确、实验方法粗略或实验 原理不完善产生的。 ②系统误差的特点:多次重复测量时,测量值总 是大于(或小于)真实值。 ③减小系统误差的方法:校准测量仪器(或使用更 精密测量仪器),改进实验方法,完善实验原理等。
(4)偶然误差:
①产生:由于各种偶然因素对实验者、测量仪器、被测
物理量的影响而产生的。 ②特点:测量值与真实值相比有时偏大,有时偏小, 并且偏大和偏小的概率相同。 ③减小方法:多次重复测量求平均值。 (5)误差与错误的区别: 误差不是错误,一般情况下误差不可以避免,只能想办
法减小。而错误是由于操作不当引起的,在实验过程中可以
避免。
2.有效数字
(1)可靠数字:通过直接读数获得的准确数字。 (2)存疑数字:通过估读得到的那部分数字。 (3)有效数字:测量结果中能够反映被测量大小的带 有一位存疑数字的全部数字。 (4)有效数字的位数:左边开始的第一个非零数字 以及之后的所有数字(包括零)都是有效数字
测量仪器的读数规则
在中学阶段一般可根据测量仪器的最小分度来确定读数 方法: 1、最小分度是“1”的仪器,测量误差出现在下一位, 下一位按十分之一估读。如最小刻度是1mm的刻度尺, 测量误差出现在毫米的十分位上,估读到十分之几毫米。 2、最小分度是“2”或“5”的仪器,测量误差出现在同 一位上,估读到最小分度位。如学生用的电流表0.6A量程, 最小分度为0.02A,误差出现在安培的百分位,只读到安 培的百分位。
1 N
0 0
2 V
0
3
1
ห้องสมุดไป่ตู้100

误差的名词解释

误差的名词解释

误差的名词解释误差是我们生活中一个常见但往往被忽视的概念。

它在科学研究、经济管理、技术开发等领域中扮演着重要的角色。

然而,误差并不仅仅指我们常说的错误,它更涉及到了不确定性与精度的问题。

本文将解释误差的定义、分类以及其在各领域中的应用。

一、误差的定义误差最基本的定义是指实际值与预期值之间的差异。

实际值是指我们通过实验、观察或测量所得到的结果,预期值则是基于理论或之前的观测所得到的期望结果。

误差可以使我们更好地了解事物真实状态与我们的感知之间的差距。

二、误差的分类根据误差来源的不同,误差可以分为系统误差和随机误差。

1. 系统误差:也被称为固定误差,是由测量或观察过程中固有的偏差引起的。

它可能是由于仪器的不精确性、实验条件的变化或者观察者的主观判断等原因导致的。

系统误差在每次测量或观察中都存在,并且在一定程度上会使结果产生常态偏移。

2. 随机误差:也被称为偶然误差,是由于测量或观察的随机性而引起的。

它是由于许多无法完全控制的因素而产生的,例如环境的变化、测量者的不稳定性等。

随机误差的特点是在重复测量或观察中出现不一致的结果。

三、误差在科学研究中的应用在科学研究中,误差是不可避免的,但我们可以通过对误差的控制和分析来提高实验的可靠性和结果的准确性。

以下是一些常见的误差应用案例:1. 在物理实验中,我们经常会测量一个物体的长度、质量或温度等参数。

通过计算测量值与真实值之间的差异,我们可以评估仪器的精确度,并进行修正或选择更准确的仪器。

2. 在天文学研究中,观测误差是不可忽视的。

我们并不总能够在理想的条件下进行观测,天气、大气湍流等都可能导致观测结果的偏差。

通过对不同观测点的重复观测,我们可以在一定程度上抵消随机误差,得到更精确的结果。

3. 在生物医学实验中,如果我们想评估某种新药物对于疾病的治疗效果,我们需要通过对实验组和对照组的观察来判断。

由于实验组和对照组之间可能存在各种差异,导致评估结果与实际效果存在误差。

测量误差及不确定度分析的基础知识

测量误差及不确定度分析的基础知识

测量误差及不确定度分析的基础知识物理实验是以测量为基础的。

测量可分为直接测量与间接测量,直接测量指无需对被测的量与其它实测的量进行函数关系的辅助计算而可直接得到被测量值的测量,间接测量指利用直接测量的量与被测量之间的已知函数关系经过计算从而得到被测量值的测量。

根据测量条件的不同,测量分为等精度测量和非等精度测量。

测量四要素是测量对象,测量方法,测量单位,测量不确定度。

由于测量仪器、测量方法、测量环境、人员的观察力等种种因素的局限,测量是不能无限精确的,测量结果与客观存在的真值之间总是存在一定的差异,即存在测量误差。

因此分析测量中产生的各种误差,尽量消除或减小其影响,并对测量结果中未能消除的误差作出估计,给出测量结果的不确定度就是物理实验和科学实验中必不可少的工作。

为此我们必须了解误差的概念、特性、产生的原因及测量结果的不确定度的概念与估算方法等的有关知识。

误差的定义、分类及其处理方法一.误差的定义:测量结果与被测量的真值(或约定真值)之差叫做误差,记为:被测值的真值是一个理想的概念,一般说来真值是不知道的。

在实际测量中常用准确度高的实际值来作为约定真值,才能计算误差。

二.误差的分类及其处理方法:误差主要分为系统误差和随机误差。

系统误差:(1)定义:在同一被测量的多次测量过程中,绝对值和符号保持恒定或以可预知的方式变化的测量误差的分量。

(2)产生原因:① 仪器本身的缺陷或没按规定条件使用仪器而引起的误差(又称作仪器误差)例:电表的刻度不均匀---示值误差等臂天平的两臂实际不等---机构误差指针式电表使用前没调零---零位误差大气压强计未在标定条件下使用引起的系统误差等②测量所依据的理论公式本身的近似性、或实验条件不能达到理论公式的要求、或测量方法所带来的系统误差(又称作理论误差或方法误差)。

例:单摆运动方程小角度近似解引起的误差、伏安法测电阻时电表内阻引起的测量误差。

(3)分类及处理方法:根据误差的符号、绝对值确定与否分类如下:① 已定系统误差---绝对值和符号已经确定的系统误差分量,如零位误差、大气压强计室温下使用引起的误差、伏安法测电阻时电流表内接或外接引起的误差等;这类误差分量一般都要修正。

误差的定义及分类

误差的定义及分类

一、测量误差:测量结果减被测量的真值(测量的期望值)之差。

1)即:测量误差=测量结果-真值;对测量仪器:示值误差=仪器示值-标准示值。

2)测量误差通常通常可用示值的绝对误差、相对误差及引用误差(折合误差)来表示。

3)按照测量误差的基本性质不同,可将误差分为三大类:系统误差、随机误差和疏失误差。

二、约定真值:是一个接近真值的值,它与真值之差可忽略不计。

实际测量中以在没有系统误差的情况下,足够多次的测量值之平均值作为约定真值。

一般由国家基准或当地最高计量标准复现而赋予该特定量的值。

三、标称范围:标称范围是指测量仪器的操纵器件调到特定位置时可得到的示值范围(定值)。

四、精度等级:在正常的使用条件下,仪表测量结果的准确程度叫仪表的准确度。

1)引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围以减小测量误差,精度等级是以它的允许误差占表盘刻度值的百分数来划分的,其精度等级数越大允许误差占表盘刻度极限值越大。

量程越大,同样精度等级的,它测得压力值的绝对值允许误差越大。

2)在工业测量中,为了便于表示仪表的质量,通常用准确度等级来表示仪表的准确程度.准确度等级就是最大引用误差去掉正,负号及百分号.准确度等级是衡量仪表质量优劣的重要指标之一。

3)我国工业仪表等级分为0.1,0.2,0.5,1.0,1.6,2.5,5.0七个等级,并标志在仪表刻度标尺或铭牌上.仪表准确度习惯上称为精度,准确度等级习惯上称为精度等级。

绝对误差:测量结果与被测量[约定]真值(标准表读数)之差。

1)公式:△:绝对误差,L:测量值,A:真值(标准表读数)△= L- A2)绝对误差的缺点:并不能完全表示近似值的好坏程度,例如:x=10±1,y=1000±5,哪一个精度高呢?看上去x的绝对误差限比y的绝对误差限小,似乎x的精度高,其实不然。

四、相对误差:测量的绝对误差与被测量[约定]真值(标准表读数)之比的百分数所得的数值,以百分数表示。

实验数据和误差处理

实验数据和误差处理
-86-
2.精密度:在一组测量中如果数据比较稳定,分散性小,我们就称测量结果是精密的。 测 量(或加工制造或计算)的精密度是由偶然误差来表征和描述的。 偶然误差越小则表示测量 的精密度越高,从而表明测量的重复性就越好。 3.精确度:在测量(或加工制造或计算)中,如果系统误差小,偶然误差也小,则这组测量 的准确度和精密度都越好。这时我们称这组测量的精确度高。所以精确度是由系统误差和偶 然误差两个共同来表征和描述的。
4.或然误差(最可几误差)或然误差的定义为:在一组测量中,若不记正负号,如果 选定一个γ值,则误差大于γ的观测值与误差小于γ的观测值各占总观测次数的 50%这时我 们就把
γ叫做或然误差或最可几误差。也就是说误差落在-γ和+γ之间的观测数占总观测值的一
∫ 半,从下述积分:
Ρ=
1 2π σ

exp[−
偶然误差的特点是有时大有时小,有时正有时负,方向不一定。产生的原因是多方面的, 是无法控制的。但是用同一台仪器在同样条件下对同一物理量作了多次的测量,若测量的次 数足够多,可以发现偶然误差完全服从统计性的规律,出现误差的正负和大小完全由概率来 决定。当测量的次数无限增大时,偶然误差的算数平均值将趋近于零。因此,多次测量结果 的算数平均值将接近真值。 3.过失误差:它是一种显然与事实不符的误差。产生的原因主要是粗枝大叶过度疲劳和操 作不正确等。例如读错刻度值、记录错误、计算错误等。此类误差无规则可寻,可根据经验、 理论及时判断数据的正负、量级是否正确,这样才能消除过失误差。 四.准确度、精密度和精确度 1.准确度:在一组测量中如果系统误差很小,那么可以说测量结果是相当准确的。测量(或 加工制造或计算)的准确度是由系统误差来表征和描述。系统误差越小则表示测量的准确度 越高。

[资料]误差及其表现方法

[资料]误差及其表现方法

误差及其表示方法误差——分析结果与真实值之间的差值( > 真实值为正,< 真实值为负)一. 误差的分类1. 系统误差(systermaticerror )——可定误差(determinateerror)(1)方法误差:拟定的分析方法本身不十分完善所造成;如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分存在等。

(2)仪器误差:主要是仪器本身不够准确或未经校准引起的;如:量器(容量平、滴定管等)和仪表刻度不准。

(3)试剂误差:由于世纪不纯和蒸馏水中含有微量杂质所引起;(4)操作误差:主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。

如滴定管读数总是偏高或偏低。

特性:重复出现、恒定不变(一定条件下)、单向性、大小可测出并校正,故有称为可定误差。

可以用对照试验、空白试验、校正仪器等办法加以校正。

2. 随机误差(randomerror)——不可定误差(indeterminateerror)产生原因与系统误差不同,它是由于某些偶然的因素所引起的。

如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。

特性:有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律)但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布),可用统计学方法来处理系统误差——可检定和校正偶然误差——可控制只有校正了系统误差和控制了偶然误差,测定结果才可靠。

二. 准确度与精密度(一)准确度与误差(accuracy and error)准确度:测量值(x)与公认真值(m)之间的符合程度。

它说明测定结果的可靠性,用误差值来量度:绝对误差 = 个别测得值 - 真实值(1)但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。

如果被称量物质的质量分别为1g和0.1g,称量的绝对误差同样是0.0001g,则其含义就不同了,故分析结果的准确度常用相对误差(RE%)表示:(2)(RE%)反映了误差在真实值中所占的比例,用来比较在各种情况下测定结果的准确度比较合理。

分析化学(误差和分析数据的处理)

分析化学(误差和分析数据的处理)
2 2
S y Sz y z
2
2
23
分析天平称量时,单次的标准偏差为0.10mg,求减 量法称量时的标准偏差。
W W1 W2
2 2 2 S S1 S2 0 . 10 0 . 10 0.14mg 2
3.测量值的极值误差 在分析化学中,若需要估计整个过程可能出现的 最大误差时,可用极值误差来表示。它假设在最 不利的情况下各种误差都是最大的,而且是相互 累积的,计算出结果的误差当 然也是最大的,故称极值误差。
大概率 事件
5
若无明显过失,离群值不可随意舍弃, 常用的取舍检验方法有: (1)Q 检验法 1)将所有测定值由小到大排序, 其可疑值为X1或Xn
x1 , x 2 ,x n
2)求出极差
R X n X1
3)求出可疑值与其最邻近值之差 x2 - x1 或 xn - xn-1
4)求出统计量Q
6
x n x n 1 Q x n x1
5)查临界值QP,n

x 2 x1 Q x n x1
6) 若Q > QP.n,则舍去可疑值,否则应保留。
过失误 差造成
不同置信度下的Q值表
测定次数n 3 4 5 6 7 8 9
偶然 误差 所致 10
Q(90%) Q(95%)
Q(99%)
0.94 0.97
0.99
0.76 0.84
0.93
第一节
一、系统误差
误差
定义:由于某种确定的原因引起的误差,也称
可测误差
特点: 分类:
①重现性
②单向性
③可测性
溶解损失 终点误差
1.方法误差:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、测量误差:测量结果减被测量的真值(测量的期望值)之差。

1)即:测量误差=测量结果-真值;对测量仪器:示值误差=仪器示值-标准示值。

2)测量误差通常通常可用示值的绝对误差、相对误差及引用误差(折合误差)来表示。

3)按照测量误差的基本性质不同,可将误差分为三大类:系统误差、随机误差和疏失误差。

二、约定真值:是一个接近真值的值,它与真值之差可忽略不计。

实际测量中以在没有系统误差的情况下,足够多次的测量值之平均值作为约定真值。

一般由国家基准或当地最高计量标准复现而赋予该特定量的值。

三、标称范围:标称范围是指测量仪器的操纵器件调到特定位置时可得到的示值范围(定值)。

四、精度等级:在正常的使用条件下,仪表测量结果的准确程度叫仪表的准确度。

1)引用误差越小,仪表的准确度越高,而引用误差与仪表的量程范围有关,所以在使用同一准确度的仪表时,往往采取压缩量程范围以减小测量误差,精度等级是以它的允许误差占表盘刻度值的百分数来划分的,其精度等级数越大允许误差占表盘刻度极限值越大。

量程越大,同样精度等级的,它测得压力值的绝对值允许误差越大。

2)在工业测量中,为了便于表示仪表的质量,通常用准确度等级
来表示仪表的准确程度.准确度等级就是最大引用误差去掉正,负号及百分号.准确度等级是衡量仪表质量优劣的重要指标之一。

3)我国工业仪表等级分为,,,,,,七个等级,并标志在仪表刻度标尺或铭牌上.仪表准确度习惯上称为精度,准确度等级习惯上称为精度等级。

绝对误差:测量结果与被测量[约定]真值(标准表读数)之差。

1)公式:△:绝对误差,L:测量值,A:真值(标准表读数)△= L- A
2)绝对误差的缺点:并不能完全表示近似值的好坏程度,例如:x=10±1,y=1000±5,哪一个精度高呢看上去x的绝对误差限比y的绝对误差限小,似乎x的精度高,其实不然。

四、相对误差:测量的绝对误差与被测量[约定]真值(标准表读数)之比的百分数所得的数值,以百分数表示。

1)由于测量值的真值是不可知的,因此其相对误差也是无法准确获知的,我们提到相对误差时,指的一般是相对误差限,即相对误差可能取得的最大值(上限)。

指绝对误差在真实值中所占的百分率。

他是相对于仪表某一点真值(标准表读数)的一种误差。

2)公式:r:相对误差,△:绝对误差,A:真值(标准表读数)r=△/ A%
五、引用误差(折合误差):测量的绝对误差与仪表的满量程值之比,称为仪表的引用误差,它常已百分数表示。

1)引用误差是仪表中通用的一种误差表示方法,他是相对于仪表满
量程的一种误差;引用误差是相对误差的一种特殊形式用满量程值代替了某点真值(标准表读数),在使用上方便了很多,然而实践证明,在仪表测量范围内每个示值的绝对误差都是不同的,因此引用误差仍与仪表的具体示值有关,使用仍不方便;为此又引入了最大引用误差的概念,他既能克服上述不足,又更好的说明了误差的测量精度,所以常被用来确定仪表的精确等级。

2)最大引用误差:在仪表全量程内所测得各示值的绝对误差的最大者与满量程比值之百分数称为仪表的最大引用误差。

3)公式:r0:引用误差,△:绝对误差,A max:测量仪表的上限刻度,A min:测量仪表的下限刻度。

r0=△/ A max- A min%
4)最大引用误差是仪表基本误差的主要形式,他能更可靠的表明仪表的测量精确度,是仪表最主要的质量指标。

六举例:
有一体温计A,其量程为0-50℃,现测量一体温为37℃的人体,其温度指示值为38℃;另有一温度计B,其量程为0-1200℃,炉膛出口烟气为1050℃,而其测量示值为1040℃。

则:
A表:示值绝对误差为△A=38℃-37℃=+1
相对误差为r A=1/37%=+%
引用误差为r0A=1/50-0%=+%
B表:示值绝对误差为△A=1040℃-1050℃=-10℃
相对误差为r A=-10/1050%=-1%
引用误差r0A=-10/1200-0%=%
虽然B表测烟气温度绝对误差大,但其测量结果的质量却较高,即测量的准确度较A表高;另由引用误差也很容易地比较、判断出,B表优于A表,A表可信度较差。

七系统误差:在相同条件下多次重复测量同一被测量时,如果
每次测量值的误差基本恒定不变(绝对值和符号不变),或按某种确定规律变化,这种误差称作系统误差。

八、随机误差(偶然误差):是指在相同条件下多次测量同一被测量时产生的绝对值和符号不可预知的随机变化着的误差。

引起测量结果产生随机误差的原因是由于测量过程中微小且众多的影响因素综合作用的结果。

通常这些因素是人们所不知或因其变化过分微小而无法加以严格控制。

但由于其遵从正态分布规律,故只要重复测量次数足够多,就可通过数学处理得到可信的测量结果。

九疏失误差:是指由于操作人员的操作错误、粗心大意及仪表的误动作等原因而造成的误差。

十回程误差:同一个检定点,上行程与下行程测量过程中的示值之差的绝对值,又叫,变差、回差、滞后误差。

相关文档
最新文档