永磁同步电机性能要求与技术现状分析

合集下载

2023年永磁同步电机行业市场分析现状

2023年永磁同步电机行业市场分析现状

2023年永磁同步电机行业市场分析现状永磁同步电机是一种高效、低噪音、低振动的电机,具有很高的使用价值和广泛的应用前景。

目前永磁同步电机在国内外市场上的需求量逐年增加,市场规模也在不断扩大。

首先,永磁同步电机在传统工业领域的应用非常广泛。

传统工业领域对电机的要求主要是高效、稳定和可靠性能。

永磁同步电机的高效能够有效降低工业设备的能耗,帮助企业降低生产成本。

其稳定的性能和可靠性能够保证工业生产的顺利进行。

因此,在制造业、能源行业、交通运输业、冶金行业等行业中,永磁同步电机的需求量较大。

其次,永磁同步电机在新能源产业中有着广阔的应用前景。

随着全球能源问题的日益突出,新能源产业成为各国重点发展的产业之一。

永磁同步电机以其高效、低能耗的特点,成为新能源产业的重要组成部分。

尤其在风力发电和光伏发电领域,永磁同步电机的需求量大,市场前景广阔。

另外,永磁同步电机在电动汽车行业中具有巨大的市场潜力。

随着环保意识的提高以及能源危机的加剧,电动汽车作为新一代的交通工具受到越来越多人的关注。

永磁同步电机作为电动汽车的核心驱动装置,其高效、低噪音的特点符合电动汽车的要求。

因此,永磁同步电机在电动汽车行业的市场需求量也在逐年增加。

此外,科技的不断进步也为永磁同步电机市场的发展提供了有力支持。

随着磁性材料的不断改进和磁力学理论的不断完善,永磁同步电机的性能不断得到提高。

相应的,永磁同步电机的成本也在逐渐下降,使得更多的企业和个人能够购买和使用永磁同步电机。

总之,当前永磁同步电机行业市场呈现出需求量大、市场前景广阔的特点。

在传统工业领域、新能源产业、电动汽车行业等领域都有着广泛的应用。

而且随着科技的进步和成本的降低,永磁同步电机市场还有望进一步扩大。

因此,永磁同步电机行业具有很大的发展潜力,值得关注和投资。

2024年永磁式同步电动机市场前景分析

2024年永磁式同步电动机市场前景分析

2024年永磁式同步电动机市场前景分析引言永磁式同步电动机是一种新型的电动机,具有高效率、高可靠性和低噪音等优点,因此在电动车、工业自动化等领域得到广泛应用。

本文将对永磁式同步电动机市场前景进行详细分析。

市场规模及趋势据统计数据显示,永磁式同步电动机市场自从近几年开始飞速发展。

预计到2025年,全球永磁式同步电动机市场规模将达到xx亿美元。

这一市场规模的增长主要受到电动车市场的推动,特别是电动汽车的广泛普及。

优势与应用领域永磁式同步电动机具有以下优势: - 高效率:相比传统的感应电动机,永磁式同步电动机具有更高的能量利用率,能够降低能源消耗。

- 高性能:永磁材料的应用使得同步电动机具有较大的磁场强度和扭矩密度,适用于高负载和高速应用。

- 低噪音:永磁式同步电动机的转子结构简单,摩擦和噪音较低。

- 高可靠性:永磁材料具有较好的稳定性和耐磨损性,提高了电动机的可靠性和使用寿命。

永磁式同步电动机广泛应用于以下领域: 1. 电动汽车:电动汽车的快速发展将直接推动永磁式同步电动机市场的增长。

2. 工业自动化:永磁式同步电动机在工业领域中应用广泛,如机床、风力发电机组等领域。

3. 家电领域:永磁式同步电动机在家电领域的应用正在逐渐增加,如洗衣机、热水器等。

挑战与发展趋势然而,永磁式同步电动机市场仍然面临一些挑战: 1. 永磁材料价格波动:永磁材料的价格波动较大,对永磁式同步电动机制造商造成不小的压力。

2. 竞争加剧:随着市场规模的不断扩大,永磁式同步电动机市场竞争日趋激烈,厂商之间的竞争变得更加激烈。

3. 环保要求增加:随着环保意识的增强,对电动机的能效要求不断提高,这也对永磁式同步电动机的技术提出了更高的要求。

然而,尽管面临一些挑战,永磁式同步电动机市场仍然具有较大的发展潜力。

未来的发展趋势主要有: 1. 技术创新:永磁式同步电动机制造商将继续进行技术创新,以提高电机的性能和效率。

2. 成本降低:随着永磁材料价格的稳定,电动机制造商将通过规模化生产和工艺改进等方式降低成本。

永磁电机的研究现状与发展趋势

永磁电机的研究现状与发展趋势

永磁电机的研究现状与发展趋势永磁电机是一种以永磁体为磁场源,通过永磁磁场与线圈产生的磁场之间的相互作用来实现转动的电机。

与传统的电机相比,永磁电机具有结构简单、效率高、功率密度大、响应快、维护简单等特点,被广泛应用于各个领域。

本文将介绍永磁电机的研究现状与发展趋势。

一、永磁电机的研究现状永磁电机的研究始于20世纪70年代,随着磁性材料研究及现代微电子技术的发展,永磁电机得到了迅速发展。

近年来,随着新能源、能源节约与环保理念的不断提出与推广,永磁电机又进入了一个快速发展的时期。

各国在永磁电机的研究方面取得了不同程度的成果,下面将从设计技术、控制技术、应用领域等方面介绍永磁电机的研究现状。

1.设计技术(1)结构设计:在永磁电机的结构设计方面,目前主要分为和式电机和差式电机两种类型。

和式电机是指永磁体和线圈磁极呈现出相同数量和分布的电机结构,如平面直流电动机、径向通用电机等;差式电机则是永磁体和线圈磁极数目及分布不同的电机结构,如磁悬浮轴承驱动电机、直线电机等。

(2)永磁材料:目前常用的永磁材料主要有钕铁硼永磁材料、钴钴磁钕永磁材料、铁氧化物永磁材料等。

其中,钕铁硼永磁材料具有高矫顽力、高能量积等特点,因此应用最为广泛。

(3)电流密度分布:在电流密度分布方面,永磁电机分为两种基本类型:分布式永磁电机和集中式永磁电机。

分布式永磁电机的磁极和线圈的磁场相互作用更加均匀,但是转子制造工艺复杂;集中式永磁电机的磁体制作简单,但是转子制造成本较高。

2.控制技术控制技术是永磁电机研究中的核心问题之一,其发展直接影响到永磁电机在不同场合下的应用效果。

目前,永磁电机常用的控制技术有以下几种:(1)矢量控制技术:矢量控制技术是目前较为成熟的永磁电机控制技术之一,能够实现永磁电机的高效控制,使永磁电机得到充分利用。

(2)直接转矩控制技术:直接转矩控制技术将电流向量分解为电磁向量和电势向量,通过调节电磁向量的大小来控制永磁电机的转矩。

永磁同步电动机的研究及输出特性分析

永磁同步电动机的研究及输出特性分析

永磁同步电动机的研究及输出特性分析永磁同步电动机是一种新型电机,它将现代电子技术、电机技术和材料技术相结合,具有高效、高功能、小体积、轻质量、低噪音、无电磁干扰等特点,目前已成为应用于电动车、电机车、电动自行车、风力发电、太阳能光伏发电等领域最受欢迎的电机之一。

而永磁同步电动机的性能也是使用者关注的重点。

以下文章将从永磁同步电动机的研究和输出特性分析两个方面来探讨这个话题。

一、永磁同步电动机的研究(一)磁路分析永磁同步电动机的磁路是它的核心。

永磁同步电机的磁路是由永磁体、定子铁心、转子铁心共同组成的。

电机的磁路有两种方式,即饱和磁路和线性磁路。

饱和磁路是电流越大磁势越大,磁阻越小,导致磁通量增长趋于平缓的情况。

而线性磁路则是不受其它因素影响的磁通量变化。

在永磁同步电动机中,饱和磁路与线性磁路并存。

在电机工作的过程中,由于更换相序以及磁路的磁滞和饱和等现象,平衡条件不能被满足。

(二)电磁分析永磁同步电动机的电磁分析是实现高效、高性能的关键。

在永磁同步电机中,电磁部分的建模是一项非常重要的工作。

为了实现对电机的性能进行可靠预测,必须建立起一组有关电机的方程模型,包括电磁、热力学、建模以及计算分析等方面。

对于实际工程问题,这些模型可以通过ANSYS Maxwell和Fluent来实现。

此外,为了让永磁同步电机具备高性能和高效能,选择合适的永磁体及适当的电机参数值是非常重要的。

(三)控制策略在永磁同步电动机中,控制策略是让电机实现高效性和高性能的关键。

电机的控制主要分为转速控制和转矩控制两种方式。

对于永磁同步电机,常见的控制方式有矢量控制和直接转矩控制等方式。

其中矢量控制通过改变电机的电路和电机参数控制电机工作状态,是一种更为高级的控制方式。

而直接转矩控制方式则直接控制电机转矩大小,更适合于一些实时控制。

二、永磁同步电动机的输出特性分析(一)输出特性介绍输出特性是永磁同步电机的一个重要性能指标。

它仅通过设计选择参量来实现,在工作中无法改变,所以它是永磁同步电机的固有品质。

2024年电动汽车永磁同步电机市场发展现状

2024年电动汽车永磁同步电机市场发展现状

电动汽车永磁同步电机市场发展现状摘要本文旨在探讨电动汽车永磁同步电机市场的发展现状。

首先介绍了永磁同步电机的基本原理和特点。

然后分析了当前电动汽车市场的发展趋势和驱动因素。

接着,从市场规模、竞争格局、技术创新等方面综述了电动汽车永磁同步电机市场的现状。

最后对未来的发展进行了展望。

1. 引言随着环保意识的增强以及能源结构的调整,电动汽车正逐渐成为替代传统汽车的主流选择。

在电动汽车的动力系统中,永磁同步电机作为一种高效、节能的驱动器件,具有重要的地位。

本文将探讨电动汽车永磁同步电机市场的发展现状。

2. 永磁同步电机的基本原理和特点永磁同步电机是一种将直流电能转化为机械能的电动机。

它根据永磁体和定子绕组之间的磁场相互作用产生转矩。

与传统的异步电机相比,永磁同步电机具有高效率、高功率密度、高转矩密度、快速响应等特点。

3. 电动汽车市场的发展趋势和驱动因素3.1 市场规模扩大随着电动汽车的普及和政府对环保政策的支持,电动汽车市场规模不断扩大。

不仅传统汽车制造商纷纷推出电动汽车产品,还涌现出很多初创企业投身于电动汽车领域。

3.2 能源环境政策的引导各国政府对传统燃油车的限制以及对新能源汽车的鼓励政策,推动了电动汽车市场的发展。

例如,一些国家出台了购车补贴、免费停车、免费充电等政策,吸引了消费者对电动汽车的关注。

3.3 技术创新的推动电动汽车技术的不断创新也是驱动市场发展的重要因素。

随着电池技术及充电设施的改进,电动汽车的续航里程和充电速度得到了极大提升,提高了消费者对电动汽车的信心。

4. 电动汽车永磁同步电机市场的现状4.1 市场规模电动汽车永磁同步电机市场近年来呈现出快速增长的趋势。

据统计,2019年全球电动汽车永磁同步电机市场规模达到XX亿美元,预计未来还将继续保持较高的增长率。

4.2 竞争格局当前,电动汽车永磁同步电机市场存在着一定的竞争。

主要的竞争者包括传统汽车制造商、电机厂商和初创企业。

随着市场的扩大,竞争将进一步加剧。

「分析」永磁电机目前拥有的成熟技术和发展方向

「分析」永磁电机目前拥有的成熟技术和发展方向

「分析」永磁电机目前拥有的成熟技术和发展方向随着20世纪70年代稀土永磁材料的发展,稀土永磁电机得到广泛认可和推崇。

它励磁性能优异、稳定、损耗低、质量轻、功率密度大,远远优于传统电机。

近年来,稀土电磁材料性能及工艺再上新台阶,电力电子与电力传动技术、自动控制技术高速发展,永磁同步电机性能得以更加改善。

永磁同步电机的技术及发展现状1 永磁同步电机的发展基础① 高性能稀土永磁材料的应用现今使用最广的稀土永磁材料以钕铁硼为代表。

永磁材料的发展带动了永磁电机的发展。

与传统电励磁三相感应电机相比,永磁体替代了电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积,提高了电机功率密度、转矩密度和工作效率。

② 新型控制理论的应用矢量控制算法从原理上解决了交流电机的驱动策略问题,使得交流电机具有良好的控制性能。

直接转矩控制的出现使控制结构更加简单,以及具有对参数变化电路棒性能强和转矩动态响应速度快的特点。

间接转矩控制技术解决了直接转矩在低速时转矩脉动大的问题,提高了电动机的转速和控制精度。

③ 高性能电力电子器件和处理器的应用现代电力电子技术是信息产业与传统产业间重要的接口,是弱电与被控强电之间的桥梁。

电力电子技术的发展使驱动控制策略得以实现。

比如20世纪70年代出现的通用变频器系列产品,它们能将工频电源转换成频率连续可调的变频电源,就解决了同步电动机的启动问题。

2 国内外永磁同步电机的发展现状近年来,在永磁同步电机本体上出现了很多高端电机,比如六相永磁同步电动机。

用它为舰船提供动力,其体积比传统的直流电机小近60%,损耗降低近20%;用于舰船推进的永磁同步电动机最大安装容量达38MW;我国已经研制出的3MW高速度永磁风力发电机。

现在的永磁同步电机正向着拥有更大的调速范围和更高的精度控制发展,具有高性能的永磁材料得到青睐。

现阶段的永磁同步电动机技术1 永磁同步电机设计技术内置式永磁电机具有效率高、功率因数大、单位功率密度大、弱磁扩速能力强和动态响应速度快等优点,成为驱动电机的理想选择。

永磁同步电机性能分析

永磁同步电机性能分析

永磁同步电机性能分析摘要:在永磁同步电机的设计制作中,时刻都要关注降低电机损耗,提高电机运行的效能。

关键词:永磁同步电机;性能;分析;首先我们看电机的损耗,在已知电机参数电阻R1、X1、X ad、X aq和E0的情况下,就可以计算不同功角下永磁同步电机的性能。

1 绕组计算绕组直流电阻式中电阻率为式中α为铜材半导体电阻的温度变化系数,铜材电阻α≈0.004/。

C。

计算绕组损耗时,要考虑折算到相应的基准工作温度。

一般在75。

C。

考虑集肤效应,绕组交流电阻应为式中k1r为电枢绕组的集肤效应系数。

用圆导线双线并绕的定子电枢绕组,输入工频电流时电枢绕组铜损耗2 电枢铁损耗式中p t1d、p j1d可以根据磁密查系数和铁芯的损耗系数曲线计算得到;v t1、v j1定子齿部和铁芯共轭部的体积;k1和k2为考虑由于机械加工和磁场的分布不均匀等原因而引进的损耗系数,小型电机k1=2.5,k2=2.0。

3.杂散损耗杂散作用产生的辐射损耗主要原因是由于在电磁场的高次杂散作用谐波和电磁铁芯中的开槽谐波引起的高次杂散及该谐波在电磁铁芯中高次杂散作用产生的电磁能量辐射损耗,计算困难且不准确。

常用到的经验函数计算公式:4.机械损耗机械损耗p fw是风摩损耗。

小型永磁电机,参考感应电机的经验公式计算。

接着,我们看电磁转换。

1.给定功角θ2.已知U、E0、R1、X1、Xd、Xq直轴电流Id交轴电流I q3.计算功率因素4.确定气隙磁通5.输出功率和效率计算电磁功率和功角特性1.输入功率2.电磁功率只考虑主要损耗定子绕组的电阻r1较小,忽略其影响,电磁绕组的功率为3.电磁转矩将上式两端同除以机械转矩的夹角速度ω,得电磁转矩下面,我们研究影响电机性能的因素。

由上式可以看出:异步起动永磁牵入同步电机的功率和电磁转矩由上式第一项永磁转矩和上式第二项磁阻转矩两个组成部分共同构成,磁阻转矩的功率和大小直接影响电机永磁牵入起动的同步,由上式第二项可以很清楚地看出磁阻转矩的大小是由电机的交轴和直轴电抗之间的x q、x d的倒数差大小决定的。

永磁同步电机控制系统发展现状及趋势

永磁同步电机控制系统发展现状及趋势

永磁同步电机控制系统发展现状及趋势摘要:永磁同步电机具有高功率密度、高效率和高可靠性等优点,在现代工业中应用广泛,相关控制理论得到了长远发展。

基于此,本文总结梳理了永磁同步电机控制系统的发展现状,然后论述了各控制系统的特点,最后展望了基于滑模控制的永磁同步电机控制系统的发展趋势,以期为未来永磁同步电机控制系统的进一步发展提供参考。

关键词:永磁同步电机;控制系统;发展现状;滑模控制;发展趋势引言:自永磁同步电机诞生以来,因其具有一系列优异特性,得到了广泛研究,同时伴随着永磁材料和半导体器件的发展,永磁同步电机获得了长足发展。

同时,随着相关控制理论的发展,永磁同步电机控制系统也随之进化,控制精度越来越高。

因而在现代工业中,永磁同步电机广泛应用于国民经济、航空航天等众多领域,发挥着重要作用。

相应的,随着技术产品的发展,对永磁同步电机的控制精度要求越来越高,故将各种先进控制方法应用的永磁同步电机的研究也不断涌现。

1永磁同步电机发展概况永磁同步电机与其他电动机最大不同之处在于励磁电流是依靠永磁体产生。

因此永磁同步电机具有以下优势[1]:(1)采用永磁材料,高速运行过程中发热少,避免了电机工作时转子发冷却难的问题,同时寿命也得到了提高;(2)永磁同步电机功率更高,可以达到97%左右;(3)永磁同步电机功率密度更高,在较小尺寸下即可实现较高的功率和转矩。

1.1永磁同步电机发展历史永磁同步电机的发展可总结为三个阶段[2]:(1)20世纪六七十年代,这个阶段由于稀土材料未得到充分开发,价格昂贵,导致永磁同步电机成本高昂,仅在航空航天等高要求行业得到应用;(2)20世纪八十年代,随着价格稍低的铅铁硼永磁材料的出现和电子控制技术的逐步成熟,永磁同步电机成本降低,同时控制相对容易实现,因而也逐步应用于民用领域;(3)自20世纪九十年代至今,伴随着永磁材料价格的降低、电力电子技术和微处理器技术的发展,永磁同步电机的驱动系统研发应用也得到了明显发展,应用领域进一步扩大,尤其是近十年,永磁同步电机已经成为国民经济中电机驱动系统的第一选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。

永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。

永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。

作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。

根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是:
( 1)体积小、重量轻; 有较高的功率和转矩密度;
( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率;
( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。

永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。

但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。

目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。

1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。

2)提高电机转矩特性
电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。

1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。

早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。

控制命令中直轴电流设为 0, 从而实现最大转矩控制。

随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。

id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。

目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。

2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。

另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何
提高电机的效率。

目前, 国内外很多研究部门对永磁同步电机的控制策略进行了研究。

新加坡理工大学电气学院研究的永磁同步电机控制策略低速时通过恒转矩控制模块计算出产生转矩所需直轴和交轴电流的大小, 进行恒转矩控制; 高速时运行于弱磁控制模式, 根据直轴和交轴电流的参考值计算所需的电枢电流大小。

日本大阪大学通过控制电枢电流的直轴成分减小电机的损耗, 从而提高电机的效率。

通过对不同参数的电机进
行仿真, 结果表明利用直轴电流的弱磁效应可以提高电机的效率。

3.提高输出转矩
日本电机工程研究实验室与其它公司合作推出采用双层永磁体的内置式永磁同步电机, 提高了电机的交轴电导, 使电机转矩增加 10 %, 最大效率区增 10 %, 最大峰值
效率可达 97 %以上, 主要运行区域效率可大于 93 %。

4.降低转矩脉动
在抑制转矩脉动方面, 通常通过对电机结构进行优化设计来实现。

例如: 采用不均匀气隙, 在转子上分布圆形孔洞, 优化定子齿形, 优化磁极形状等等。

图 2为一种新型
永磁体形状设计。

磁桥宽度保持不变, 随着角度 H变小, 转矩脉动和齿槽转矩减小。

3)提高弱磁扩速能力
弱磁控制可以实现永磁同步电动机在低速时能输出恒定转矩, 高速时能输出恒定功率, 有较宽的调速范围。

较弱的弱磁性能能够在逆变器容量不变的情况下提高系统性能; 或者说在保持系统性能不变的前提下降低电机的最大功率, 从而降低逆变器的容量。

因此对永磁同步电动机进行弱磁控制并且拓宽弱磁范围有着重要的意义。

为了提高电机效率、扩大电机的弱磁能力, 国内外提出了许多弱磁设计方案: 其中代表性的主要有:
( 1)定子采用深槽结构: 通过采用深槽结构增加直轴漏杭, 从而增加电机的弱磁能力。

日本人采用这种方法设计出的样机最高速度可达13 000 r/min。

但采用这种方法高速铁耗比较大。

日本电机采用了高性能低饱和硅钢片, 采用普通的硅钢片材料设计效果不会很好。

( 2)复合转子结构: 复合式转子由永磁段和轴向层叠磁阻段组成, 两者同轴置于同
一定子铁心内。

可以对这两部分进行独立设计, 磁阻段用于控制电机直、交轴电抗参数, 以获得需要的凸极比。

这种结构可以增大电机的直轴电抗, 扩大电机的转速范围。


这种结构会使转矩密度降低 , 高速时铁磁损耗很大。

( 3)交替极结构永磁电机: 这种电机的定子由叠片铁心、铁轭以及 3相绕组组成; 沿圆周的直流绕组被放置在定子铁心的中间。

转子极分为两部分:一部分放径向磁化的
永磁体, 一部分为铁极结构。

该结构容易实现弱磁控制, 但直流绕组的引入减小了功率密度, 对空间体积的要求也增加了。

( 4)双套定子绕组: 低速时采用低速绕组提高电机的转矩、降低电流从而提高电机的效率, 高速时采用高速绕组降低电机的反电势扩大电机的高速运行范围。

美国技术公司就采用了这项技术。

沈阳工业大学和香港大学也对这项技术进行了研究。

香港大学通过实验证明采用双套绕组后永磁同步电机的最高转速可由 2 000 r /mi n 扩大到 4 500 r /min以上。

相关文档
最新文档