因式分解法解一元二次方程典型例题
用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A=0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6. (2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0. ∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:- 2 -原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考? 例2:用适当方法解下列方程:(1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27. (3)移项,得3x 2-4x -1=0, ∵a =3,b =-4,c =-1,∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0; ∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0, ∴x -3=0或4x -1=0, ∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0, [2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0, (11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.- 3 -(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0. 当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0. (2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程. 分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0, ∵a +b ≠0且a -b ≠0, ∴x 1=b a a b +-,x 2=ba ba -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252yxy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y 13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 1.选择题(1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8- 4 -(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0;(3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.- 5 -- 6 -6.已知x 2+3xy -4y 2=0(y ≠0),试求yx yx +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2. 当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5. 以上方法就叫换元法,达到了降次的目的,体现了转化的思想. (1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗- 7 -参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31;(7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2.4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1;(5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3;(8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7.5.(1)x 2-4ax +4a 2=a 2-2a +1, (x -2a )2=(a -1)2, ∴x -2a =±(a -1), ∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0,x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0, ∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0, (x +m )[x +(m +1)]=0, ∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0,x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=yy yy +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0, (x 2+y 2)2-(x 2+y 2)-12=0, (x 2+y 2-4)(x 2+y 2+3)=0, ∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,- 8 -∴3x 2+9x -2=3(x 2+3x )-2=3×4-2=1010.10=-5(t -2)(t +1),∴t =1(t =0舍去)11.(1)x 1=-2,x 2=2(2)(x 2-2)(x 2-5)=0, (x +2)(x -2)(x +5)(x -5)=。
用因式分解法解一元二次方程(知识点 经典例题 综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A=0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6. (2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0. ∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:- 2 -原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考? 例2:用适当方法解下列方程:(1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27. (3)移项,得3x 2-4x -1=0, ∵a =3,b =-4,c =-1,∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0; ∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0, ∴x -3=0或4x -1=0, ∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0, [2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0, (11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.- 3 -(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0. 当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0. (2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程. 分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0, ∵a +b ≠0且a -b ≠0, ∴x 1=b a a b +-,x 2=ba ba -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252yxy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y .当x =2y 时,135y 13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】 1.选择题(1)方程(x -16)(x +8)=0的根是( ) A .x 1=-16,x 2=8 B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8- 4 -(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( ) A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3(4)方程(y -5)(y +2)=1的根为( ) A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对(5)方程(x -1)2-4(x +2)2=0的根为( ) A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5(6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4(7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( ) A .5B .5或11C .6D .11(8)方程x 2-3|x -1|=1的不同解的个数是( ) A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________. (3)方程(2y +1)2+3(2y +1)+2=0的解为__________. (4)关于x 的方程x 2+(m +n )x +mn =0的解为__________. (5)方程x (x -5)=5 -x 的解为__________. 3.用因式分解法解下列方程: (1)x 2+12x =0; (2)4x 2-1=0;(3)x 2=7x ;(4)x 2-4x -21=0; (5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.- 5 -- 6 -6.已知x 2+3xy -4y 2=0(y ≠0),试求yx yx +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2. 当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5. 以上方法就叫换元法,达到了降次的目的,体现了转化的思想. (1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗- 7 -参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31;(7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2.4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1;(5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3;(8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7.5.(1)x 2-4ax +4a 2=a 2-2a +1, (x -2a )2=(a -1)2, ∴x -2a =±(a -1), ∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0,x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0, ∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0, (x +m )[x +(m +1)]=0, ∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0,x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=yy yy +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0, (x 2+y 2)2-(x 2+y 2)-12=0, (x 2+y 2-4)(x 2+y 2+3)=0, ∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,- 8 -∴3x 2+9x -2=3(x 2+3x )-2=3×4-2=1010.10=-5(t -2)(t +1),∴t =1(t =0舍去)11.(1)x 1=-2,x 2=2(2)(x 2-2)(x 2-5)=0, (x +2)(x -2)(x +5)(x -5)=。
因式分解解一元二次方程136题

分解因式法解一元二次方程专项练习136题(有答案)1.3(x﹣2)2﹣x(x﹣2)=0,2.3x(x+2)=5(x+2)3.2x2﹣8x=04.x2﹣3x﹣4=0.5.x2﹣2x﹣3=0.6.x(x﹣3)﹣4(3﹣x)=0,7. 3(x﹣2)2=x(x﹣2);8. 2x2﹣5x﹣3=09. (3x﹣1)2=(x+1)210. x(x﹣6)=2(x﹣8)11.4+4(1+x)+4(1+x)2=19 12.x2﹣4x﹣5=013. 3(5﹣x)2=2(5﹣x)14.(x﹣3)2=2(3﹣x).15.2x2+x﹣6=0.16.2x2﹣x﹣1=0;17. 3x(x﹣1)=2(x﹣1)2.18.x(x﹣5)+4x=019. x2﹣2x=020.(x﹣3)2+2x(x﹣3)=0;21.x2﹣3x=0;22.(x﹣2)2=(2x+3)223.3x2﹣11x﹣4=0.24.2x(x﹣1)﹣x+1=0 25. 2x2+x﹣3=026.x2﹣2x﹣15=0;27. 2x(x﹣3)+x=3.28. x(x﹣3)=15﹣5x;29.(x﹣1)2﹣2(x﹣1)=0 30.x(x﹣2)﹣x+2=0;31. 2x2﹣3x﹣5=0.32..4x2﹣x﹣1=3x﹣2,33.34.(x﹣3)2﹣2(x﹣1)=x﹣7.35. 3x(x﹣2)﹣2(x﹣2)=036. 3x2﹣x﹣2=0;37. (x﹣6)2﹣(3﹣2x)2=0.38.(x﹣3)2=5(3﹣x)(x﹣3)2=5(3﹣x)39.(2x+1)2=2(2x+1)40.(3x﹣1)(x﹣1)=(4x+1)(x﹣1).41.x2﹣x﹣6=0,42.x2﹣8(x+6)=043.2x2﹣6x=0.44.(x﹣3)(x+1)=545.2x2﹣8x=0;46.x2+2x﹣15=047. 2x2﹣5x﹣7=048. 2y(y﹣3)=4(y﹣3)49. x2﹣7x﹣18=050. 3x2+8x﹣3=051. 2x(x﹣3)=9﹣3x 52.x2﹣4x=553. ﹣8x2+10x=054.3x2+4x﹣7=0,55. 3x2﹣5x+2=056. 2(x﹣3)2=x2﹣3x 57.x2=3x;58. (3x﹣2)2=(2x﹣3)259. (y﹣2)2+2y(y﹣2)=060.2y(y+2)=y+2.61. 5x2+3x=062. (3x﹣2)2=(2x﹣3)263. x(x﹣3)=5(x﹣3);64. (2x+3)2﹣5(2x+3)+4=0.65. (2x﹣7)2﹣5(2x﹣7)+4=066. (3x﹣1)2=x2+6x+967.(2x+2)2=3(2x+2)(x﹣1)68.(x+7)(x﹣3)+4x(x+1)=069.2x(x+3)﹣3(x+3)=070. x﹣2=x(x﹣2)71. x2+8x﹣9=072.x(2x﹣5)=4x﹣10.73.(2x﹣5)2﹣(x+4)2=074.2(x﹣1)2=x2﹣175.76. 4x(2x﹣1)=3(2x﹣1);77. 2x2+x﹣1=0.78. (3x﹣2)(x+4)=(3x﹣2)(5x ﹣1);79. (x+1)(x+3)=15.80.x2﹣5x﹣6=081. x2﹣2x=9982. (x﹣3)2﹣4x+12=083. 4(x+1)2=9(x﹣2)284. x2=2x85. (x+4)2=5(x+4)87. 16(x﹣1)2=22588. 4x2﹣4x+1=x2﹣6x+989. 9(x+1)2=4(x﹣1)2(4)x2﹣4x+4=(3﹣2x)290. (x﹣2)2=(3﹣2x)2.91. (x+2)2﹣10(x+2)+25=0 92.x2﹣2(p﹣q)x﹣4pq=0.93.x2+10x+21=0,94.2(x﹣2)2=3(x﹣2)95. 3(x﹣5)2=2(5﹣x),96. ,97. 5x2﹣4x﹣12=0,98. (x ﹣)=5x (﹣x),99.9(x﹣2)2﹣4(x+1)2=0.100..101.(2)x2﹣8x+15=0;103. 6x2﹣x﹣12=0.104. 2x2﹣x﹣6=0105. ﹣x2+6x﹣5=0106. (x﹣5)2=(2x﹣1)(5﹣x)107. (x+1)(x+2)=3x+6.108. x2﹣9=0,109. x2+3x﹣4=0,110. x2﹣3x+2=0,111. 4(3x﹣1)2 =25(2x+1)2.112. (3x+5)2﹣4(3x+5)+3=0113. (3x+2)(x+3)=x+14114. 3(x+1)2=(x+1)115.(x ﹣2)2﹣4=0116.(x ﹣3)2+2x (x ﹣3)=0117.(3x ﹣1)2=(x+1)2118.(x+5)2﹣2(x+5)﹣8=0.119. x 2﹣8x=9120. (x ﹣2)2=(2x+3)2. 121. x 2﹣3=3(x+1); 122. (y ﹣3)2+3(y ﹣3)+2=0 123. 7x (5x+2)=6(5x+2) 124.(3)6(x+4)2﹣(x+4)﹣2=0125. x 2﹣(3m ﹣1)x+2m 2﹣m=0,126.x 2﹣2x ﹣224=0. 127..128.5x (x ﹣3)﹣(x ﹣3)(x+1)=0.129.x 2﹣11x+28=0130. 4y 2﹣25=0;131.(2x+3)2﹣36=0;132. x 2﹣3x+2=0;133. 2t 2﹣7t ﹣4=0;134. 5y (y ﹣1)=2(y ﹣1)135. x 2+(1+2)x+3+=0;136.(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24.137.x2﹣3|x|﹣4=0 参考答案:1.3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,解得:x1=2,x2=3;2.3x(x+2)=5(x+2)原方程可化为3x(x+2)﹣5(x+2)=0,(3x﹣5)(x+2)=0,解得x1=﹣2,3.2x2﹣8x=0因式分解,得2x(x﹣4)=0,于是得,2x=0或x﹣4=0,即x1=0,x2=4.4. x2﹣3x﹣4=0.因式分解,得(x﹣4)(x+1)=0,于是得,x﹣4=0或x+1=0,解得:x1=4,x2=﹣15.x2﹣2x﹣3=0.原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.6.x(x﹣3)﹣4(3﹣x)=0,(x﹣3)(x+4)=0,x﹣3=0或x+4=0,解得:x1=3,x2=﹣4;7. 3(x﹣2)2=x(x﹣2);整理得3(x﹣2)2﹣x(x﹣2)=0 即(x﹣2)(x﹣3)=0x1=2,x2=38. 2x2﹣5x﹣3=0(2x+1)(x﹣3)=0 x1=﹣0.5,x2=39. (3x﹣1)2=(x+1)2原方程可化为:(3x﹣1)2﹣(x+1)2=0,(3x﹣1+x+1)(3x﹣1﹣x﹣1)=0,∴4x=0或2x﹣2=0,解得:x1=0,x2=1;10. x(x﹣6)=2(x﹣8)x2﹣6x=2x﹣16x2﹣8x+16=0(x﹣4)2=0x1=x2=411.4+4(1+x)+4(1+x)2=19原式可变为4(1+x)2+4(1+x)﹣15=0 [2(1+x)﹣3][2(1+x)+5]=0x1=,x2=﹣12.x2﹣4x﹣5=0(x﹣5)(x+1)=0x﹣5=0或x+1=0x1=5,x2=﹣113. 3(5﹣x)2=2(5﹣x)原方程可变形为:3(5﹣x)2﹣2(5﹣x)=0(5﹣x)[3(5﹣x)﹣2]=0(5﹣x)(13﹣3x)=0则x1=5,x2=14.(x﹣3)2=2(3﹣x).原式可变为(x﹣3)2﹣2(3﹣x)=0(x﹣3)(x﹣1)=0x1=3,x2=115.2x2+x﹣6=0.2x2+x﹣6=0(x+2)(2x﹣3)=0x+2=0或2x﹣3=0∴x1=﹣2,x2=.16.2x2﹣x﹣1=0;原方程可化为:(x﹣1)(2x+1)=0,x﹣1=0或2x+1=0,解得:x1=1,x2=﹣.17. 3x(x﹣1)=2(x﹣1)2.原方程可化为:3x(x﹣1)﹣2(x﹣1)2=0,(x﹣1)(3x﹣2x+2)=0,x﹣1=0或x+2=0,解得:x1=1,x2=﹣218.x(x﹣5)+4x=0即x(x﹣5+4)=0x(x﹣1)=0∴x1=0,x2=119. x2﹣2x=0x(x﹣2)=0∴x=0或x﹣2=0∴x1=0,x2=2.20.(x﹣3)2+2x(x﹣3)=0;原方程可化为:(x﹣3)(x﹣3+2x)=0(x﹣3)(x﹣1)=0x1=3,x2=1.21.x2﹣3x=0;x(x﹣3)=0∴x1=0,x2=322.(x﹣2)2=(2x+3)2(x﹣2)2=(2x+3)2即(x﹣2)2﹣(2x+3)2=0(3x+1)(x+5)=0x1=﹣5,x2=23.3x2﹣11x﹣4=0.把方程3x2﹣11x﹣4=0即(x﹣4)(3x+1)=0,解得x1=4,x2=.24.2x(x﹣1)﹣x+1=0原方程变形为:2x(x﹣1)﹣(x﹣1)=0∴(x﹣1)(2x﹣1)=0∴x﹣1=0或2x﹣1=0解得x1=1,x2=;25. 2x2+x﹣3=0原方程变形为:(x﹣1)(2x+3)=0∴x1=1,x2=26.x2﹣2x﹣15=0;原式可化为:(x﹣5)(x+3)=0得x1=5,x2=﹣327. 2x(x﹣3)+x=3.原式可化为:(x﹣3)(2x+1)=0得,x2=328. x(x﹣3)=15﹣5x;x(x﹣3)=﹣5(x﹣3)(x﹣3)(x+5)=0x1=3,x2=﹣529.(x﹣1)2﹣2(x﹣1)=0(x﹣1)2﹣2(x﹣1)=0,(x﹣1)(x﹣1﹣2)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=330.x(x﹣2)﹣x+2=0;原方程可化为:x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,解得:x1=2,x2=1;31. 2x2﹣3x﹣5=0.原方程可化为:(2x﹣5)(x+1)=0,2x﹣5=0或x+1=0,解得:x1=,x2=﹣132..∵4x2﹣x﹣1=3x﹣2,∴4x2﹣4x+1=0即(2x﹣1)2=0,解得33.解:∴∴34.(x﹣3)2﹣2(x﹣1)=x﹣7.移项,合并同类项得,(x﹣3)2﹣3x+9=0,即,(x﹣3)2﹣3(x﹣3)=0,因式分解得,(x﹣3﹣3)(x﹣3)=0则x﹣3=0或(x﹣6)=0,解得,x1=3,x2=6.35. 3x(x﹣2)﹣2(x﹣2)=0(x﹣2)(3x﹣2)=0x1=2,x2=;36. 3x2﹣x﹣2=0;原方程变形得,(3x+2)(x﹣1)=0∴,x2=1;37. (x﹣6)2﹣(3﹣2x)2=0.原方程变形得,(x﹣6+3﹣2x)(x﹣6﹣3+2x)=0(x+3)(3x﹣9)=0∴x1=3,x2=﹣338.(x﹣3)2=5(3﹣x)(x﹣3)2=5(3﹣x)(x﹣3)2+5(x﹣3)=0(x﹣3)(x+2)=0∴x1=3,x2=﹣2.39.(2x+1)2=2(2x+1)原方程可化为:(2x+1)2﹣2(2x+1)=0,(2x+1)(2x+1﹣2)=0,(2x+1)(2x﹣1)=0,解得:x1=﹣,x2=.40.(3x﹣1)(x﹣1)=(4x+1)(x﹣1).(3x﹣1)(x﹣1)﹣(4x+1)(x﹣1)=0,(x﹣1)[(3x﹣1)﹣(4x+1)]=0,(x﹣1)(x+2)=0,∴x1=1,x2=﹣2.41.∵x2﹣x﹣6=0,∴(x+2)(x﹣3)=0,∴x+2=0或x﹣3=0,解得x1=3,x2=﹣2.42.x2﹣8(x+6)=0原方程化为x2﹣8x﹣48=0(x+4)(x﹣12)=0解得x1=﹣4,x2=12.43.2x2﹣6x=0.原方程变形为2x(x﹣3)=0∴2x=0或x﹣3=0∴x1=0,x2=344.(x﹣3)(x+1)=5x2﹣2x﹣8=0,(x﹣4)(x+2)=0∴x1=4,x2=﹣2.45.2x2﹣8x=0;因式分解,得2x(x﹣4)=0,2x=0或x﹣4=0,解得,x=0或x=4;46.x2+2x﹣15=0(x+5)(x﹣3)=0x+5=0或x﹣3=0∴x1=﹣5,x2=3;47. 2x2﹣5x﹣7=0因式分解得(x+1)(2x﹣7)=0解得:,x2=﹣1;48. 2y(y﹣3)=4(y﹣3)2y(y﹣3)﹣4(y﹣3)=0(y﹣3)(2y﹣4)=0(2分)∴y1=3,y2=249. x2﹣7x﹣18=0解:(x﹣9)(x+2)=0x﹣9=0或x+2=0∴x1=9,x2=﹣250. 3x2+8x﹣3=0解:方程可以化为(x+3)(3x﹣1)=0 ∴x+3=0或3x﹣1=0即x1=﹣3,x2=.51. 2x(x﹣3)=9﹣3x2x(x﹣3)﹣(9﹣3x)=02x(x﹣3)+3(x﹣3)=0(x﹣3)(2x+3)=0x1=3,x2=﹣52.x2﹣4x=5x2﹣4x﹣5=0(x﹣5)(x+1)=0∴x﹣5=0,x+1=0∴原方程的解为:x1=5,x2=﹣1.53. ﹣8x2+10x=0x(10﹣8x)=0∴x1=0,x2=54.3x2+4x﹣7=0,(x﹣1)(3x+7)=0,x﹣1=0或3x+7=0,解得:55. 3x2﹣5x+2=0原式变形为:(3x﹣2)(x﹣1)=0∴x1=1,x2=56. 2(x﹣3)2=x2﹣3x原方程变形为:2(x﹣3)2=x(x﹣3)(x﹣3)[2(x﹣3)﹣x]=0(x﹣3)(x﹣6)=0∴x1=3,x2=657.(1)x2=3x;移项得,x2﹣3x=0,因式分解得,x(x﹣3)=0,解得,x1=0,x2=3;58. (3x﹣2)2=(2x﹣3)2解:3x﹣2=±(2x﹣3)3x﹣2=2x﹣3或3x﹣2=﹣(2x﹣3)解得:x1=﹣1,x2=1;59. (y﹣2)2+2y(y﹣2)=0解:(y﹣2)(y﹣2+2y)=0解得:y1=2,y2=60..2y(y+2)=y+2.原方程变形为:2y(y+2)﹣(y+2)=0,即(y+2)(2y﹣1)=0,解得y1=﹣2,y2=.61. 5x2+3x=0x(5x+3)=0,即:x=0或5x+3=0,∴x1=0,x2=﹣.62. (3x﹣2)2=(2x﹣3)2(3x﹣2)2﹣(2x﹣3)2=0,(3x﹣2+2x﹣3)(3x﹣2﹣2x+3)=0,5(x﹣1)(x+1)=0,即:x﹣1=0或x+1=0∴x1=1,x2=﹣163. x(x﹣3)=5(x﹣3);x(x﹣3)﹣5(x﹣3)=0,(x﹣3)(x﹣5)=0,∴x1=3,x2=5;64. (2x+3)2﹣5(2x+3)+4=0.(2x+3)2﹣5(2x+3)+4=0(2x+3﹣4)(2x+3﹣1)=0(2x﹣1)(x+1)=0,∴x1=,x2=﹣165. (2x﹣7)2﹣5(2x﹣7)+4=0 (2x﹣7﹣4)(2x﹣7﹣1)=0;x2=466. (3x﹣1)2=x2+6x+9(3x﹣1)2﹣(x﹣3)2=0即(2x+1)(x﹣2)=0x1=2,x2=﹣0.567.(2x+2)2=3(2x+2)(x﹣1)(2x+2)2﹣3(2x+2)(x﹣1)=0即(2x+2)【2x+2﹣3(x﹣1)】=0∴(x﹣5)(x+1)=0x1=﹣1,x2=568.(x+7)(x﹣3)+4x(x+1)=0化简:(x+7)(x﹣3)+4x(x+1)=0整理得,5x2+8x﹣21=0,因式分解得,(5x﹣7)(x+3)=0,即5x﹣7=0或x+3=0,所以x1=,x2=﹣3.69..2x(x+3)﹣3(x+3)=0根据题意,原方程可化为:(x+3)(2x﹣3)=0,∴方程的解为:x1=,x2=﹣370. x﹣2=x(x﹣2)即x﹣2﹣x(x﹣2)=0(x﹣2)(1﹣x)=0x1=2,x2=1;71. x2+8x﹣9=0(x+9)(x﹣1)=0x1=﹣9,x2=172.x(2x﹣5)=4x﹣10.原方程可变形为:x(2x﹣5)﹣2(2x﹣5)=0,(2x﹣5)(x﹣2)=0,2x﹣5=0或x﹣2=0;解得x1=,x2=2.74.(2x﹣5)2﹣(x+4)2=0因式分解,得[(2x﹣5)+(x+4)][(2x﹣5)﹣(x+4)]=0,整理得,(3x﹣1)(x﹣9)=0解得,x1=,x2=9.74.2(x﹣1)2=x2﹣1原方程即为2(x﹣1)2﹣(x2﹣1)=0,2(x﹣1)2﹣(x+1)(x﹣1)=0,(x﹣1)[2(x﹣1)﹣(x+1)]=0,(x﹣1)(x﹣3)=0,x1=1,x2=3;75.(x﹣1)(x ﹣+3)=0,∴x1=1,x2=-376. 4x(2x﹣1)=3(2x﹣1);原方程可化为:4x(2x﹣1)﹣3(2x﹣1)=0,(2x﹣1)(4x﹣3)=0,2x﹣1=0或4x﹣3=0,解得:,;77. 2x2+x﹣1=0.原方程可化为:(2x﹣1)(x+1)=0,2x﹣1=0或x+1=0,解得:,x2=﹣1.78. (3x﹣2)(x+4)=(3x﹣2)(5x﹣1);解:(3x﹣2)(x+4)﹣(3x﹣2)(5x﹣1)=0 (3x﹣2)[(x+4)﹣(5x﹣1)]=0(3x﹣2)(﹣4x+5)=03x﹣2=0或﹣4x+5=0;79. (x+1)(x+3)=15.方程整理得:x2+4x﹣12=0( x+6)(x﹣2)=0x1=﹣6,x2=2.80. x2﹣5x﹣6=0解:(x﹣6)(x+1)=0,x﹣6=0或x+1=0,∴原方程的解是x1=6,x2=﹣1.81. x2﹣2x=99解:(x﹣11)(x+9)=0,x﹣11=0或x+9=0,∴原方程的解是x1=11,x2=﹣9.82. (x﹣3)2﹣4x+12=0解:(x﹣3)2﹣4(x﹣3)=0,(x﹣7)(x﹣3)=0,x﹣3=0或x﹣7=0,∴原方程的解是x1=3,x2=7.83. 4(x+1)2=9(x﹣2)2解:(2x+2)2=(3x﹣6)2,(2x+2+3x﹣6)(2x+2﹣3x+6)=0,即:(5x﹣4)(8﹣x)=0,x=8或x=,∴原方程的解是84. x2=2x移项,得x2﹣2x=0,因式分解,得x(x﹣2)=0,所以x=0或x=2.85. (x+4)2=5(x+4)移项,得,(x+4)2﹣5(x+4)=0,因式分解得,(x+4)[(x+4)﹣5]=0,x+4=0或x﹣1=0,解得,x1=﹣4,x2=187. 16(x﹣1)2=22516(x﹣1)2﹣152=0,所以[4(x﹣1)+15][4(x﹣1)﹣15]=0,即4x+11=0,4x﹣19=0,得x1=﹣,x2=.88. 4x2﹣4x+1=x2﹣6x+9方程变为(2x﹣1)2﹣(x﹣3)2=0,所以[(2x﹣1)+(x﹣3)][(2x﹣1)﹣(x﹣3)]=0,即3x﹣4=0,x+2=0,得x1=,x2=﹣2.89. 9(x+1)2=4(x﹣1)2(4)x2﹣4x+4=(3﹣2x)2原方程变为[3(x+1)]2﹣[2(x﹣1)]2=0,所以[3(x+1)+2(x﹣1)][3(x+1)﹣2(x﹣1)]=0,即(5x+1)(x+5)=0,得x1=﹣,x2=﹣5.90. (x﹣2)2=(3﹣2x)2.(x﹣2)2﹣(3﹣2x)2=0,(x﹣2+3﹣2x)(x﹣2﹣3+2x)=0,(1﹣x)(3x﹣5)=0,所以x1=1,x2=91. (x+2)2﹣10(x+2)+25=0因式分解得,[(x+2)﹣5]2=0,解得,x1=x2=392.x2﹣2(p﹣q)x﹣4pq=0.∵x2﹣2(p﹣q)x﹣4pq=0∴(x﹣2p)(x+2q)=0,∴x1=2p,x2=﹣2q.93.x2+10x+21=0,把左边分解因式得:(x+3)(x+7)=0,则:x+3=0,x+7=0,解得:x1=﹣3,x2=﹣7.94.2(x﹣2)2=3(x﹣2)∵2(x﹣2)2=3(x﹣2),∴(x﹣2)(2x﹣4﹣3)=0,即x﹣2=0或2x﹣7=0,解得:x1=2,x2=;95. 3(x﹣5)2=2(5﹣x),变形得:3(5﹣x)2=2(5﹣x),移项得:3(5﹣x)2﹣2(5﹣x)=0,分解因式得:(5﹣x)(13﹣3x)=0,则:5﹣x=0,13﹣3x=0,解得:x1=5,x2=;96. ,分解因式得:(x ﹣)(x ﹣)=0,则x ﹣=0,x ﹣=0,解得:x1=,x2=.97. 5x2﹣4x﹣12=0,(5x+6)(x﹣2)=0,5x+6=0,x﹣2=0,x1=﹣,x2=2.98. (x ﹣)=5x (﹣x),(x ﹣)+5x(x ﹣)=0,(x ﹣)(1+5x)=0,x ﹣=0,1+5x=0,x1=,x2=﹣.99.9(x﹣2)2﹣4(x+1)2=0.9(x﹣2)2﹣4(x+1)2=0(3x﹣6+2x+2)(3x﹣6﹣2x﹣2)=0,整理得:(5x﹣4)(x﹣8)=0,解方程得:x1=,x2=8100..x(x﹣2)=2(x+6),x2﹣2x=2x+12,x2﹣4x﹣12=0,(x﹣6)(x+2)=0,x1=6,x2=﹣2.∴原方程的根为x1=6,x2=﹣2101.(2)x2﹣8x+15=0;把左边分解因式得:(x﹣3)(x﹣5)=0,则x﹣3=0,x﹣5=0,解得:x1=5,x2=3;102. ;移项得:y2﹣2y+2=0,(y ﹣)2=0,两边开方得:y ﹣=0,则y1=y2=;103. 6x2﹣x﹣12=0.由原方程,得(2x﹣3)(3x+4)=0,解得,x=,或x=﹣104. 2x2﹣x﹣6=0原方程化为(2x+3)(x﹣2)=0,解得x1=﹣,x2=2;105. ﹣x2+6x﹣5=0原方程化为x2﹣6x+5=0分解因式,得(x﹣1)(x﹣5)=0,解得x1=1,x2=5;106. (x﹣5)2=(2x﹣1)(5﹣x)移项,得(x﹣5)2+(2x﹣1)(x﹣5)=0,提公因式,得(x﹣5)(x﹣5+2x﹣1)=0,解得x1=5,x2=2107. (x+1)(x+2)=3x+6.∵(x+1)(x+2)=3x+6,∴(x+1)(x+2)=3(x+2),∴(x+1)(x+2)﹣3(x+2)=0,∴(x+2)(x+1﹣3)=0,∴x+2=0或x+1﹣3=0∴x1=﹣2,x2=2108. x2﹣9=0,x2=9,解得:x1=3,x2=﹣3,109. x2+3x﹣4=0,(x﹣1)(x+4)=0,解得:x1=1,x2=﹣4,110. x2﹣3x+2=0,(x﹣1)(x﹣2)=0,解得:x1=1,x2=2111. 4(3x﹣1)2 =25(2x+1)2.∵4(3x﹣1)2﹣25(2x+1)2=0,∴[2(3x﹣1)﹣5(2x+1)][2(3x﹣1)+5(2x+1)]=0,∴2(3x﹣1)﹣5(2x+1)=0或2(3x﹣1)+5(2x+1)=0,∴x1=﹣,x2=﹣.112. (3x+5)2﹣4(3x+5)+3=0 设3x+5=y,则原方程变为y2﹣4y+3=0,∴(y﹣1)(y﹣3)=0,解得,y=1或y=3;①当y=1时,3x+5=1,解得x=﹣;②当y=3时,3x+5=3,解得,x=﹣;∴原方程的解是x=﹣,或x=﹣;113. (3x+2)(x+3)=x+14 由原方程,得(x+4)(3x﹣2)=0,解得x=﹣4,或x=;114. 3(x+1)2=(x+1)移项得,3(x+1)2﹣(x+1)=0,提公因式得,(x+1)(3x+3﹣1)=0,即x+1=0或3x+3﹣1=0,解得x1=﹣1,x2=﹣115.(x﹣2)2﹣4=0∵(x﹣2﹣2)(x﹣2+2)=0,∴x﹣2﹣2=0或x﹣2+2=0,∴x1=4,x2=0;116.(x﹣3)2+2x(x﹣3)=0∵(x﹣3)(x﹣3+2x)=0,∴x﹣3=0或x﹣3+2x=0,∴x1=3,x2=1;117.(3x﹣1)2=(x+1)2∵3x﹣1=±(x+1),即3x﹣1=x+1或3x﹣1=﹣(x+1),∴x1=1,x2=0;118.(x+5)2﹣2(x+5)﹣8=0.∵[(x+5)﹣4][(x+5)+2]=0,∴(x+5)﹣4=0或(x+5)+2=0,∴x1=﹣1,x2=﹣7.119. x2﹣8x=9变形为:x2﹣8x﹣9=0,(x﹣9)(x+1)=0,则:x﹣9=0或x+1=0,解得:x1=9,x2=﹣1;120. (x﹣2)2=(2x+3)2.变形为:(x﹣2)2﹣(2x+3)2=0,(x﹣2+2x+3)(x﹣2﹣2x﹣3)=0,(3x+1)(﹣x﹣5)=0,则:3x+1=0,﹣x﹣5=0,解得:x1=﹣,x2=﹣5.121. x2﹣3=3(x+1);整理得x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,∴x+1=0或x﹣4=0,∴x1=﹣1,x2=4;122. (y﹣3)2+3(y﹣3)+2=0 ∵(y﹣3+2)(y﹣3+1)=0,∴y﹣3+2=0或y﹣3+1=0,∴y1=1,y2=2;123. 7x(5x+2)=6(5x+2)∵7x(5x+2)﹣6(5x+2)=0,∴(5x+2)(7x﹣6)=0,∴5x+2=0或7x﹣6=0,∴x1=﹣,x2=124.(3)6(x+4)2﹣(x+4)﹣2=06(x+4)2﹣(x+4)﹣2=0,[3(x+4)﹣2][2(x+4)+1]=0,(3x+4)(2x+7)=0,3x+4=0,2x+7=0,解得:x1=﹣,x2=﹣;125. x2﹣(3m﹣1)x+2m2﹣m=0,(x﹣m)[x﹣(2m﹣1)]=0,x﹣m=0,x﹣(2m﹣1)=0,解得:x1=m,x2=2m﹣1126.x2﹣2x﹣224=0.x2﹣2x﹣224=0(x﹣16)(x+14)=0,解得:x1=16;x2=﹣14.127..方程两边同时乘以2,得(x+3)2=4(x+2)2,移项,得(x+3)2﹣4(x+2)2,=0,(x+3+4x+8)(x+3﹣4x﹣8)=0,即5x+11=0或﹣3x﹣5=0,解得x1=﹣,x2=﹣;128.5x(x﹣3)﹣(x﹣3)(x+1)=0.∵(x﹣3)(5x﹣x﹣1)=0,∴x﹣3=0或5x﹣x﹣1=0,∴x1=3,x2=129.x2﹣11x+28=0x2﹣11x+28=0,(x﹣4)(x﹣7)=0,x﹣4=0,x﹣7=0,x1=4,x2=7130. 4y2﹣25=0;(2y+5)(2y﹣5)=0,所以y1=﹣,y2=;131.(2x+3)2﹣36=0;(2x+3)2﹣36=0;(2x+3+6)(2x+3﹣6)=0,所以x1=﹣,x2=;132. x2﹣3x+2=0;(x﹣1)(x﹣2)=0,所以x1=1,x2=2;133. 2t2﹣7t﹣4=0;(t﹣4)(2t+1)=0,所以t1=4,t2=﹣;134. 5y(y﹣1)=2(y﹣1)方程变形得:5y(y﹣1)﹣2(y﹣1)=0,因式分解得:(y﹣1)(5y﹣2)=0,可得y﹣1=0或5x﹣2=0,解得:y1=1,y2=.135. x2+(1+2)x+3+=0;(x+)(x+1+)=0x+=0或x+1+=0∴x1=﹣,x2=﹣1﹣.136.(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24.原方程整理得:x2﹣5x﹣24=0(x﹣8)(x+3)=0∴x1=8,x2=﹣3.137.x2﹣3|x|﹣4=0|x|2﹣3|x|﹣4=0 (|x|﹣4)(|x|+1)=0 |x|﹣4=0|x|+1≠0∴|x|=4∴x1=4,x2=﹣4.。
因式分解法解一元二次方程例题

(3)3x²-6x=-3;
因式分解,得
(4)4x²-121=0;
( x-4-5 + 2x )( x-4 + 5-2x ) = 0.
(5)3x(2x+1)=4x+2;
则有 3x-9 = 0 或 1-x = 0 ,
(6)(x-4)²=(5-2x)².
x1 = 3, x2 = 1.
练习
2.把小圆形场地的半径增加5 m得到大圆形场地,场
例 解下列方程:
(1)x(x-2)+x-2=0;
(2)5x²-2x- =x²-2x+ .
解:(1)因式分解,得
(2)移项、合并同类项,得
(x-2)(x+1)=0.
于是得
x-2=0或x+1=0,
4x²-1=0
因式分解,得 (2x+1)(2x-1)=0.
即
2x+1=0或2x-1=0,
解得
解得
x1=2,x2=-1.
则有 2x + 11 = 0 或 2x -11= 0,
x1=- ,x2= .
练习
1.解下列方程:
(5)3x(2x+1)=4x+2
(1)x²+x=0;
解:化为一般式为
(2)x²-2 x=0;
6x2 - x -2 = 0.
(3)3x²-6x=-3;
因式分解,得
(4)4x²-121=0;
( 3x-2 )(2x + 1) = 0.
作业
解下列方程:
(1)x²=3x
(1)x1 = 0, x2 = 3.
(2)5(x²-x)=3(x²+x)
九年级数学: 因式分解法解一元二次方程典型例题

例 用因式分解法解下列方程: (1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0 y +1=0或y +6=0 ∴y 1=-1,y 2=-6(2)方程可变形为t (2t -1)-3(2t -1)=0 (2t -1)(t -3)=0,2t -1=0或t -3=0 ∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0 x (2x -3)=0,x =0或2x -3=0 ∴x 1=0,x 2=23说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考典型例题二例 用因式分解法解下列方程6223362+=+x x x解:把方程左边因式分解为:0)23)(32(=-+x x∴032=+x 或023=-x ∴ 32,2321=-=x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。
例 用因式分解法解下列方程。
1522+=y y解: 移项得:01522=--y y 把方程左边因式分解 得:0)3)(52(=-+y y ∴052=+y 或03=-y∴.3,2521=-=y y说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。
(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法 若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,x 2-9=0,这个方程可变形为(x +3)(x -3)=0,要(x +3)(x -3)等于0,必须并且只需(x +3)等于0或(x -3)等于0,因此,解方程(x +3)(x -3)=0就相当于解方程x +3=0或x -3=0了,通过解这两个一次方程就可得到原方程的解.这种解一元二次方程的方法叫做因式分解法.2.因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A ·B =0A =0或B =0.【基础知识讲解】1.只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程.分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2.在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便.因此,在遇到一道题时,应选择适当的方法去解.配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法.而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1:用因式分解法解下列方程:(1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1.解:(1)方程可变形为(y +1)(y +6)=0,y +1=0或y +6=0,∴y 1=-1,y 2=-6.(2)方程可变形为t (2t -1)-3(2t -1)=0,(2t -1)(t -3)=0,2t -1=0或t -3=0,∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0.x (2x -3)=0,x =0或2x -3=0.∴x 1=0,x 2=23. 说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考?例2:用适当方法解下列方程: (1)3(1-x )2=27;(2)x 2-6x -19=0;(3)3x 2=4x +1;(4)y 2-15=2y ;(5)5x (x -3)-(x -3)(x +1)=0;(6)4(3x +1)2=25(x -2)2.剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1-x )2=9,(x -1)2=3,x -1=±3,∴x 1=1+3,x 2=1-3.(2)移项,得x 2-6x =19,配方,得x 2-6x +(-3)2=19+(-3)2,(x -3)2=28,x -3=±27, ∴x 1=3+27,x 2=3-27.(3)移项,得3x 2-4x -1=0,∵a =3,b =-4,c =-1, ∴x =37232)1(34)4()4(2±=⨯-⨯⨯--±--, ∴x 1=372+,x 2=372-. (4)移项,得y 2-2y -15=0,把方程左边因式分解,得(y -5)(y +3)=0;∴y -5=0或y +3=0,∴y 1=5,y 2=-3.(5)将方程左边因式分解,得(x -3)[5x -(x +1)]=0,(x -3)(4x -1)=0,∴x -3=0或4x -1=0,∴x 1=3,x 2=41. (6)移项,得4(3x +1)2-25(x -2)2=0,[2(3x +1)]2-[5(x -2)]2=0,[2(3x +1)+5(x -2)]·[2(3x +1)-5(x -2)]=0,(11x -8)(x +12)=0,∴11x -8=0或x +12=0,∴x 1=118,x 2=-12. 说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2)直接因式分解就能转化成两个一次因式乘积等于零的形式,对于这种形式的方程就不必要整理成一般式了.例3:解关于x 的方程:(a 2-b 2)x 2-4abx =a 2-b 2.解:(1)当a 2-b 2=0,即|a |=|b |时,方程为-4abx =0.当a =b =0时,x 为任意实数.当|a |=|b |≠0时,x =0.(2)当a 2-b 2≠0,即a +b ≠0且a -b ≠0时,方程为一元二次方程.分解因式,得[(a +b )x +(a -b )][(a -b )x -(a +b )]=0,∵a +b ≠0且a -b ≠0,∴x 1=b a a b +-,x 2=ba b a -+. 说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是分三种情况,即①a =b =0;②|a |=|b |≠0;③|a |≠|b |.例4:已知x 2-xy -2y 2=0,且x ≠0,y ≠0,求代数式22225252y xy x y xy x ++--的值. 剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出,要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道x 与y 的比值也可.由已知x 2-xy -2y 2=0因式分解即可得x 与y 的比值.解:由x 2-xy -2y 2=0,得(x -2y )(x +y )=0,∴x -2y =0或x +y =0,∴x =2y 或x =-y . 当x =2y 时,135y13y 5y 5y y 22)y 2(y 5y y 22)y 2(y 5xy 2x y 5xy 2x 2222222222-=-=+⋅⋅+-⋅⋅-=++--. 当x =-y 时,21y 4y 2y 5y )y (2)y (y 5y )y (2)y (y 5xy 2x y 5xy 2x 222222222-=-=+⋅-⋅+--⋅-⋅--=++--2. 说明:因式分解法体现了“降次”“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解一元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的 应用.【同步达纲练习】1.选择题(1)方程(x -16)(x +8)=0的根是( )A .x 1=-16,x 2=8B .x 1=16,x 2=-8C .x 1=16,x 2=8D .x 1=-16,x 2=-8(2)下列方程4x 2-3x -1=0,5x 2-7x +2=0,13x 2-15x +2=0中,有一个公共解是( )A ..x =21B .x =2C .x =1D .x =-1(3)方程5x (x +3)=3(x +3)解为( )A .x 1=53,x 2=3 B .x =53C .x 1=-53,x 2=-3D .x 1=53,x 2=-3 (4)方程(y -5)(y +2)=1的根为( )A .y 1=5,y 2=-2B .y =5C .y =-2D .以上答案都不对 (5)方程(x -1)2-4(x +2)2=0的根为( )A .x 1=1,x 2=-5B .x 1=-1,x 2=-5C .x 1=1,x 2=5D .x 1=-1,x 2=5 (6)一元二次方程x 2+5x =0的较大的一个根设为m ,x 2-3x +2=0较小的根设为n ,则m +n 的值为( )A .1B .2C .-4D .4 (7)已知三角形两边长为4和7,第三边的长是方程x 2-16x +55=0的一个根,则第三边长是( )A .5B .5或11C .6D .11 (8)方程x 2-3|x -1|=1的不同解的个数是( )A .0B .1C .2D .32.填空题(1)方程t (t +3)=28的解为_______.(2)方程(2x +1)2+3(2x +1)=0的解为__________.(3)方程(2y +1)2+3(2y +1)+2=0的解为__________.(4)关于x 的方程x 2+(m +n )x +mn =0的解为__________.(5)方程x (x -5)=5 -x 的解为__________.3.用因式分解法解下列方程:(1)x 2+12x =0;(2)4x 2-1=0; (3)x 2=7x ;(4)x 2-4x -21=0;(5)(x -1)(x +3)=12; (6)3x 2+2x -1=0;(7)10x2-x-3=0;(8)(x-1)2-4(x-1)-21=0.4.用适当方法解下列方程:(1)x2-4x+3=0;(2)(x-2)2=256;(3)x2-3x+1=0;(4)x2-2x-3=0;(5)(2t+3)2=3(2t+3);(6)(3-y)2+y2=9;(7)(1+2)x2-(1-2)x=0;(8)5x2-(52+1)x+10=0;(9)2x2-8x=7(精确到0.01);(10)(x+5)2-2(x+5)-8=0.5.解关于x的方程:(1)x2-4ax+3a2=1-2a;(2)x2+5x+k2=2kx+5k+6;(3)x2-2mx-8m2=0; (4)x2+(2m+1)x+m2+m=0.6.已知x 2+3xy -4y 2=0(y ≠0),试求yx y x +-的值.7.已知(x 2+y 2)(x 2-1+y 2)-12=0.求x 2+y 2的值.8.请你用三种方法解方程:x (x +12)=864.9.已知x 2+3x +5的值为9,试求3x 2+9x -2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系式h =-5(t -2)(t +1).求运动员起跳到入水所用的时间.11.为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1视为一个整体,然后设x 2-1=y ,则y 2=(x 2-1)2,原方程化为y 2-5y +4=0,解此方程,得y 1=1,y 2=4.当y =1时,x 2-1=1,x 2=2,∴x =±2.当y =4时,x 2-1=4,x 2=5,∴x =±5.∴原方程的解为x 1=-2,x 2=2,x 3=-5,x 4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1)运用上述方法解方程:x 4-3x 2-4=0.(2)既然可以将x 2-1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1.(1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D2.(1)t 1=-7,t 2=4(2)x 1=-21,x 2=-2(3)y 1=-1,y 2=-23(4)x 1=-m ,x 2=-n (5)x 1=5,x 2=-1 3.(1)x 1=0,x 2=-12;(2)x 1=-21,x 2=21;(3)x 1=0,x 2=7;(4)x 1=7,x 2=-3;(5)x 1=-5,x 2=3;(6)x 1=-1,x 2=31; (7)x 1=53,x 2=-21;(8)x 1=8,x 2=-2. 4.(1)x 1=1,x 2=3;(2)x 1=18,x 2=-14;(3)x 1=253+,x 2=253-;(4)x 1=3,x 2=-1; (5)t 1=0,t 2=-23;(6)y 1=0,y 2=3;(7)x 1=0,x 2=22-3; (8)x 1=55,x 2=10;(9)x 1≈7.24,x 2=-3.24;(10)x 1=-1,x 2=-7. 5.(1)x 2-4ax +4a 2=a 2-2a +1,(x -2a )2=(a -1)2,∴x -2a =±(a -1),∴x 1=3a -1,x 2=a +1.(2)x 2+(5-2k )x +k 2-5k -6=0, x 2+(5-2k )x +(k +1)(k -6)=0,[x -(k +1)][x -(k -6)]=0,∴x 1=k +1,x 2=(k -6).(3)x 2-2mx +m 2=9m 2,(x -m )2=(3m )2∴x 1=4m ,x 2=-2m(4)x 2+(2m +1)x +m (m +1)=0,(x +m )[x +(m +1)]=0,∴x 1=-m ,x 2=-m -16.(x +4y )(x -y )=0, x =-4y 或x =y当x =-4y 时,y x y x +-=3544=+---y y y y ; 当x =y 时,y x y x +-=y y y y +-=0. 7.(x 2+y 2)(x 2+y 2-1)-12=0,(x 2+y 2)2-(x 2+y 2)-12=0,(x 2+y 2-4)(x 2+y 2+3)=0,∴x 2+y 2=4或x 2+y 2=-3(舍去)8.x 1=-36,x 2=249.∵x 2+3x +5=9,∴x 2+3x =4,∴3x2+9x-2=3(x2+3x)-2=3×4-2=10 10.10=-5(t-2)(t+1),∴t=1(t=0舍去) 11.(1)x1=-2,x2=2(2)(x2-2)(x2-5)=0,(x+2)(x-2)(x+5)(x-5)=0。
(完整版)用因式分解法解一元二次方程(知识点+经典例题+综合练习)---详细答案

用因式分解法解一元二次方程【主体知识归纳】1.因式分解法若一元二次方程的一边是0,而另一边易于分解成两个一次因式时,例如,X2—9= 0, 这个方程可变形为(x+ 3)( X—3) = 0,要(x + 3)( x —3)等于0,必须并且只需(x+ 3)等于0或(x—3)等于0, 因此,解方程(x + 3)( x—3) = 0就相当于解方程x+ 3= 0或x—3 = 0 了,通过解这两个一次方程就可得到原方程的解•这种解一元二次方程的方法叫做因式分解法.2•因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程•其理论根据是:若A- B=吐A=0 或B= 0.【基础知识讲解】1 •只有当方程的一边能够分解成两个一次因式,而另一边是0的时候,才能应用因式分解法解一元二次方程•分解因式时,要根据情况灵活运用学过的因式分解的几种方法.2 •在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程•但对某些特殊形式的一元二次方程,有的用直接开平方法简便,有的用因式分解法简便•因此,在遇到一道题时,应选择适当的方法去解. 配方法解一元二次方程是比较麻烦的,在实际解一元二次方程时,一般不用配方法•而在以后的学习中,会常常用到因式分解法,所以要掌握这个重要的数学方法.【例题精讲】例1 :用因式分解法解下列方程:2(1) y + 7y + 6 = 0; (2) t (2 t —1) = 3(2 t —1); ⑶(2 x —1)( x—1) = 1.解:(1)方程可变形为(y+ 1)( y+ 6) = 0, y+ 1 = 0 或y + 6 = 0,「. y1 = —1, y2=— 6.1(2) 方程可变形为t(2t —1) —3(21 —1) = 0, (2t —1)( t —3) = 0, 2t —1 = 0 或t —3= 0,二t1= , t22=3.(3) 方程可变形为2x2—3x = 0. x(2x—3) = 0, x= 0 或2x — 3 = 0.3--X1 = 0, X2 =2说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x—a)(x —b) = c的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x —e)( x—f) = 0的形式,这时才有X1= e, %= f,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x— 1 = 1 或x — 1 = 1 .••• x i = 1, X2= 2.(3)在方程(2)中,为什么方程两边不能同除以(2t —1),请同学们思考?例2 :用适当方法解下列方程:—2 ------------------------------------ 2 2 2(1) ..3(1 —x) = ..27 ; (2) x —6x—19= 0; (3)3 x = 4x+ 1; (4) y —15= 2y;(5)5 x(x—3) —(x—3)( x+ 1) = 0 ;2 2(6)4(3 x + 1) = 25(x —2).剖析:方程(1)用直接开平方法,方程(2)用配方法,方程(3)用公式法,方程(4)化成一般式后用因式分解法,而方程(5)、(6)不用化成一般式,而直接用因式分解法就可以了.解:(1)(1 —x)2= , 9 , (x—1) 2= 3, x —1 = ± , 3 , • X1 = 1 + . 3 , X2= 1 — .、3 .(2) 移项,得x2—6x = 19,配方,得x2—6x+ ( —3)2= 19+ ( —3)2, (x—3)2= 28, x — 3 =± 2 ,7 ,•-X1 = 3+ 2 .7 , X2= 3— 2 7 .⑶移项,得3x —4x—1= 0,a= 3, b=—4, c =—1,•x ( 4) V( 4)2 4 3 ( 1) 2 <7--x =2 3 32 V7 2 47•• X1 = , X2 =3 32 __⑷移项,得y—2y —15 = 0,把方程左边因式分解,得(y —5)( y+ 3) = 0;•y —5= 0 或y+ 3= 0, • y1 = 5, y2 = —3.⑸将方程左边因式分解,得(x—3) :5x —(x+ 1) ]= 0, (X —3)(4 x —1) = 0,•x —3= 0 或4x— 1 = 0,c 1--X1 = 3, X2 =42 2(6)移项,得4(3x + 1) —25(x —2) = 0,2 2[2(3 x+ 1): —[ 5( x—2): = 0,:2(3 x+ 1) + 5(x —2): • : 2(3 x+ 1) —5( x —2) ]= 0,(11 X—8)( x + 12) = 0,• 11x—8 = 0 或x + 12= 0,二X1 = — , X2=—12.11说明:(1)对于无理系数的一元二次方程解法同有理数一样,只不过要注意二次根式的化简.(2) 直接因式分解就能转化成两个一次因式乘积等于零的形式, 般式了.2 2 2 2 2例3:解关于x 的方程:(a — b )x — 4abx = a - b .解:⑴ 当 a 2— b 2= 0,即 | a | = | b | 时,方程为一4abx = 0. 当a = b = 0时,x 为任意实数.当| a | = | b |z 0时,x = 0. (2)当a 2— b 2^ 0,即a + 0且a — b *0时,方程为一元二次方程.分解因式,得[(a + b )x + (a — b ) ] [(a — b )x — (a + b ) ]= 0,a +b * 0 且 a — b * 0,b a a b X 1=, X 2 =a ba b说明:解字母系数的方程,要注意二次项系数等于零和不等于零的不同情况分别求解.本题实际上是 分三种情况,即① a = b = 0 :②丨a | = | b |* 0 :③丨a | *| b | .例4:已知x 2— xy — 2y 2= 0,且x * 0, y * 0,求代数式剖析:要求代数式的值,只要求出x 、y 的值即可,但从已知条件中显然不能求出, 要求代数式的分子、分母是关于x 、y 的二次齐次式,所以知道 x 与y 的比值也可.由已知 x 2— xy — 2y 2= 0因式分解即可得 x 与y 的比值.2 2解:由 x — xy — 2y = 0,得(x — 2y )( x + y ) = 0,二 x — 2y = 0 或 x + y = 0,. x = 2y 或 x =— y .“化归”的数学思想方法,它不仅可用来解一元二次方程,而且在解元高次方程、二元二次方程组及有关代数式的计算、证明中也有着广泛的应用.【同步达纲练习】 1•选择题(1)方程(x — 16)( x + 8) = 0 的根是()对于这种形式的方程就不必要整理成一2 2x 2 2xy 5y2 的值x 2xy 5y当x = 2y 时, 2 2 x2xy52 2 2(2y) 2 2y y 5y 5y (2y)2 2 2y y 5y 2 13y 2 5 13当x = — y 时,x 2 2xy 5y 22 2x 2xy 5y(y)22 ( y) y 5y 2 2(y) 2 ( y) y 5y y 24y 2 说明:因式分解法体现了“降次”A. X1 = —16, X2= 8B. X1 = 16, X2= —8C. X1 = 16, X2= 8D. X1 = —16, X2=—8__ 2 2 2(2)下列方程 4x - 3x — 1= 0, 5x - 7x + 2= 0, 13x - 15x + 2 = 0 中,有一个公共解是 ()方程 5x (x + 3) = 3(x + 3)解为( 方程(y -5)( y + 2) = 1的根为(22方程(x - 1) -4(x + 2) = 0 的根为()A .1 B.2 C. - 4 D. 4⑺ 已知三角形两边长为4和7,第三边的长是方程 x 2- 16X + 55= 0的一个根,则第三边长是 ( )A. 5B. 5 或 11C. 6D.11(8) 方程 x 2- 3|x - 1| = 1的不同解的个数是()A . 0 B. 1 C. 2 D. 32 .填空题(1)方程t (t + 3) = 28的解为 __________ .2⑵方程(2x + 1) + 3(2 x + 1) = 0的解为 _____________ .2⑶ 方程(2y + 1) + 3(2 y + 1) + 2 = 0 的解为 ____________ .⑷关于x 的方程x + (m+ n )x + mr = 0的解为 ______________⑸方程x (x - J5) =5 -x 的解为 _____________A . . x =12B. x = 2C. x = 1D.x =- 1A . X 1= 3, X 2= 3 B. 3x=-5 C.3X 1 = - — , X 2 =- 35D.3 X 1 = , X 2=- 35A . y 1 = 5, y =- 2B. y = 5C. y =-2D.以上答案都不对A. X 1 = 1, X =- 5B. X 1=- 1, X 2=- 5C.X 1 = 1, X 2= 5 D. X 1 =- 1, X 2 = 5元二次方程 x 2+ 5x = 0的较大的一个根设为 m,3x + 2 = 0较小的根设为 n ,贝U n 的值为2 (1) x + 12x = 0;2(3) x = 7x ;2⑷ x — 4x — 21 = 0;(5)( X - 1)( x + 3) = 12;2(6)3 x + 2x - 1= 0;2 2(6)(3 — y ) + y = 9;⑺(1 + , 2)x 3 — (1 — , 2)x = 0;(8) . 5 x 2— (5 2 + 1)x + ,10 = 0;201) ; (10)( x + 5) — 2( x + 5) — 8 = 0.5 .解关于x 的方程:(1) x 2 — 4ax + 3a 2= 1 — 2a ; (2) x 2 + 5x + k 2 = 2kx + 5k + 6 ;6 .已知 x 2+ 3xy — 4y 2= 0( y ^ 0),试求 的值.3 2 2 2(3) x — 2mx- 8m = 0; (4) x + (2 耐 1)x + m + m = 0.2 (7)10 x — x — 3= 0; 2(8)( x — 1) — 4( x — 1) — 21 = 0.4 .用适当方法解下列方程:2(1) x — 4x + 3 = 0; (4) x 2— 2x — 3 = 0;2(2)( x — 2) = 256; 2(3) x — 3x + 1 = 0;⑸(2 t + 3) 2= 3(21 + 3);2(9)2 x — 8x = 7(精确到 0.x y2 2 2 2 2 27.已知(x + y)( x — 1 + y ) —12= 0 .求x + y 的值.&请你用三种方法解方程:x(x + 12) = 864.9 .已知x2+ 3x+ 5的值为9,试求3x2+ 9x—2的值.10.一跳水运动员从10米高台上跳水,他跳下的高度h(单位:米)与所用的时间t(单位:秒)的关系式h=—5(t —2)( t + 1) •求运动员起跳到入水所用的时间.11•为解方程(x2—1)2—5(x2—1) + 4 = 0,我们可以将x2—1视为一个整体,然后设x2— 1 = y,则y2= (x2—1)2,原方程化为y2—5y + 4 = 0,解此方程,得y1 = 1, y2= 4.当y = 1 时,x2— 1 = 1, x2= 2,「. x=±2 .当y = 4 时,x2— 1 = 4, x2= 5,「. x=±、5 .原方程的解为X1=—2 , x2= , 2 , X3=—:.『5 , X4 =、.. 5 .以上方法就叫换元法,达到了降次的目的,体现了转化的思想.(1) 运用上述方法解方程:x4—3x2—4= 0.(2) 既然可以将x2—1看作一个整体,你能直接运用因式分解法解这个方程吗参考答案【同步达纲练习】1. (1)B (2)C (3)D (4)D (5)B (6)A (7)A (8)D12. (1) 11=—7 , 12 =4(2)X1=—— , X2=—2(3) y’ = —1 , y2= —-(4) X1 ==—m X2=—n(5) X1==.5 , X2 =—1221 13. (1) X1 = 0 , X2=—12; (2) X1=—— , X2 = ; (3) X1 =0 , X2 =7; (4) X1==7, X2= —3; (5) X1 =—5 , X2 = 3; (6) X1 = —1 ,2 21X2 =33 1(7)x i= , X2 = —一;(8)x i= 8, X2=— 2 .5 23 5 3 54. (1) x i= 1 , X2= 3; (2) x i= 18, X2=—14;⑶x i= , X2 = ; (4) x i =3, X2=—1;2 2(5) t1= 0, t2=—3; (6) y1= 0, y2 = 3; (7) X1 = 0, X2= 2 2 —3;2(8)X1=上,X2 = . 10 ; (9) X1~ 7.24 , X2=—3.24 ; (10) X1=—1 , X2 =—7.55. (1) x2—4ax+4a2=a2—2a + 1,(x —2a)2= (a—1)2,二x—2a=± (a—1),二X1= 3a—1, X2= a+ 1.(2) x2+ (5 —2k)x + k2—5k—6 = 0,x2+ (5 —2k)x + (k+ 1)( k—6) = 0,:x—(k + 1) ] [x —(k —6)]= 0 ,二X1= k +1 , X2 = ( k—6).(3) x2—2mx^ m = 9用,(x—m)2= (3 m)2二X1= 4m X2=—2m2(4) x + (2 m^ 1) x + m m^ 1) = 0 ,(x + m [x+ ( m^ 1) ]= 0,二X1=—m X2 = —m-16. (x+ 4y)( x —y) =0,x=—4y 或x=y当x=—4y 时,—=^^ 5;x y 4y y 3当x= y 时,—=3 = 0 .x y y y7. (x2+ y2)( X2+ y2—1) —12 = 0,2 2 2 2 2(x + y) —(x +y) —12 = 0,(x2+ y2—4)( x2+ y2+3) = 0,x2+ y2= 4 或x2+ y2= —3(舍去)8. X1=—36, X2= 249. :X + 3x + 5= 9, . x?+ 3x= 4 ,/• 3x2+ 9x-2= 3(x2+ 3x) - 2 = 3X 4- 2= 1010. 10=- 5( t - 2)( t + 1),二t = 1(t = 0 舍去)11 .⑴x i=- 2, X2 = 2(2)( x2- 2)( x2-5) =0,(x + , 2 )( x- 2 )(x + .. 5 )( x-、5) = 03 .用因式分解法解下列方程:2(2)4 X - 1= 0;。
因式分解解一元二次方程136题(有答案)

分解因式法解一元二次方程专项练习136题(有答案)1.3(x﹣2)2﹣x(x﹣2)=0,2.3x(x+2)=5(x+2)3.2x2﹣8x=04.x2﹣3x﹣4=0.5.x2﹣2x﹣3=0.6.x(x﹣3)﹣4(3﹣x)=0,7. 3(x﹣2)2=x(x﹣2);8. 2x2﹣5x﹣3=0 10. x(x﹣6)=2(x﹣8)11.4+4(1+x)+4(1+x)2=19 12.x2﹣4x﹣5=013. 3(5﹣x)2=2(5﹣x)14.(x﹣3)2=2(3﹣x).15.2x2+x﹣6=0.16.2x2﹣x﹣1=0;17. 3x(x﹣1)=2(x﹣1)2.18.x(x﹣5)+4x=019. x2﹣2x=020.(x﹣3)2+2x(x﹣3)=0;21.x2﹣3x=0;22.(x﹣2)2=(2x+3)2 23.3x2﹣11x﹣4=0.24.2x(x﹣1)﹣x+1=0 25. 2x2+x﹣3=026.x2﹣2x﹣15=0;28. x(x﹣3)=15﹣5x;29.(x﹣1)2﹣2(x﹣1)=0 30.x(x﹣2)﹣x+2=0;31. 2x2﹣3x﹣5=0.32..4x2﹣x﹣1=3x﹣2,33.34.(x﹣3)2﹣2(x﹣1)=x﹣7.35. 3x(x﹣2)﹣2(x﹣2)=036. 3x2﹣x﹣2=0;38.(x﹣3)2=5(3﹣x)(x﹣3)2=5(3﹣x)39.(2x+1)2=2(2x+1)40.(3x﹣1)(x﹣1)=(4x+1)(x﹣1).41.x2﹣x﹣6=0,42.x2﹣8(x+6)=043.2x2﹣6x=0.44.(x﹣3)(x+1)=545.2x2﹣8x=0;46.x2+2x﹣15=0 47. 2x2﹣5x﹣7=048. 2y(y﹣3)=4(y﹣3)49. x2﹣7x﹣18=050. 3x2+8x﹣3=051. 2x(x﹣3)=9﹣3x 52.x2﹣4x=553. ﹣8x2+10x=054.3x2+4x﹣7=0,55. 3x2﹣5x+2=056. 2(x﹣3)2=x2﹣3x57.x2=3x;58. (3x﹣2)2=(2x﹣3)259. (y﹣2)2+2y(y﹣2)=060.2y(y+2)=y+2.61. 5x2+3x=062.(3x﹣2)2=(2x﹣3)263. x(x﹣3)=5(x﹣3);64. (2x+3)2﹣5(2x+3)+4=0.65. (2x﹣7)2﹣5(2x﹣7)+4=066. (3x﹣1)2=x2+6x+967.(2x+2)2=3(2x+2)(x﹣1)68.(x+7)(x﹣3)+4x(x+1)=069.2x(x+3)﹣3(x+3)=070. x﹣2=x(x﹣2)71. x2+8x﹣9=072.x(2x﹣5)=4x﹣10.73.(2x﹣5)2﹣(x+4)2=074.2(x﹣1)2=x2﹣175.76. 4x(2x﹣1)=3(2x﹣1);77. 2x2+x﹣1=0.78. (3x﹣2)(x+4)=(3x﹣2)(5x﹣1);79. (x+1)(x+3)=15.80. x2﹣5x﹣6=081. x2﹣2x=9982. (x﹣3)2﹣4x+12=0 83. 4(x+1)2=9(x﹣2)284. x2=2x85. (x+4)2=5(x+4)87. 16(x﹣1)2=22588. 4x2﹣4x+1=x2﹣6x+989. 9(x+1)2=4(x﹣1)2(4)x2﹣4x+4=(3﹣2x)290. (x﹣2)2=(3﹣2x)2.91. (x+2)2﹣10(x+2)+25=092.x2﹣2(p﹣q)x﹣4pq=0.93.x2+10x+21=0,94.2(x﹣2)2=3(x﹣2)95. 3(x﹣5)2=2(5﹣x),96. ,97. 5x2﹣4x﹣12=0,98. (x ﹣)=5x(﹣x),99.9(x﹣2)2﹣4(x+1)2=0.100.101.x2﹣8x+15=0;103. 6x2﹣x﹣12=0.104. 2x2﹣x﹣6=0105. ﹣x2+6x﹣5=0106. (x﹣5)2=(2x﹣1)(5﹣x)107. (x+1)(x+2)=3x+6.108. x2﹣9=0,109. x2+3x﹣4=0,110. x2﹣3x+2=0,111. 4(3x﹣1)2 =25(2x+1)2.112. (3x+5)2﹣4(3x+5)+3=0 113. (3x+2)(x+3)=x+14 114. 3(x+1)2=(x+1)115.(x﹣2)2﹣4=0116.(x﹣3)2+2x(x﹣3)=0 117.(3x﹣1)2=(x+1)2118.(x+5)2﹣2(x+5)﹣8=0.119. x2﹣8x=9120. (x﹣2)2=(2x+3)2.121. x2﹣3=3(x+1);122. (y﹣3)2+3(y﹣3)+2=0 123. 7x(5x+2)=6(5x+2)124.6(x+4)2﹣(x+4)﹣2=0125. x2﹣(3m﹣1)x+2m2﹣m=0,126.x2﹣2x﹣224=0.127.128.5x(x﹣3)﹣(x﹣3)(x+1)=0.129.x2﹣11x+28=0130. 4y2﹣25=0;131.(2x+3)2﹣36=0;132. x2﹣3x+2=0;133. 2t2﹣7t﹣4=0;134. 5y(y﹣1)=2(y﹣1)135. x2+(1+2)x+3+=0;136.(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24.137.x2﹣3|x|﹣4=0分解因式法解一元二次方程136题参考答案:1.3(x﹣2)2﹣x(x﹣2)=0,(x﹣2)(3x﹣6﹣x)=0,x﹣2=0或2x﹣6=0,解得:x1=2,x2=3;2.3x(x+2)=5(x+2)原方程可化为3x(x+2)﹣5(x+2)=0,(3x﹣5)(x+2)=0,解得x1=﹣2,3.2x2﹣8x=0因式分解,得2x(x﹣4)=0,于是得,2x=0或x﹣4=0,即x1=0,x2=4.4. x2﹣3x﹣4=0.因式分解,得(x﹣4)(x+1)=0,于是得,x﹣4=0或x+1=0,解得:x1=4,x2=﹣15.x2﹣2x﹣3=0.原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.6.x(x﹣3)﹣4(3﹣x)=0,(x﹣3)(x+4)=0,x﹣3=0或x+4=0,解得:x1=3,x2=﹣4;7. 3(x﹣2)2=x(x﹣2);整理得3(x﹣2)2﹣x(x﹣2)=0 即(x﹣2)(x﹣3)=0x1=2,x2=38. 2x2﹣5x﹣3=0(2x+1)(x﹣3)=0x1=﹣0.5,x2=39. (3x﹣1)2=(x+1)2原方程可化为:(3x﹣1)2﹣(x+1)2=0,(3x﹣1+x+1)(3x﹣1﹣x﹣1)=0,∴4x=0或2x﹣2=0,解得:x1=0,x2=1;10. x(x﹣6)=2(x﹣8)x2﹣6x=2x﹣16 x1=x2=411.4+4(1+x)+4(1+x)2=19原式可变为4(1+x)2+4(1+x)﹣15=0[2(1+x)﹣3][2(1+x)+5]=0x1=,x2=﹣12.x2﹣4x﹣5=0(x﹣5)(x+1)=0x﹣5=0或x+1=0x1=5,x2=﹣113. 3(5﹣x)2=2(5﹣x)原方程可变形为:3(5﹣x)2﹣2(5﹣x)=0(5﹣x)[3(5﹣x)﹣2]=0(5﹣x)(13﹣3x)=0则x1=5,x2=14.(x﹣3)2=2(3﹣x).原式可变为(x﹣3)2﹣2(3﹣x)=0(x﹣3)(x﹣1)=0x1=3,x2=115.2x2+x﹣6=0.2x2+x﹣6=0(x+2)(2x﹣3)=0x+2=0或2x﹣3=0∴x1=﹣2,x2=.16.2x2﹣x﹣1=0;原方程可化为:(x﹣1)(2x+1)=0,x﹣1=0或2x+1=0,解得:x1=1,x2=﹣.17. 3x(x﹣1)=2(x﹣1)2.原方程可化为:3x(x﹣1)﹣2(x﹣1)2=0,(x﹣1)(3x﹣2x+2)=0,x﹣1=0或x+2=0,解得:x1=1,x2=﹣218.x(x﹣5)+4x=0即x(x﹣5+4)=0x(x﹣1)=0x(x﹣2)=0∴x=0或x﹣2=0∴x1=0,x2=2.20.(x﹣3)2+2x(x﹣3)=0;原方程可化为:(x﹣3)(x﹣3+2x)=0(x﹣3)(x﹣1)=0x1=3,x2=1.21.x2﹣3x=0;x(x﹣3)=0∴x1=0,x2=322.(x﹣2)2=(2x+3)2(x﹣2)2=(2x+3)2即(x﹣2)2﹣(2x+3)2=0(3x+1)(x+5)=0x1=﹣5,x2=23.3x2﹣11x﹣4=0.把方程3x2﹣11x﹣4=0即(x﹣4)(3x+1)=0,解得x1=4,x2=.24.2x(x﹣1)﹣x+1=0原方程变形为:2x(x﹣1)﹣(x﹣1)=0∴(x﹣1)(2x﹣1)=0∴x﹣1=0或2x﹣1=0解得x1=1,x2=;25. 2x2+x﹣3=0原方程变形为:(x﹣1)(2x+3)=0∴x1=1,x2=26.x2﹣2x﹣15=0;原式可化为:(x﹣5)(x+3)=0得x1=5,x2=﹣327. 2x(x﹣3)+x=3.原式可化为:(x﹣3)(2x+1)=0得,x2=328. x(x﹣3)=15﹣5x; x1=3,x2=﹣529.(x﹣1)2﹣2(x﹣1)=0(x﹣1)2﹣2(x﹣1)=0,(x﹣1)(x﹣1﹣2)=0,∴x﹣1=0或x﹣3=0,∴x1=1,x2=330.x(x﹣2)﹣x+2=0;原方程可化为:x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,解得:x1=2,x2=1;31. 2x2﹣3x﹣5=0.原方程可化为:(2x﹣5)(x+1)=0,2x﹣5=0或x+1=0,解得:x1=,x2=﹣132..∵4x2﹣x﹣1=3x﹣2,∴4x2﹣4x+1=0即(2x﹣1)2=0,解得33.解:∴∴34.(x﹣3)2﹣2(x﹣1)=x﹣7.移项,合并同类项得,(x﹣3)2﹣3x+9=0,即,(x﹣3)2﹣3(x﹣3)=0,因式分解得,(x﹣3﹣3)(x﹣3)=0则x﹣3=0或(x﹣6)=0,解得,x1=3,x2=6.35. 3x(x﹣2)﹣2(x﹣2)=0(x﹣2)(3x﹣2)=0x1=2,x2=;36. 3x2﹣x﹣2=0;原方程变形得,(3x+2)(x﹣1)=0∴,x2=1;37. (x﹣6)2﹣(3﹣2x)2=0.原方程变形得,(x﹣6+3﹣2x)(x﹣6﹣3+2x)=038.(x﹣3)2=5(3﹣x)(x﹣3)2=5(3﹣x)(x﹣3)2+5(x﹣3)=0(x﹣3)(x+2)=0∴x1=3,x2=﹣2.39.(2x+1)2=2(2x+1)原方程可化为:(2x+1)2﹣2(2x+1)=0,(2x+1)(2x+1﹣2)=0,(2x+1)(2x﹣1)=0,解得:x1=﹣,x2=.40.(3x﹣1)(x﹣1)=(4x+1)(x﹣1).(3x﹣1)(x﹣1)﹣(4x+1)(x﹣1)=0,(x﹣1)[(3x﹣1)﹣(4x+1)]=0,(x﹣1)(x+2)=0,∴x1=1,x2=﹣2.41.∵x2﹣x﹣6=0,∴(x+2)(x﹣3)=0,∴x+2=0或x﹣3=0,解得x1=3,x2=﹣2.42.x2﹣8(x+6)=0原方程化为x2﹣8x﹣48=0(x+4)(x﹣12)=0解得x1=﹣4,x2=12.43.2x2﹣6x=0.原方程变形为2x(x﹣3)=0∴2x=0或x﹣3=0∴x1=0,x2=344.(x﹣3)(x+1)=5x2﹣2x﹣8=0,(x﹣4)(x+2)=0∴x1=4,x2=﹣2.45.2x2﹣8x=0;因式分解,得2x(x﹣4)=0,2x=0或x﹣4=0,解得,x=0或x=4;46.x2+2x﹣15=0(x+5)(x﹣3)=0x+5=0或x﹣3=0∴x1=﹣5,x2=3;47. 2x2﹣5x﹣7=0因式分解得(x+1)(2x﹣7)=0解得:,x2=﹣1;48. 2y(y﹣3)=4(y﹣3)2y(y﹣3)﹣4(y﹣3)=0(y﹣3)(2y﹣4)=0(2分)∴y1=3,y2=249. x2﹣7x﹣18=0解:(x﹣9)(x+2)=0x﹣9=0或x+2=0∴x1=9,x2=﹣250. 3x2+8x﹣3=0解:方程可以化为(x+3)(3x﹣1)=0 ∴x+3=0或3x﹣1=0即x1=﹣3,x2=.51. 2x(x﹣3)=9﹣3x2x(x﹣3)﹣(9﹣3x)=02x(x﹣3)+3(x﹣3)=0(x﹣3)(2x+3)=0x1=3,x2=﹣52.x2﹣4x=5x2﹣4x﹣5=0(x﹣5)(x+1)=0∴x﹣5=0,x+1=0∴原方程的解为:x1=5,x2=﹣1.53. ﹣8x2+10x=0x(10﹣8x)=0∴x1=0,x2=54.3x2+4x﹣7=0,(x﹣1)(3x+7)=0,x﹣1=0或3x+7=0,解得:55. 3x2﹣5x+2=0原式变形为:(3x﹣2)(x﹣1)=0∴x1=1,x2=56. 2(x﹣3)2=x2﹣3x原方程变形为:2(x﹣3)2=x(x﹣3)(x﹣3)[2(x﹣3)﹣x]=0(x﹣3)(x﹣6)=0∴x1=3,x2=657.(1)x2=3x;移项得,x2﹣3x=0,因式分解得,x(x﹣3)=0,解得,x1=0,x2=3;58. (3x﹣2)2=(2x﹣3)2解:3x﹣2=±(2x﹣3)3x﹣2=2x﹣3或3x﹣2=﹣(2x﹣3)解得:x1=﹣1,x2=1;59. (y﹣2)2+2y(y﹣2)=0解:(y﹣2)(y﹣2+2y)=0解得:y1=2,y2=60..2y(y+2)=y+2.原方程变形为:2y(y+2)﹣(y+2)=0,即(y+2)(2y﹣1)=0,解得y1=﹣2,y2=.61. 5x2+3x=0x(5x+3)=0,即:x=0或5x+3=0,∴x1=0,x2=﹣.62. (3x﹣2)2=(2x﹣3)2(3x﹣2)2﹣(2x﹣3)2=0,(3x﹣2+2x﹣3)(3x﹣2﹣2x+3)=0,5(x﹣1)(x+1)=0,即:x﹣1=0或x+1=0∴x1=1,x2=﹣163. x(x﹣3)=5(x﹣3);x(x﹣3)﹣5(x﹣3)=0,(x﹣3)(x﹣5)=0,∴x1=3,x2=5;64. (2x+3)2﹣5(2x+3)+4=0.(2x+3)2﹣5(2x+3)+4=0(2x+3﹣4)(2x+3﹣1)=0(2x﹣1)(x+1)=0,∴x1=,x2=﹣165. (2x﹣7)2﹣5(2x﹣7)+4=0(2x﹣7﹣4)(2x﹣7﹣1)=0;x2=466. (3x﹣1)2=x2+6x+9(3x﹣1)2﹣(x﹣3)2=0即(2x+1)(x﹣2)=0x1=2,x2=﹣0.567.(2x+2)2=3(2x+2)(x﹣1)(2x+2)2﹣3(2x+2)(x﹣1)=0即(2x+2)【2x+2﹣3(x﹣1)】=0∴(x﹣5)(x+1)=0x1=﹣1,x2=568.(x+7)(x﹣3)+4x(x+1)=0化简:(x+7)(x﹣3)+4x(x+1)=0整理得,5x2+8x﹣21=0,因式分解得,(5x﹣7)(x+3)=0,即5x﹣7=0或x+3=0,所以x1=,x2=﹣3.69..2x(x+3)﹣3(x+3)=0根据题意,原方程可化为:(x+3)(2x﹣3)=0,∴方程的解为:x1=,x2=﹣370. x﹣2=x(x﹣2)即x﹣2﹣x(x﹣2)=0(x﹣2)(1﹣x)=0x1=2,x2=1;71. x2+8x﹣9=0(x+9)(x﹣1)=0x1=﹣9,x2=172.x(2x﹣5)=4x﹣10.原方程可变形为:x(2x﹣5)﹣2(2x﹣5)=0,(2x﹣5)(x﹣2)=0,2x﹣5=0或x﹣2=0;解得x1=,x2=2.74.(2x﹣5)2﹣(x+4)2=0因式分解,得[(2x﹣5)+(x+4)][(2x﹣5)﹣(x+4)]=0,整理得,(3x﹣1)(x﹣9)=0解得,x1=,x2=9.74.2(x﹣1)2=x2﹣1原方程即为2(x﹣1)2﹣(x2﹣1)=0, 2(x﹣1)2﹣(x+1)(x﹣1)=0,(x﹣1)[2(x﹣1)﹣(x+1)]=0,(x﹣1)(x﹣3)=0, x1=1,x2=3;75.(x﹣1)(x﹣+3)=0,∴x1=1,x2=-376. 4x(2x﹣1)=3(2x﹣1);原方程可化为:4x(2x﹣1)﹣3(2x﹣1)=0,(2x﹣1)(4x﹣3)=0,2x﹣1=0或4x﹣3=0,解得:,;77. 2x2+x﹣1=0.原方程可化为:(2x﹣1)(x+1)=0,2x﹣1=0或x+1=0,解得:,x2=﹣1.78. (3x﹣2)(x+4)=(3x﹣2)(5x﹣1);解:(3x﹣2)(x+4)﹣(3x﹣2)(5x﹣1)=0 (3x﹣2)[(x+4)﹣(5x﹣1)]=0(3x﹣2)(﹣4x+5)=03x﹣2=0或﹣4x+5=0;79. (x+1)(x+3)=15.方程整理得:x2+4x﹣12=0( x+6)(x﹣2)=0x1=﹣6,x2=2.80. x2﹣5x﹣6=0解:(x﹣6)(x+1)=0,x﹣6=0或x+1=0,∴原方程的解是x1=6,x2=﹣1.81. x2﹣2x=99解:(x﹣11)(x+9)=0,x﹣11=0或x+9=0,∴原方程的解是x1=11,x2=﹣9.82. (x﹣3)2﹣4x+12=0解:(x﹣3)2﹣4(x﹣3)=0,(x﹣7)(x﹣3)=0,x﹣3=0或x﹣7=0,∴原方程的解是x1=3,x2=7.83. 4(x+1)2=9(x﹣2)2解:(2x+2)2=(3x﹣6)2,(2x+2+3x﹣6)(2x+2﹣3x+6)=0,即:(5x﹣4)(8﹣x)=0,x=8或x=,∴原方程的解是84. x2=2x移项,得x2﹣2x=0,因式分解,得x(x﹣2)=0,所以x=0或x=2.85. (x+4)2=5(x+4)移项,得,(x+4)2﹣5(x+4)=0,因式分解得,(x+4)[(x+4)﹣5]=0,x+4=0或x﹣1=0,解得,x1=﹣4,x2=187. 16(x﹣1)2=22516(x﹣1)2﹣152=0,所以[4(x﹣1)+15][4(x﹣1)﹣15]=0,即4x+11=0,4x﹣19=0,得x1=﹣,x2=.88. 4x2﹣4x+1=x2﹣6x+9方程变为(2x﹣1)2﹣(x﹣3)2=0,所以[(2x﹣1)+(x﹣3)][(2x﹣1)﹣(x﹣3)]=0,即3x﹣4=0,x+2=0,得x1=,x2=﹣2.89. 9(x+1)2=4(x﹣1)2(4)x2﹣4x+4=(3﹣2x)2原方程变为[3(x+1)]2﹣[2(x﹣1)]2=0,所以[3(x+1)+2(x﹣1)][3(x+1)﹣2(x﹣1)]=0,即(5x+1)(x+5)=0,得x1=﹣,x2=﹣5.90. (x﹣2)2=(3﹣2x)2.(x﹣2)2﹣(3﹣2x)2=0,(x﹣2+3﹣2x)(x﹣2﹣3+2x)=0,(1﹣x)(3x﹣5)=0,所以x1=1,x2=91. (x+2)2﹣10(x+2)+25=0因式分解得,[(x+2)﹣5]2=0,解得,x1=x2=392.x2﹣2(p﹣q)x﹣4pq=0.∵x2﹣2(p﹣q)x﹣4pq=0∴(x﹣2p)(x+2q)=0,∴x1=2p,x2=﹣2q.93.x2+10x+21=0,把左边分解因式得:(x+3)(x+7)=0,则:x+3=0,x+7=0,解得:x1=﹣3,x2=﹣7.94.2(x﹣2)2=3(x﹣2)∵2(x﹣2)2=3(x﹣2),∴(x﹣2)(2x﹣4﹣3)=0,即x﹣2=0或2x﹣7=0,解得:x1=2,x2=;95. 3(x﹣5)2=2(5﹣x),变形得:3(5﹣x)2=2(5﹣x),移项得:3(5﹣x)2﹣2(5﹣x)=0,分解因式得:(5﹣x)(13﹣3x)=0,则:5﹣x=0,13﹣3x=0,解得:x1=5,x2=;96. ,分解因式得:(x﹣)(x﹣)=0,则x﹣=0,x ﹣=0,解得:x1=,x2=.97. 5x2﹣4x﹣12=0,(5x+6)(x﹣2)=0,5x+6=0,x﹣2=0,x1=﹣,x2=2.98. (x ﹣)=5x (﹣x),(x ﹣)+5x(x ﹣)=0,(x ﹣)(1+5x)=0,x﹣=0,1+5x=0,x1=,x2=﹣.99.9(x﹣2)2﹣4(x+1)2=0.9(x﹣2)2﹣4(x+1)2=0(3x﹣6+2x+2)(3x﹣6﹣2x﹣2)=0,整理得:(5x﹣4)(x﹣8)=0,解方程得:x1=,x2=8100..x(x﹣2)=2(x+6),x2﹣2x=2x+12,x2﹣4x﹣12=0,(x﹣6)(x+2)=0,x1=6,x2=﹣2.∴原方程的根为x1=6,x2=﹣2101.(2)x2﹣8x+15=0;把左边分解因式得:(x﹣3)(x﹣5)=0,则x﹣3=0,x﹣5=0,解得:x1=5,x2=3;102. ;移项得:y2﹣2y+2=0,(y ﹣)2=0,两边开方得:y﹣=0,则y1=y2=;103. 6x2﹣x﹣12=0.由原方程,得(2x﹣3)(3x+4)=0,解得,x=,或x=﹣104. 2x2﹣x﹣6=0原方程化为(2x+3)(x﹣2)=0,解得x1=﹣,x2=2;105. ﹣x2+6x﹣5=0原方程化为x2﹣6x+5=0分解因式,得(x﹣1)(x﹣5)=0,解得x1=1,x2=5;106. (x﹣5)2=(2x﹣1)(5﹣x)移项,得(x﹣5)2+(2x﹣1)(x﹣5)=0,提公因式,得(x﹣5)(x﹣5+2x﹣1)=0,解得x1=5,x2=2107. (x+1)(x+2)=3x+6.∵(x+1)(x+2)=3x+6,∴(x+1)(x+2)=3(x+2),∴(x+1)(x+2)﹣3(x+2)=0,∴(x+2)(x+1﹣3)=0,∴x+2=0或x+1﹣3=0∴x1=﹣2,x2=2108. x2﹣9=0,x2=9,解得:x1=3,x2=﹣3,109. x2+3x﹣4=0,(x﹣1)(x+4)=0,解得:x1=1,x2=﹣4,110. x2﹣3x+2=0,(x﹣1)(x﹣2)=0,解得:x1=1,x2=2111. 4(3x﹣1)2 =25(2x+1)2.∵4(3x﹣1)2﹣25(2x+1)2=0,∴[2(3x﹣1)﹣5(2x+1)][2(3x﹣1)+5(2x+1)]=0,∴2(3x﹣1)﹣5(2x+1)=0或2(3x﹣1)+5(2x+1)=0,∴x1=﹣,x2=﹣.112. (3x+5)2﹣4(3x+5)+3=0设3x+5=y,则原方程变为y2﹣4y+3=0,∴(y﹣1)(y﹣3)=0,解得,y=1或y=3;①当y=1时,3x+5=1,解得x=﹣;②当y=3时,3x+5=3,解得,x=﹣;∴原方程的解是x=﹣,或x=﹣;113. (3x+2)(x+3)=x+14由原方程,得(x+4)(3x﹣2)=0,解得x=﹣4,或x=;114. 3(x+1)2=(x+1)移项得,3(x+1)2﹣(x+1)=0,提公因式得,(x+1)(3x+3﹣1)=0,即x+1=0或3x+3﹣1=0,解得x1=﹣1,x2=﹣115.(x﹣2)2﹣4=0∵(x﹣2﹣2)(x﹣2+2)=0,∴x﹣2﹣2=0或x﹣2+2=0,∴x1=4,x2=0;116.(x﹣3)2+2x(x﹣3)=0 ∵(x﹣3)(x﹣3+2x)=0,∴x﹣3=0或x﹣3+2x=0,∴x1=3,x2=1;117.(3x﹣1)2=(x+1)2∵3x﹣1=±(x+1),即3x﹣1=x+1或3x﹣1=﹣(x+1),∴x1=1,x2=0;118.(x+5)2﹣2(x+5)﹣8=0.∵[(x+5)﹣4][(x+5)+2]=0,∴(x+5)﹣4=0或(x+5)+2=0,∴x1=﹣1,x2=﹣7.119. x2﹣8x=9变形为:x2﹣8x﹣9=0,(x﹣9)(x+1)=0,则:x﹣9=0或x+1=0,解得:x1=9,x2=﹣1;120. (x﹣2)2=(2x+3)2.变形为:(x﹣2)2﹣(2x+3)2=0,(x﹣2+2x+3)(x﹣2﹣2x﹣3)=0,(3x+1)(﹣x﹣5)=0,则:3x+1=0,﹣x﹣5=0,解得:x1=﹣,x2=﹣5.121. x2﹣3=3(x+1);整理得x2﹣3x﹣4=0,∴(x+1)(x﹣4)=0,∴x+1=0或x﹣4=0,∴x1=﹣1,x2=4;122. (y﹣3)2+3(y﹣3)+2=0 ∵(y﹣3+2)(y﹣3+1)=0,∴y﹣3+2=0或y﹣3+1=0,∴y1=1,y2=2;123. 7x(5x+2)=6(5x+2)∵7x(5x+2)﹣6(5x+2)=0,∴(5x+2)(7x﹣6)=0,∴5x+2=0或7x﹣6=0,∴x1=﹣,x2=124.(3)6(x+4)2﹣(x+4)﹣2=06(x+4)2﹣(x+4)﹣2=0,[3(x+4)﹣2][2(x+4)+1]=0,(3x+4)(2x+7)=0,3x+4=0,2x+7=0,解得:x1=﹣,x2=﹣;125. x2﹣(3m﹣1)x+2m2﹣m=0,(x﹣m)[x﹣(2m﹣1)]=0,x﹣m=0,x﹣(2m﹣1)=0,解得:x1=m,x2=2m﹣1126.x2﹣2x﹣224=0.x2﹣2x﹣224=0(x﹣16)(x+14)=0,解得:x1=16;x2=﹣14.127.方程两边同时乘以2,得(x+3)2=4(x+2)2,移项,得(x+3)2﹣4(x+2)2,=0,(x+3+4x+8)(x+3﹣4x﹣8)=0,即5x+11=0或﹣3x﹣5=0,解得x1=﹣,x2=﹣;128.5x(x﹣3)﹣(x﹣3)(x+1)=0.∵(x﹣3)(5x﹣x﹣1)=0,∴x﹣3=0或5x﹣x﹣1=0,∴x1=3,x2=129.x2﹣11x+28=0x2﹣11x+28=0,(x﹣4)(x﹣7)=0,x﹣4=0,x﹣7=0,x1=4,x2=7130. 4y2﹣25=0;(2y+5)(2y﹣5)=0,所以y1=﹣,y2=;131.(2x+3)2﹣36=0;(2x+3)2﹣36=0;(2x+3+6)(2x+3﹣6)=0,所以x1=﹣,x2=;132. x2﹣3x+2=0;(x﹣1)(x﹣2)=0,所以x1=1,x2=2;133. 2t2﹣7t﹣4=0;(t﹣4)(2t+1)=0,所以t1=4,t2=﹣;134. 5y(y﹣1)=2(y﹣1)方程变形得:5y(y﹣1)﹣2(y﹣1)=0,因式分解得:(y﹣1)(5y﹣2)=0,可得y﹣1=0或5x﹣2=0,解得:y1=1,y2=.135. x2+(1+2)x+3+=0;(x+)(x+1+)=0x+=0或x+1+=0∴x1=﹣,x2=﹣1﹣.136.(x﹣3)2+(x+4)2﹣(x﹣5)2=17x+24.原方程整理得:x2﹣5x﹣24=0(x﹣8)(x+3)=0∴x1=8,x2=﹣3.137.x2﹣3|x|﹣4=0|x|2﹣3|x|﹣4=0(|x|﹣4)(|x|+1)=0|x|﹣4=0|x|+1≠0∴|x|=4∴x1=4,x2=﹣4.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例 用因式分解法解下列方程: (1)y 2+7y +6=0; (2)t (2t -1)=3(2t -1); (3)(2x -1)(x -1)=1. 解:(1)方程可变形为(y +1)(y +6)=0 y +1=0或y +6=0 ∴y 1=-1,y 2=-6(2)方程可变形为t (2t -1)-3(2t -1)=0 (2t -1)(t -3)=0,2t -1=0或t -3=0 ∴t 1=21,t 2=3.(3)方程可变形为2x 2-3x =0 x (2x -3)=0,x =0或2x -3=0 ∴x 1=0,x 2=23说明:(1)在用因式分解法解一元二次方程时,一般地要把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了.(2)应用因式分解法解形如(x -a )(x -b )=c 的方程,其左边是两个一次因式之积,但右边不是零,所以应转化为形如(x -e )(x -f )=0的形式,这时才有x 1=e ,x 2=f ,否则会产生错误,如(3)可能产生如下的错解:原方程变形为:2x -1=1或x -1=1.∴x 1=1,x 2=2.(3)在方程(2)中,为什么方程两边不能同除以(2t -1),请同学们思考典型例题二例 用因式分解法解下列方程6223362+=+x x x解:把方程左边因式分解为:0)23)(32(=-+x x∴032=+x 或023=-x ∴ 32,2321=-=x x 说明: 对于无理数系数的一元二次方程,若左边可分解为一次因式积的形式,均可用因式分解法求出方程的解。
例 用因式分解法解下列方程。
1522+=y y解: 移项得:01522=--y y 把方程左边因式分解 得:0)3)(52(=-+y y ∴052=+y 或03=-y∴.3,2521=-=y y说明: 在用因式分解法解一元二次方程时,一定要注意,把方程整理为一般式,如果左边的代数式能够分解为两个一次因式的乘积,而右边为零时,则可令每一个一次因式都为零,得到两个一元一次方程,解出这两个一元一次方程的解就是原方程的两个解了。
典型例题四例 用因式分解法解下列方程(1)021362=+-x x ;(2)0)23(9)12(322=--+x x ;分析:一元二次方程化为一般形式后,在一般情况下,左边是一个二次三项式,右边是零.二次三项式,通常用因式分解的方法,可以分解成两个一次因式的积,从而可求出方程的根.但有些问题,可直接用因式分解法求解,例如(2)符合平方差公式的结构特征.解:(1)原方程可变形为,0)2)(16(=--x x016=-x 或02=-x ,∴2,6121==x x .(2)原方程可化为0)633()332(22=--+x x ,即 0)633332)(633332(=+-+-++x x x x , ∴0)363)(6335(=-+-+x x , ∴06335=-+x 或0363=-+x ,∴321,513221+=-=x x . 说明:因式分解将二次方程化为一次方程求解,起到了降次的作用.这种化未知为已知的解题思想,是数学中的“化归思想”.事实上,将多元方程组化为一元方程,也是此法.典型例题五例 用因式分解法解方程:(1)03652=--x x ; (2)0)32(3)32(22=---x x ; (3)0223)222(2=+---x x ; (4)066)2332(2=++-x y .分析:用因式分解法解一元二次方程时,应将方程化为0=⋅B A 的形式,然后通过0=A 或0=B ,求出21,x x .解:(1)0)4)(9(=+-x x ,09=-x 或04=+x ..4,921-==∴x x(2)0)364)(32(=---x x , 即 0)94)(32(=--x x . ∴032=-x 或094=-x ,∴.49,2321==x x(3)[]0)223()1(=--+x x , 即 01=+x 或0)223(=--x . ∴223,121-=-=x x . (4)0)23)(32(=--y y , 即 032=-y 或023=-y , ∴23,3221==y y .说明:有些系数或常数是无理数的一元二次方程,只要熟悉无理数的分解方法,也可将之和因式分解法求解.典型例题六例 用适当方法解下列方程:(1)0522=-x ; (2))21()1(2252---=+x x x x ;(3)14)1(2)3(222+=-+-x x x ; (4)010342=+-x x (5)04732=+-x x (用配方法) 解:(1)移项,得522=x ,方程两边都除以2,得252=x , 解这个方程,得25±=x , 1021±=x , 即10211=x ,.10212-=x (2)展开,整理,得.042=+x x方程可变形为0)14(=+x x0=x或014=+x ,∴ .41,021-==x x(3)展开,整理,得0151642=+-x x ,方程可变形为0)52)(32(=--x x032=-x 或052=-x∴ .25,2321==x x(4)∵ ,10,34,1=-==c b a081014)34(422>=⨯⨯--=-ac b ,∴ .23222234128)34(±=±=⨯±--=x∴ 2321+=x , 2322-=x (5)移项,得4732=-x x ,方程各项都除以3,得.34372-=-x x配方,得222)67(34)67(37-+-=-+-x x ,361)67(2=-x 解这个方程,得6167±=-x , 即341=x ,.12=x 说明:当一元二次方程本身特征不明显时,需先将方程化为一般形式02=++c bx ax (0≠a ),若0=b ,a 、c 异号时,可用直接开平方法求解,如(l )题.若0≠a ,0≠b ,0=c 时,可用因式分解法求解,如(2)题.若a 、b 、c 均不为零,有的可用因式分解法求解,如(3)题;有的可用公式法求解,如(4)题.配方法做为一种重要的数学方法也应掌握,如(5)题.而有些一元二次方程有较明显特征时,不一定都要化成一般形式,如方程04)3(2=-+x 可用直接开平方法或因式分解法求解.又如方程)2)(1()14)(2(--++-x x x x 也不必展开整理成一般形式,因为方程两边都有,移项后提取公因式,得0)]1()14)[(2(=--+-x x x ,用因式分解法求解,得32,221-==x x ,对于这样的方程,一定注意不能把方程两边都除以)2(-x ,这会丢掉一个根2=x .也就是方程两边不能除以含有未知数的整式.典型例题七例 解关于x 的方程031120222=-+n mnx x m (0≠m ) 解法一:原方程可变形为0)34)(5(=+-n mx n mx05=-n mx 或034=+n mx∵ 0≠m ,∴ .43,521mn x m n x -== 解法二:∵220m a =,mn b 11=,23n c -=,ac b 42-2)11(mn =2204m ⨯-)3(2n -⨯ 036122≥=n m ,又 0≠m ,∴.40191120236112222mmnmn m n m mn x ±-=⨯±-= ∴ .43,521mnx m n x -==说明 解字母系数方程时,除了要分清已知数和未知数,还要注意题目中给出的条件,要根据条件说明方程两边除以的代数式的值不等于零.对于字母系数的一元二次方程同样可以有几种不同的解法,也要根据题目的特点选用较简单的解法,本题的解法一显然比解法二要简单.典型例题八例 已知12=-m ,试解关于x 的方程).1)(1(2)2(-+=+-x x x mx分析 由12=-m ,容易得到3=m 或1=m .整理关干x 的方程,得032)1(2=+--mx x m .题目中没有指明这个方程是一元二次方程,因此对二次项系数要进行讨论,当01=m-时,方程是一元一次方程;当01≠-m 时,方程是一元二次方程。
解:由12=-m ,得12±=-m ,∴ .1,321==m m整理)1)(1(2)2(-+=+-x x x mx ,得.032)1(2=+--mx x m当3=m 时,原方程为03622=+-x x , 解得233,23321-=+=x x 当1=m 时,原方程为032=+-x ,解得.23=x∴ 当3=m 时,233,23321-=+=x x 当1=m 时,.23=x填空题1.方程)2()2(2-=-x x 的根是 2.方程46)1)(3(+=++x x x 的解是 3.方程02)12(3)12(2=++++y y 的解是答案:1.3221==x x , 2.212121-=+=x x , 3.23121-=-=y y ,.解答题1.用因式分解法解下列方程:(1)42)2(2+=+x x ; (2)0)3()3(42=---x x x ; (3)0611102=--x x ; (4)22)1(4)2(9+=-x x 。
(5)02=+x x ;(6)03522=--x x ; (7)01072=+-x x ;(8)01892=++x x ; (9)0611102=--x x ;(10)071162=-+x x .2. 用因式分解法解下列方程:(1)5)1)(3(=+-x x ;(2)065)4(9)4(142=--+-x x ;(3)02)21(5)21(32=----x x 。
3.用因式分解法解下列关于x 的一元二次方程: (1)022=-+x k x x ;(2)02222=-+-n m mx x ;(3)054322=-+m mx x ;(4)018171522=--mx x m )0(≠m ; (5)0)(222=++-ab x b a abx )0(≠ab 4.用适当的方法解下列方程: (1)04942=-x ;(2)0942=-x x ; (3)22=-x x ;(4)62422=-x x ; (5)012=--x x ;(6)02522=+-x x .5.已知三角形的两边分别是1和2,第三边的数值是方程03522=+-x x 的根,求这个三角形的周长. 答案:1.(1)0221=-=x x ,; (2)4321==x x ,;(3)522321-==x x ,; (4)54821==x x ,.(5)01=x ,12-=x (6)51-=x ,72=x (7)21=x ,52=x (8)31-=x ,62-=x (9)231=x ,522-=x (10)211=x ,372-=x . 2. (1)4221=-=x x ,;(2)7412321==x x ,; (3)256121==x x ,.3.(1)01=x ,122-=k x (2)n m x +=1,n m x -=2(3)m x 61=,m x 92-=(4)m x 321-=,m x 592=(5)a b x =1,bax =2. 4.(1)271=x ,272-=x (2)01=x ,492=x (3)21=x ,12-=x (4)261=x ,242-=x (5)2511+=x ,2512-=x (6)351+=x ,352-=x 5.提示:三角形两边之和大于第三边,三角形周长为5.4.。