永磁同步电机与异步电机性能比较

永磁同步电机与异步电机性能比较
永磁同步电机与异步电机性能比较

永磁同步电机与异步电

机性能比较

集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

永磁同步电机与异步电机性能比较

永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显着,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。

1. 效率及功率因素

异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效

率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P

2/P

n

)<50%

时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济

区内运行,即负载率在75%-100%之间。

(a) η--( P2/P n)

(b) ?

cos--( P2/P n)

图1 永磁同步电动机与异步电动机的效率和功率因数

1. 异步起动永磁同步电动机

2.异步电动机

永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子

电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无

感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.

从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%.

2. 起动转矩

异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。

永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。

3. 工作温升

由于异步电机工作时,转子绕组有电流流动,而这个电流完全以热能的形式消耗掉,所以在转子绕组中将产生大量的热量,使电机的沮度升高,影响了电机的使用寿命。

由于永磁电机效率高,转子绕组中不存在电阻损耗,定子绕组中较少有或几乎不存在无功电流,使电机温升低,延长了电机的使用寿命。4.对电网运行的影响

因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网、翰变电设备及发电设备中有大量无功电流,进而使电网

的品质因数下降,加重了电网及枪变电设备及发电设备的负荷,同时无功电流在电网、翰变电设备及发电设备中均要消耗部分电能,造成电力电网效率变低,影晌了电能的有效利用。同样由于异步电机的效率低,要满足翰出功率的耍求,势必要从电网多吸收电能,进一步增加了电两能量的损失,加重了电网负荷。

在永磁电机转子中无感应电流励班,电机的功率因数高,提高了电网的品质因数,使电网中不再需安装补偿器。同时,因永磁电机的高效率,也节约了电能。

永磁同步电机与异步电机性能比较

永磁同步电机与异步电机性能比较 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素 异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/P n)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。 (a) η--( P2/P n) (b) ? cos--( P2/P n) 图1 永磁同步电动机与异步电动机的效率和功率因数 1. 异步起动永磁同步电动机 2.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率

4%~50%。由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%. 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升 由于异步电机工作时,转子绕组有电流流动,而这个电流完全以热能的形式消耗掉,所以在转子绕组中将产生大量的热量,使电机的沮度升高,影响了电机的使用寿命。 由于永磁电机效率高,转子绕组中不存在电阻损耗,定子绕组中较少有或几乎不存在无功电流,使电机温升低,延长了电机的使用寿命。 4.对电网运行的影响 因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网、翰变电设备及发电设备中有大量无功电流,进而使电网的品质因数下降,加重了电网及枪变电设备及发电设备的负荷,同时无功电流在电网、翰变电设备及发电设备中均要消耗部分电能,造成电力电网效率变低,影晌了电能的有效利用。同样由于异步电机的效率低,要满足翰出功率的耍求,势必要从电网多吸收电能,进一步增加了电两能量的损失,加重了电网负荷。 在永磁电机转子中无感应电流励班,电机的功率因数高,提高了电网的品质因数,使电网中不再需安装补偿器。同时,因永磁电机的高效率,也节约了电能。

永磁同步电机的原理及结构

. . . . 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

同步电机与异步电机的概念、区别及应用前景

异步电机与同步电机的控制原理,应用领域 和研究热点 班级: 学号: 姓名:

同步电机,和感应电机一样是一种常用的交流电机。特点是:稳态运行时,转子的转速和电网频率之间有不变的关系n=ns=60f/p,ns称为同步转速。若电网的频率不变,则稳态时同步电机的转速恒为常数而与负载的大小无关。同步电机分为同步发电机和同步电动机。现代发电厂中的交流机以同步电机为主。 工作原理 励磁绕组通以直流励磁电流,建立极性相间的励磁磁场,即建立起主磁场 运行方式 同步电机的主要运行方式有三种,即作为发电机、电动机和补偿机运行。作为发电机运行是同步电机最主要的运行方式,作为电动机运行是同步电机的另一种重要的运行方式。同步电动机的功率因数可以调节,在不要求调速的场合,应用大型同步电动机可以提高运行效率。近年来,小型同步电动机在变频调速系统中开始得到较多地应用。同步电机还可以接于电网作为同步补偿机。这时电机不带任何机械负载,靠调节转子中的励磁电流向电网发出所需的感性或者容性无功功率,以达到改善电网功率因数或者调节电网电压的目的。

永磁同步电机的调速主要通过改变供电电源的频率来实现。目前常用的变频调速方式有转速闭环恒压频比控制(v/f)、转差频率控制、基于磁场定向的矢量控制(Vector Control)以及直接转矩控制(Direct Torque Control)。 1.转速闭环恒压频比控制 转速闭环恒压频比控制是一种最常用的变频调速控制方法。该方法是通过控制V/f恒定,使磁通保持不变,并以控制转差频率来控制电机的转矩和转速。这种控制方法低速带载能力不强,须对定子压降实行补偿,因该控制方法只控制了电机的气隙磁通,不能调节转矩,故性能不高。但该方法由于实现简单、稳定可靠,调速方便,所以在一些对动态性能要求不太高的场合,如对通风机、水泵等的控制,仍是首选的方法。 2.转差频率控制 转差频率控制的突出优点就在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加后得到的,这样,在转速变化过程中,实际频率随着实际转速同步地上升或者下降。尽管转差频率控制能够在一定程度上控制电机转矩 3.矢量控制 矢量控制框图如图2 所示。 1971 年,西门子工程师Balschke 首次提出矢量控制理论,使交流电机控制理论获得了一次质的飞跃。其基本思想为:以转子磁链旋转空间矢量为参考坐标,将定子电流分解为相互正交的两个分量,一个与磁链同方向,代表定子电流励磁分量,另一个与磁链方向正交,代表定子电流转矩分量,分别对它们进行控制,获得像直流电动机一样良好的动态特性。因其控制结构简单,控制软件实现较容易,已被广泛应用到调速系统中。但矢量控制方法在实现时要进行复杂的坐标变换,并需准确观测转子磁链,而且对电机的参数依赖性很大,难以保证完全解耦,使控制效果大打折扣。

极槽配合对永磁同步电机性能的影响_新

极槽配合对永磁同步电机性能的影响 摘要:永磁同步电机由于具有结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠等特点,在家用电器、医疗器械和汽车中得到广泛使用。永磁同步电机的齿槽转矩会引起输出转矩的脉动和噪声,不平衡径向电磁力则是电机的主要噪声源。本文着重研究极槽配合对永磁同步电机性能的影响,主要包括齿槽转矩和径向电磁力两个方面。详细介绍了齿槽转矩和径向电磁力的相关原理,并通过仿真对8极9槽和8极12槽两种极槽配合的电机进行分析比较,验证了相关的理论的正确性,最后得出电机设计中应综合考虑齿槽转矩、径向电磁力等相关因素合理选择极槽配合。 关键词:极槽配合;齿槽转矩;永磁同步电机;径向力 Influence of Pole-Slot Combination on The Performance of Permanent Magnet Synchronous Motor Abstract: Permanent magnet synchronous motor has simple structure, small volume, high efficiency, high power factor, small moment of inertia, strong overload capacity, reliable operation, widely used in household appliances, medical equipment and vehicles. Cogging torque will cause output torque ripple and noise of PMSM ,And unbalanced radial electromagnetic force is the main reason of noise of motor. In this paper,we focuses on the research of pole-slot combination effects on the performance of PMSM, including two aspects:the cogging torque and radial electromagnetic force. The relevant principles of the cogging torque and radial electromagnetic force were introduced in detail, and through the simulation of 8 poles 9 slots and 8 poles 12 slots motors,the two kinds of pole-slot combination motor were analyzed and compared, verified the related theory.Finally, we conclude that the cogging torque and radial electric force and so on related factors should be considered into the motor design when selecting reasonable pole-slot combination. Key words: pole-slot combination; cogging torque;PMSM; radial force 1引言 永磁同步电机结构简单、体积小、效率高、功率因数高、转动惯量小、过载能力强,运行可靠,且其调速性能优越,克服了直流伺服电动机机械式换向器和电刷带来的一系列限制[1]。永磁同步电机在家用电器、医疗器械和汽车中得到广泛使用。随着永磁材料性能的不断提高,永磁电机越来越广泛地应用于高性能、

永磁同步电机特点

永磁同步电动机的分类和特点 一,永磁同步电动机的特点 永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。 二,永磁同步电动机的分类 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法

上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。 永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能有所不同。 三无刷直流电动机(BLDCM) 1,BLDCM研究现状 永磁无刷直流电动机与传统有刷直流电动机相比, 是用电子换向取代 原直流电动机的机械换向, 并将原有刷直流电动机的定转子颠倒(转子采用永磁体)从而省去了机械换向器和电刷,其定子电流为方波, 而且控制较简单, 但在低速运行时性能较差, 主要是受转矩脉动的影响。 引起转矩脉动的因素很多, 主要有以下原因: (1)电枢反应引起的转矩脉动 减弱或克服这种原因造成转矩脉动采用的方法是适当增大气隙, 设计 磁路时使电机在空载时达到足够饱和, 以及电机选择瓦形或环形永磁 体径向励磁结构等。 (2)电流换相引起的转矩脉动

如何区分异步电机和同步电机

异步电机(感应电机)的工作原理是通过定子的旋转磁场在转子中产生感应电流,产生电磁转矩,转子中并不直接产生磁场.因此,转子的转速一定是小于同步速的(没有这个差值,即转差率,就没有转子感应电流),也因此叫做异步电机. 而同步电机转子本身产生固定方向的磁场(用永磁铁或直流电流产生),定子旋转磁场"拖着"转子磁场(转子)转动,因此转子的转速一定等于同步速,也因此叫做同步电机. 作为电动机时,大部分是用异步机;发电机都是同步机。 同步电机和异步电机的区别三相交流电通过一定结构的绕组时,要产生旋转磁场.在旋转磁场的作用下,转子随旋转磁场旋转.如果转子的转速同旋转磁场的转速完全一致,就是同步电机;如果转子的转速小于磁场转速,也就是说两者不同步,就是异步电机.异步电机结构简单,应用广泛.同步电机要求转子有固定的磁极(永磁或电磁),如交流发电机和同步交流电动机. 电机的转速(定子转速)小于旋转磁场的转速,从而叫为异步电机。它和感应电机基本上是相同的。s=(ns-n)/ns。s为转差率, ns为磁场转速,n为转子转速。 基本原理:(1)当三相异步电机接入三相交流电源时,三相定子绕组流过三相对称电流产生的三相磁动势(定子旋转磁动势)并产生旋转磁场。 (2)该旋转磁场与转子导体有相对切割运动,根据电磁感应原理,转子导体产生感应电动势并产生感应电流。 (3)根据电磁力定律,载流的转子导体在磁场中受到电磁力作用,形成电磁转矩,驱动转子旋转,当电动机轴上带机械负载时,便向外输出机械能。 特点: 优点:结构简单,制造方便,价格便宜,运行方便。 缺点:功率因数滞后,轻载功率因数低,调速性能稍差。 主要做电动机用,一般不做发电机! 异步电机是一种交流电机,其负载时的转速与所接电网的频率之比不是恒定关系。异步电机包括感应电机、双馈异步电机和交流换向器电机。感应电机应用最广,在不致引起误解或混淆的情况下,一般可称感应电机为异步电机。 普通异步电机的定子绕组接交流电网,转子绕组不需与其他电源连接。因此,它具有结构简单,制造、使用和维护方便,运行可靠以及质量较小,成本较低等优点。异步电机有较高的运行效率和较好的工作特性,从空载到满载范围内接近恒速运行,能满足大多数工农业生产机械的传动要求。异步电机还便于派生成各种防护型式,以适应不同环境条件的需要。异步电机运行时,必须从电网吸取无功励磁功率,使电网的功率因数变坏。因此,对驱动球磨机、压缩机等大功率、低转速的机械设备,常采用同步电机。由于异步电机的转速与其旋转磁场

同步电机与异步电机区别说的非常好修订稿

同步电机与异步电机区别说的非常好 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

一、同步电机和异步电机在设计上的不同: ①同步与异步的最大区别就在于看他门的转子速度是不是与定子旋转的磁场速度一致,如果转子的旋转速度与定子是一样的,那就叫同步电动机,如果不一致,就叫异步电动机。。。 ②当极对数一定时,电机的转速和频率之间有严格的关系,用电机专业术语说,就是同步。异步电机也叫感应电机,主要作为电动机使用,其工作时的转子转速总是小于同步电机。 ③所谓“同步”就是电枢(定子)绕组流过电流后,将在气隙中形成一旋转磁场,而该磁场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。 异步电机的话,其旋转磁场与转子存在相对转速,即产生转距。 二、为什么会同步,为什么会不同步呢? 同步电机和异步电机的定子绕组是相同的,主要区别在于转子的结构。同步电机的转子上有直流励磁绕组,所以需要外加励磁电源,通过滑环引入电流;而异步电机的转子是短路的绕组,靠电磁感应产生电流。相比之下,同步电机较复杂,造价高。 同步和异步电机均属交流动力电机,是靠50Hz交流电网供电而转动。异步电机是定子送入交流电,产生旋转磁场,而转子受感应而产生磁场,这样两磁场作用,使得转子跟着定子的旋转磁场而转动。其中转子比定子旋转磁场慢,有个转差,不同步所以称为异步机。而同步电机定子与异步电机相同,但其转子是人为加入直流电形成不变磁场,这样转子就跟着定子旋转磁场一起转而同步,始称同步电机。 简单的说就是:异步电机的转子上没加直流励磁电流,同步电机的转子上加了一个直流励磁电流使转子的转速与定子与转子切割产生的磁场转速一致。 三、同步发电机转子为什么要通入直流励磁电流,而不通入交流励磁电流? 按工频50HZ考虑,转子通入直流励磁电流,可在定子绕组中感应出50HZ电势。 转子通入交流励磁电流后,可分解为正向与反向两个旋转磁场,正向旋转磁场旋转速度与转子旋转速度迭加,在定子绕组中感应出100HZ电势;反向旋转磁

永磁同步异步电机的性能,你知道多少

永磁同步/异步电机的性能,你知道多少? 时间:2017-03-18 06:25:32 来源:空压机网性质:转载作者:空压机网【推荐给朋友】 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显著,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素

异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P2/Pn)<50%时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济区内运行,即负载率在75%-100%之间。

图为永磁同步电动机与异步电动机的效率和功率因数 a. 异步起动永磁同步电动机 b.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载 率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%。 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升

永磁同步电机的原理及结构

完美格式整理版 第一章永磁同步电机的原理及结构 1.1永磁同步电机的基本工作原理 永磁同步电机的原理如下在电动机的定子绕组中通入三相电流,在通入电流后就会在电动机的定子绕组中形成旋转磁场,由于在转子上安装了永磁体,永磁体的磁极是固定的,根据磁极的同性相吸异性相斥的原理,在定子中产生的旋转磁场会带动转子进行旋转,最终达到转子的旋转速度与定子中产生的旋转磁极的转速相等,所以可以把永磁同步电机的起动过程看成是由异步启动阶段和牵入同步阶段组成的。在异步启动的研究阶段中,电动机的转速是从零开始逐渐增大的,造成上诉的主要原因是 其在异步转矩、永磁发电制动转矩、 矩起的磁阻转矩和单轴转由转子磁路不对称而引等一系列的因素共同作用下而引起的,所以在这个过程中转速是振荡着上升的。在起 动过程中,质的转矩,只有异步转矩是驱动性电动机就是以这转矩来得以加速的,其 他的转矩大部分以制动性质为主。在电动机的速度由零增加到接近定子的磁场旋转转速时,在永磁体脉振转矩的影响下永磁同步电机的转速有可能会超过同步转速,而出现转速的超调现象。但经过一段时间的转速振荡后,最终在同步转矩的作用下而被牵入同步。 1.2永磁同步电机的结构 永磁同步电机主要是由转子、端盖、及定子等各部件组成的。一般来说,永磁 同步电机的最大的特点是它的定子结构与普通的感应电机的结构非常非常的相似,主要是区别于转子的独特的结构与其它电机形成了差别。和常用的异步电机的最大不同则是转子的独特的结构,在转子上放有高质量的永磁体磁极。由于在转子上安放永磁体的位置有很多选择,所以永磁同步电机通常会被分为三大类:内嵌式、面贴式以及插入式,如图1.1所示。永磁同步电机的运行性能是最受关注的,影响其性能的因素有很多,但是最主要的则是永磁同步电机的结构。就面贴式、插入式和嵌入式而言,各种结构都各有其各自的优点。

异步电机和同步电机的区别

异步电机和同步电机的区别 来源:中国机械CAD论坛 同步电机的转子全部为线绕式,有电刷,集电环,结构复杂,制造成本高,转子的磁场靠外部供电来建立。异步电机的转子可以是线绕式,但绝大部分为鼠笼式,结构简单,转子磁场有定子磁场感应产生,转速比同步磁场的转速低,只有这样转子和定子的同步磁场之间才有相对移动,才能产生感应电流,进而建立磁场,在定转子磁场的相互作用下,实现转动。 首先说明一点的是,异步电机只用于电动机,极少用作发电机,都是同步电机用来发电。 异步电动机的原理主要是在定子中通入3相交流电,使其产生旋转磁场,转速为n0,即同步转速。不同的磁极对数p,在相同频率f=50Hz的交流电作用下,会产生不同的n0,n0=60f/p。 工作原理如下: 对称3相绕组通入对称3相电流,产生旋转磁场,磁场线切割转子绕组,根据电磁感应原理,转子绕组中产生e和i,转子绕组在磁场中受到电磁力的作用,即产生电磁转矩,使转子旋转起来,转子输出机械能量,带动机械负载旋转起来。转子转速n

构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机的分类可归纳如下: 发电机 { 直流发电机 交流发电机 { 同步发电机 异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 同步电机和异步电机区别:(这是网上3个网友给的解释) 1,同步与异步的最大区别就在于看他门的转子速度是不是与定子旋转的磁场速度一致,如果转子的旋转速度与定子是一样的,那就叫同步电动机,如果不一致,就叫异步电动机。。。 2,当极对数一定时,电机的转速和频率之间有严格的关系,用电机专业术语说,就是同步。异步电机也叫感应电机,主要作为电动机使用,其工作时的转子转速总是小于同步电机。 3,所谓“同步”就是电枢(定子)绕组流过电流后,将在气隙中形成一旋转磁场,而该磁场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。 异步电机的话,其旋转磁场与转子存在相对转速,即产生转距。 至于为什么异步电动机和同步电动机会有这样的区别,我来总结一下,最根本的原因其实就是定子有没有加励磁,不加励磁为异步,应为只有产生相对运动了,才会有切割磁感线的作用(或者说是磁通变化),才会产生电磁感应力(即安培力)。而加了励磁,定子就可以看作一块磁铁,有固定的NS极,会随着旋转磁场同步转动,所以称同步电机。(磁铁的吸引作用)

普通异步电动机与变频电机的区别

普通异步电动机与变频电机的区别 一、普通异步电动机都是按恒频恒压设计的,不可能完全适应变频调速的要求。以下为变频器对电机的影响 1、电动机的效率和温升的问题 不论那种形式的变频器,在运行中均产生不同程度的谐波电压和电流,使电动机在非正弦电压、电流下运行。拒资料介绍,以目前普遍使用的正弦波PWM型变频器为例,其低次谐波基本为零,剩下的比载波频率大一倍左右的高次谐波分量为:2u+1(u为调制比)。 高次谐波会引起电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,最为显著的是转子铜(铝)耗。因为异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使电动机额外发热,效率降低,输出功率减小,如将普通三相异步电动机运行于变频器输出的非正弦电源条件下,其温升一般要增加10%--20%。 2、电动机绝缘强度问题 目前中小型变频器,不少是采用PWM的控制方式。他的载波频率约为几千到十几千赫,这就使得电动机定子绕组要承受很高的电压上升率,相当于对电动机施加陡度很大的冲击电压,使电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在电动机运行电压上,会对电动机对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。 3、谐波电磁噪声与震动 普通异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的震动和噪声变的更加复杂。变频电源中含有的各次时间谐波与电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开电动机的各构件的固有震动频率。 4、电动机对频繁启动、制动的适应能力 由于采用变频器供电后,电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。 5、低转速时的冷却问题 首先,异步电动机的阻抗不尽理想,当电源频率较底时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机再转速降低时,冷却风量与转速的三次方成比例减小,致使电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。 二、变频电动机的特点 1、电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下: 1)尽可能的减小定子和转子电阻。 减小定子电阻即可降低基波铜耗,以弥补高次谐波引起的铜耗增 2)为抑制电流中的高次谐波,需适当增加电动机的电感。但转子槽漏抗较大其集肤效应也大,高次谐波铜耗也增大。因此,电动机漏抗的大小要兼顾到整个调速范围内阻抗匹配的合理性。 3)变频电动机的主磁路一般设计成不饱和状态,一是考虑高次谐波会加深磁路饱和,二是考虑在低频时,为了提高输出转矩而适当提高变频器的输出电压。 2、结构设计 再结构设计时,主要也是考虑非正弦电源特性对变频电机的绝缘结构、振动、噪声冷却方式等方面的

调速永磁同步电动机的电磁设计与磁场分析

调速永磁同步电动机的电磁设计与磁场分析 1 引言 与传统的电励磁电机相比,永磁同步电动机具有结构简单,运行稳定;功率密度大;损耗小,效率高;电机形状和尺寸灵活多变等显著优点,因此在航空航天、国防、工农业生产和日常生活等各个领域得到了越来越广泛的应用。 随着电力电子技术的迅速发展以及器件价格的不断下降,越来越多的直流电动机调速系统被由变频电源和交流电动机组成的交流调速系统所取代,变频调速永磁同步电动机也应运而生。变频调速永磁同步电动机可分为两类,一类是反电动势波形和供电电流波形都是理想矩形波(实际为梯形波)的无刷直流电动机,另一类是两种波形都是正弦波的一般意义上的永磁同步电动机。这类电机通常由变频器频率的逐步升高来起动,在转子上可以不用设置起动绕组。 本文使用Ansoft Maxwell软件中的RMxprt模块进行了一种调速永磁同步电动机的电磁设计,并对电机进行了性能和参数的计算,然后将其导入到Maxwell 2D中建立了二维有限元仿真模型,并在此模型的基础上对电机的基本特性进行了瞬态特性分析。 2 调速永磁同步电动机的电磁设计 2.1 额定数据和技术要求 调速永磁同步电动机的电磁设计主要包括主要尺寸和气隙长度的确定、定子冲片设计、定子绕组的设计、永磁体的设计等。通过改变电机的各个参数来提高 T。本例所永磁同步电动机的效率η、功率因数cos?、起动转矩st T和最大转矩max 设计永磁同步电动机的额定数据及其性能指标如下: 计算额定数据:

(1) 额定相电压:N 220V U U == (2) 额定相电流:3 N N N N N 1050.9A cos P I mU η??== (3) 同步转速:160=1000r /min f n p = (4) 额定转矩:3 N N 1 9.5510286.5N m P T n ?==g 2.2 主要尺寸和气隙长度的确定 永磁电机的主要尺寸包括定子内径和定子铁心有效长度,它们可由如下公式 估算得到: 2 i11P D L C n '= N N N cos E K P P η?'=, 6.1p Nm dp C K K AB δ α=' 式中,i1D 为定子内径,L 为定子铁心长度,P '为计算功率,C 为电机常数。 E K 为额定负载时感应电势与端电压的比值,本例取0.96;p α'为计算极弧系数, 初选0.8;Nm K 为气隙磁场的波形系数,当气隙磁场为正弦分布时等于1.11;dp K 为电枢的绕组系数,初选0.92。A 为电机的线负荷,B δ为气隙磁密,A 和B δ的 选择非常重要,直接影响电机的参数和性能,应从电机的综合技术经济指标出发 来选取最合适的A 和B δ值,本例初选为200A/cm,0.7T A B δ==。 由上式可初步确定电机的2i1D L ,但要想进一步确定i1D 和L 各自的值,还应选择主要尺寸比i1i122L L pL D D p λπτπ===,其中τ为极距。通常,中小型同步电动机的0.6~2.5λ=,一般级数越多,λ也越大,本例初选1.4。 永磁同步电动机的气隙长度δ一般要比同规格的感应电动机的气隙大,主要 是因为适当的增加气隙长度可以在一定的程度上减小永磁同步电动机过大的杂 散损耗,减低电动机的振动与噪声和便于电动机的装配。所以设计永磁同步电动 机的气隙长度时,可以参照相近的感应电动机的气隙长度并加以适当的修改。本 例取=0.7mm δ。 确定电动机定子外径时,一般是在保证电动机足够散热能力的前提下,视具 体情况为提高电动机效率而加大定子外径还是为降低成本而减小定子外径。

永磁同步电机性能要求与技术现状分析

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。 永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。 作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是: ( 1)体积小、重量轻; 有较高的功率和转矩密度; ( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率; ( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。 永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。 1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。 2)提高电机转矩特性 电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。 1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。控制命令中直轴电流设为 0, 从而实现最大转矩控制。随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。 2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何

同步电机和异步电机区别资料讲解

同步电机和异步电机 区别

同步电机和异步电机区别:(这是网上3个网友给的解释)1,同步与异步的最大区别就在于看他门的转子速度是不是与定子旋转的磁场速度一致,如果转子的旋转速度与定子是一样的,那就叫同步电动机,如果不一致,就叫异步电动机。。。 2,当极对数一定时,电机的转速和频率之间有严格的关系,用电机专业术语说,就是同步。异步电机也叫感应电机,主要作为电动机使用,其工作时的转子转速总是小于同步电机。 3,所谓“同步”就是电枢(定子)绕组流过电流后,将在气隙中形成一旋转磁场,而该磁场的旋转方向及旋转速度均与转子转向,转速相同,故为同步。 异步电机的话,其旋转磁场与转子存在相对转速,即产生转距。 至于为什么异步电动机和同步电动机会有这样的区别,我来总结一下,最根本的原因其实就是定子有没有加励磁,不加励磁为异步,应为只有产生相对运动了,才会有切割磁感线的作用(或者说是磁通变化),才会产生电磁感应力(即安培力)。而加了励磁,定子就可以看作一块磁铁,有固定的NS极,会随着旋转磁场同步转动,所以称同步电机。(磁铁的吸引作用) 永磁交流伺服电动机的结构特点及调速原理即同步型交流伺服电动机(SM),它是一台机组,由永磁同步电动机,转子位置传感器,速度传感器等组成。 1.结构如图4-7所示,永磁同步电动机主要由三部分组成:定子,转子和检测元件(转子位置传感器和测速发电机)。其中定子有齿槽,内有三相绕组,形状与普通感应电动机的定子相同。但其外圆多呈多边行,且无外壳,

以利于散热,避免电动机发热对机床精度的影响。 [if gte vml 1]> [if gte mso 9]> (a) 永磁同步电动机横剖面图 (b) 永磁同步电动机纵剖面图图4-7 永磁同步电动机结构 [if gte vml 1]> [if gte vml 1]> [if gte mso 9]> 图4-8 永磁交流伺服电动机的工作原理 2.工作原理如图4-8所示,一个二极永磁转子(也可以是多极),当定子三相绕组通上交流电源后,就产生一个旋转磁场,图中用另一对旋转磁极表示,该旋转磁场将以同步转速ns旋转。由于磁极同性相斥,异性相吸与转子的永磁磁极互相吸引,并带着转子一起旋转,因此,转子也将以同步转速ns与旋转磁场一起。当转子加上负载转矩之后,转子磁极轴线将落后定子磁场轴线一个θ角,随着负载增加,θ也随之增大;负载减少时,θ角也减少;只要不超过一定限度,转子始终跟着定子的旋转磁场以恒定的同步转速ns旋转。转子速度nr=ns=60?/p,即由电源频率?和磁极对数p决定。当负载超过一定极限后,转子不再按同步转速旋转,甚至可能不转,这就是同步电动机的失步现象,此负载的极限称为最大同步转矩。 3.永磁同步伺服电动机的性能(1)交流伺服电动机的机械特性比直流伺服电动机的机械特性要硬,其直线更为接近水平线。另外,断续工作区范围更大,尤其是高速区,这有利于提高电动机的加,减速能力。(2)高可靠性。用电子逆变器取代了直流电动机换向器和电刷,工作寿命由轴承决定。因无换向器及电刷,也省去了此项目的保养和维护。(3)主要损耗在定子绕组与铁心上,故散热容易,便于安装热保护;而直流电动机损耗主要在转子上,散热困难。(4)转子惯量小,其结构允许高速工作。(5)体积小,质量小。(四)交流调速的基本方法由电机学基本原理可知,交流电机的同步转速为n0=60?1/P (r/min)(4-4)异步电动机的转速为n=60?1/P(1-S)=n0(1-S)(r/min)(4-5)式中:

永磁同步电机与异步电机性能比较

永磁同步电机与异步电 机性能比较 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

永磁同步电机与异步电机性能比较 永磁同步电机与异步电机相比,具有明显的优势,它效率高,功率因素高,能力指标好,体积小,重量轻,温升低,技能效果显着,较好地提高了电网的品质因素,充分发挥了现有电网的容量,节省了电网的投资,它较好地解决了用电设备中“大马拉小车”现象。 1. 效率及功率因素 异步电机在工作时,转子绕组要从电网吸收部分电能励磁,消耗了电网电能,这部分电能最终以电流在转子绕组中发热消耗掉,该损耗约占电机总损耗的20~30%,它使电机的效率降低。该转子励磁电流折算到定子绕组后呈感性电流,使进人定子绕组中的电流落后于电网电压一个角度,造成电机的功率因数降低。另外,从永磁同步电机与异步电机的效 率及功率因数曲线(图1)可以看出,异步电动机在负载率(=P 2/P n )<50% 时,其运行效率和运行功率因数大幅度下降,所以一般都要求其在经济 区内运行,即负载率在75%-100%之间。 (a) η--( P2/P n) (b) ? cos--( P2/P n) 图1 永磁同步电动机与异步电动机的效率和功率因数 1. 异步起动永磁同步电动机 2.异步电动机 永磁同步电机在转子上嵌了永磁体后,由永磁体来建立转子磁场,在正常工作时转子与定子磁场同步运行,转子中无感应电流,不存在转子 电阻损耗,只此一项可提高电机效率4%~50%。由于在水磁电机转子中无 感应电流励磁,定子绕组有可能呈纯阻性负载,使电机功率因数几乎为1.

从永徽同步电机与异步电机的效率及功率因数曲线(图1)可以看出,永磁同步电机在负载率>20%时,其运行效率和运行功率因数随之变化不大,且运行效率>80%. 2. 起动转矩 异步电机起动时,要求电机具有足够大的起动转矩,但又希望起动电流不要太大,以免电网产生过大的电压降落而影响接在电网上的其他电机和电气设备的正常运行。此外,起动电流过大时,将使电机本身受到过大电做力的冲击,如果经常起动,还有使绕组过热的危险。因此,异步电机的起动设计往往面临着两难选择。 永磁同步电机一般也采用异步起动方式,由于永磁同步电机正常工作时转子绕组不起作用,在设计永磁电机时,可使转子绕组完全满足高起动转矩的要求,例如使起动转矩倍数由异步电机的1.8倍上升到2.5倍,甚至更大,较好地解决了动力设备中“大马拉小车”的现象。 3. 工作温升 由于异步电机工作时,转子绕组有电流流动,而这个电流完全以热能的形式消耗掉,所以在转子绕组中将产生大量的热量,使电机的沮度升高,影响了电机的使用寿命。 由于永磁电机效率高,转子绕组中不存在电阻损耗,定子绕组中较少有或几乎不存在无功电流,使电机温升低,延长了电机的使用寿命。4.对电网运行的影响 因异步电机的功率因数低,电机要从电网中吸收大量的无功电流,造成电网、翰变电设备及发电设备中有大量无功电流,进而使电网

永磁同步电机原理

永磁同步电机原理、特点、应用详解 电机对于工农业来说至关重要,本文将会对电机的定义、分类、电机驱动的分类进行简介,并详细介绍永磁同步电机的原理、特点以及应用。 电机的定义 所谓电机,顾名思义,就是将电能与机械能相互转换的一种电力元器件。当电能被转换成机械能时,电机表现出电动机的工作特性;当电能被转换成机械能时,电机表现出发电机的工作特性。电机主要由转子,定子绕组,转速传感器以及外壳,冷却等零部件组成。 电机的分类 按结构和工作原理划分:直流电动机、异步电动机、同步电动机。 按工作电源种类划分:可分为直流电机和交流电机。 交流电机还可分:单相电机和三相电机。 直流电动机按结构及工作原理可划分:无刷直流电动机和有刷直流电动机。 有刷直流电动机可划分:永磁直流电动机和电磁直流电动机。 电磁直流电动机划分:串励直流电动机、并励直流电动机、他励直流电动机和复励直流电动机。 永磁直流电动机划分:稀土永磁直流电动机、铁氧体永磁直流电动机和铝镍钻永磁直流电动机。 按结构和工作原理划分:可分为直流电动机、异步电动机、同步电动机。 同步电机可划分:永磁同步电动机、磁阻同步电动机和磁滞同步电动机。 异步电机可划分:感应电动机和交流换向器电动机。 感应电动机可划分:三相异步电动机、单相异步电动机和罩极异步电动机等。 交流换向器电动机可划分:单相串励电动机、交直流两用电动机和推斥电动机。 按起动与运行方式划分:电容起动式单相异步电动机、电容运转式单相异步电动机、电容起动运转式单相异步电动机和分相式单相异步电动机。 按用途划分:驱动用电动机和控制用电动机

永磁同步电机 所谓永磁,指的是在制造电机转子时加入永磁体,使电机的性能得到进一步的提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动汽车的车速将最终被控制。而如何调节电流频率,则是电控部分所要解决的问题。 永磁同步电动机的特点 永磁电动机具有较高的功率/质量比,体积更小,质量更轻,比其他类型电动机的输出转矩更大,电动机的极限转速和制动性能也比较优异,因此永磁同步电动机已成为现今电动汽车应用最多的电动机。但永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降,或发生退磁现象,有可能降低永磁电动机的性能。另外,稀土式永磁同步电动机要用到稀土材料,制造成本不太稳定 永磁同步电机与异步电机 除了永磁同步电机,异步电机也因特斯拉的使用而被广泛关注。与同步电机相比起来,电机转子的转速总是小于旋转磁场(由定子绕组电流产生)的转速。因此,转子看起来与定子绕组的电流频率总是“不一致”,这也是其为什么叫异步电机的原因。 相比于永磁同步电机,异步电机的优点是成本低,工艺简单;当然其缺点就是其功率密度与转矩密度要低于永磁同步电机。而特斯拉Models为何选用异步电机而不是永磁同步电机,除了控制成本这个主要原因之外,较大的Models车体能够有足够空间放的下相对大一点的异步电机,也是一个很重要的因素。 永磁同步电动机怎样产生动力? 在交流异步电动机中,转子磁场的形成要分两步走:第一步是定子旋转磁场先在转子绕组中感应出电流;第二步是感应电流再产生转子磁场。在楞次定律的作用下,转子跟随定子旋转磁场转动,但又“永远追不上”,因此才称其为异步电动机。如果转子绕组中的电流不是由定子旋转磁场感应的,而是自己产生的,则转子磁场与定子旋转磁场无关,而且其磁极方向是固定的,那么根据同性相斥、异性相吸的原理,定子的旋转磁场就会拉动转子旋转,并且使转子磁场及转子与定子旋转磁场“同步”旋转。这就是同步电动机的工作原理。 根据转子自生磁场产生方式的不同,又可以将同步电动机分为两种: 一是将转子绕组通上外接直流电(励磁电流),然后由励磁电流产生转子磁场,进而使转子与 定子磁场同步旋转。这种由励磁电流产生转子磁场的同步电动机称为励磁同步电动机。 二是干脆在转子上嵌上永久磁体,直接产生磁场,省去了励磁电流或感应电流的环节。这种由永久磁体产生转子磁场的同步电动机,就称为永磁同步电动机。

相关文档
最新文档