2018-2019学年北京市西城区高一上学期期末考试数学试题
2019年北京市西城区高三第一学期期末数学(理)试题(含答案)

高考数学精品复习资料2019.5北京市西城区20xx — 第一学期期末试卷高三数学(理科) 20xx.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|02}A x x =<<,1{|||}B x x =≤,则集合A B =( )(A )(0,1)(B )(0,1](C )(1,2)(D )[1,2)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 若3a =,2b =,1cos()3A B +=,则c =( ) (A )4 (B(C )3(D2.已知复数z 满足2i=1iz +,那么z 的虚部为( ) (A )1- (B )i -(C )1(D )i4.执行如图所示的程序框图,输出的S 值为( ) (A )34 (B )45(C )56(D )16. 若曲线221ax by +=为焦点在x 轴上的椭圆,则实数a ,b 满足( ) (A )22a b > (B )11a b< (C )0a b << (D )0b a <<7.定义域为R 的函数()f x 满足(1)2()f x f x +=,且当(0,1]x ∈时,2()f x x x =-,则当[2,1]x ∈--时,()f x 的最小值为( ) (A )116- (B ) 18-(C ) 14-(D ) 05.已知圆22:(1)(1)1C x y ++-=与x 轴切于A 点,与y 轴切于B 点,设劣弧»AB 的中点为M ,则过点M 的圆C 的切线方程是( ) (A)2y x =+-(B)1y x =+-(C)2y x =-+(D)1y x =+-8. 如图,正方体1111ABCD A BC D -的棱长为P 在对角线1BD 上,过点P 作垂直于1BD 的平面α,记这样得到的截面多边形 (含三角形)的周长为y ,设BP =x ,则当[1,5]x ∈时,函数()y f x =的值域为( )(A) (B) (C) (D)第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在平面直角坐标系xOy 中,点(1,3)A ,(2,)B k -,若向量OA AB ⊥,则实数k = _____.10.若等差数列{}n a 满足112a =,465a a +=,则公差d =______;24620a a a a ++++=______.11.已知一个正三棱柱的所有棱长均相等,其侧(左)视图如图所示,那么此三棱柱正(主)视图的面积为______.12.甲、乙两名大学生从4个公司中各选2个作为实习单位,则两人所选的实习单位中恰有1个相同的选法种数是______. (用数字作答)1侧(左)视图13. 如图,,B C 为圆O 上的两个点,P 为CB 延长线上一点,PA 为圆O 的切线,A 为切点. 若2PA =,3BC =,则PB =______;ACAB=______.14.在平面直角坐标系xOy 中,记不等式组220,0,2x y x y x y +⎧⎪-⎨⎪+⎩≥≤≤所表示的平面区域为D .在映射,:u x y T v x y=+⎧⎨=-⎩的作用下,区域D 内的点(,)x y 对应的象为点(,)u v . (1)在映射T 的作用下,点(2,0)的原象是 ; (2)由点(,)u v 所形成的平面区域的面积为______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)已知函数()f x x ω=,π()sin()(0)3g x x ωω=->,且()g x 的最小正周期为π.(Ⅰ)若()2f α=,[π,π]α∈-,求α的值; (Ⅱ)求函数()()y f x g x =+的单调增区间.16.(本小题满分13分)以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;P(Ⅲ)当2a =时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为X ,求随机变量X 的分布列和数学期望.17.(本小题满分14分)如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形, 60=∠BAD ,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,BF =3, H 是CF 的中点.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求直线DH 与平面BDEF 所成角的正弦值; (Ⅲ)求二面角H BD C --的大小.18.(本小题满分13分)已知函数()()e xf x x a =+,其中e 是自然对数的底数,a ∈R . (Ⅰ)求函数)(x f 的单调区间;(Ⅱ)当1a <时,试确定函数2()()g x f x a x =--的零点个数,并说明理由.19.(本小题满分14分)已知,A B 是抛物线2:W y x =上的两个点,点A 的坐标为(1,1),直线AB 的斜率为k , O 为坐甲组 乙组 891 a822 F BCEAHD标原点.(Ⅰ)若抛物线W 的焦点在直线AB 的下方,求k 的取值范围;(Ⅱ)设C 为W 上一点,且AB AC ⊥,过,B C 两点分别作W 的切线,记两切线的交点为D ,求OD 的最小值.20.(本小题满分13分)设无穷等比数列{}n a 的公比为q ,且*0()n a n >∈N ,[]n a 表示不超过实数n a 的最大整数(如[2.5]2=),记[]n n b a =,数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T .(Ⅰ)若114,2a q ==,求n T ; (Ⅱ)若对于任意不超过2014的正整数n ,都有21n T n =+,证明:120122()13q <<. (Ⅲ)证明:n n S T =(1,2,3,n =L )的充分必要条件为1,a q N N **挝.北京市西城区20xx —第一学期期末高三数学(理科)参考答案及评分标准20xx.1一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.B5.A 6.C 7.A 8.D二、填空题:本大题共6小题,每小题5分,共30分.9.410.125511.12.2413.1214.(1,1)π注:第10、13、14题第一问2分,第二问3分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为π()sin()(0)3g x xωω=->的最小正周期为π,所以2||ωπ=π,解得2ω=.………………3分由()fα=2α=即cos22α=,………………4分所以π22π4kα=±,k∈Z.因为[π,π]α∈-,所以7πππ7π{,,,}8888α∈--. ………………6分(Ⅱ)解:函数 π()()2sin(2)3y f x g x x x =+=+-ππ2sin 2cos cos 2sin 33x x x =+- ……………… 8分1sin 222x x =πsin(2)3x =+, ………………10分由 2πππ2π2π232k k x -++≤≤, ………………11分解得 5ππππ1212k k x -+≤≤. ………………12分 所以函数()()y f x g x =+的单调增区间为5ππ[ππ]()1212k k k -+∈Z ,.…………13分16.(本小题满分13分)(Ⅰ)解:依题意,得 11(889292)[9091(90)]33a ++=+++, ……………… 2分解得 1a =. ……………… 3分 (Ⅱ)解:设“乙组平均成绩超过甲组平均成绩”为事件A , ……………… 4分依题意 0,1,2,,9a =,共有10种可能. ……………… 5分由(Ⅰ)可知,当1a =时甲、乙两个小组的数学平均成绩相同, 所以当2,3,4,,9a =时,乙组平均成绩超过甲组平均成绩,共有8种可能.… 6分所以乙组平均成绩超过甲组平均成绩的概率84()105P A ==. ……………… 7分 (Ⅲ)解:当2a =时,分别从甲、乙两组同学中各随机选取一名同学,所有可能的成绩结果有339⨯=种, 它们是:(88,90),(88,91),(88,92),(92,90),(92,91),(92,92),(92,90),(92,91),(92,92), ……………… 9分则这两名同学成绩之差的绝对值X 的所有取值为0,1,2,3,4. ……………… 10分 因此2(0)9P X ==,2(1)9P X ==,1(2)3P X ==,1(3)9P X ==,1(4)9P X ==. ……………… 11分所以随机变量X 的分布列为:………………12分所以X 的数学期望221115()01234993993E X =⨯+⨯+⨯+⨯+⨯=.……………13分17.(本小题满分14分)(Ⅰ)证明:因为四边形ABCD 是菱形,所以 AC BD ⊥. ……………… 1分 因为平面BDEF ⊥平面ABCD ,且四边形BDEF 是矩形,所以 ED ⊥平面ABCD , ……………… 2分 又因为 AC ⊂平面ABCD ,所以 ED AC ⊥. ……………… 3分 因为 EDBD D =,所以 AC ⊥平面BDEF . ……………… 4分 (Ⅱ)解:设ACBD O =,取EF 的中点N ,连接ON ,因为四边形BDEF 是矩形,,O N 分别为,BD EF 的中点, 所以 //ON ED ,又因为 ED ⊥平面ABCD ,所以 ON ⊥平面ABCD , 由AC BD ⊥,得,,OB OC ON 两两垂直.所以以O 为原点,,,OB OC ON 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系. ……………… 5分因为底面ABCD 是边长为2的菱形,60BAD ∠=,BF =所以 (0,A ,(1,0,0)B ,(1,0,0)D -,(1,0,3)E -,(1,0,3)F,C,13()22H . ………………6分因为 AC ⊥平面BDEF ,所以平面BDEF的法向量AC =. …………7分 设直线DH 与平面BDEF 所成角为α, 由33()22DH =, 得32sin |cos ,|DH AC DH AC DH ACα⨯⋅=<>===所以直线DH 与平面BDEF ………………9分(Ⅲ)解:由(Ⅱ),得13(,)222BH =-,(2,0,0)DB =. 设平面BDH 的法向量为111(,,)x y z =n ,所以0,0,BH DB ⎧⋅=⎪⎨⋅=⎪⎩n n………………10分即111130,20,x z x ⎧-++=⎪⎨=⎪⎩ 令11z =,得(0,=n .………………11分 由ED ⊥平面ABCD ,得平面BCD 的法向量为(0,0,3)ED =-, 则00(01(3)1cos ,232ED ED ED⋅⨯+⨯+⨯-<>===-⨯n n n . ………………13分由图可知二面角H BD C --为锐角,所以二面角H BD C --的大小为60. ………………14分18.(本小题满分13分)(Ⅰ)解:因为()()e x f x x a =+,x ∈R ,所以()(1)e x f x x a '=++. ……………… 2分 令()0f x '=,得1x a =--. ……………… 3分 当x 变化时,()f x 和()f x '的变化情况如下:)……………… 5分故()f x 的单调减区间为(,1)a -∞--;单调增区间为(1,)a --+∞.………… 6分 (Ⅱ)解:结论:函数()g x 有且仅有一个零点. ……………… 7分理由如下:由2()()0g x f x a x =--=,得方程2e x ax x -=,显然0x =为此方程的一个实数解.所以0x =是函数()g x 的一个零点. ……………… 9分 当0x ≠时,方程可化简为e x ax -=.设函数()ex aF x x -=-,则()e 1x a F x -'=-,令()0F x '=,得x a =.当x 变化时,()F x 和()F x '的变化情况如下:即()F x 的单调增区间为(,)a +∞;单调减区间为(,)a -∞.所以()F x 的最小值min ()()1F x F a a ==-. ………………11分 因为 1a <,所以min ()()10F x F a a ==->, 所以对于任意x ∈R ,()0F x >, 因此方程ex ax -=无实数解.所以当0x ≠时,函数()g x 不存在零点.综上,函数()g x 有且仅有一个零点. ………………13分19.(本小题满分14分)(Ⅰ)解:抛物线2y x =的焦点为1(0,)4. ……………… 1分由题意,得直线AB 的方程为1(1)y k x -=-, ……………… 2分 令 0x =,得1y k =-,即直线AB 与y 轴相交于点(0,1)k -. ……………… 3分 因为抛物线W 的焦点在直线AB 的下方, 所以 114k ->, 解得 34k <. ……………… 5分 (Ⅱ)解:由题意,设211(,)B x x ,222(,)C x x ,33(,)D x y ,联立方程21(1),,y k x y x -=-⎧⎨=⎩ 消去y ,得210x kx k -+-=,由韦达定理,得11x k +=,所以 11x k =-. ……………… 7分 同理,得AC 的方程为11(1)y x k-=--,211x k =--. ……………… 8分对函数2y x =求导,得2y x '=,所以抛物线2y x =在点B 处的切线斜率为12x ,所以切线BD 的方程为21112()y x x x x -=-, 即2112y x x x =-. ……………… 9分 同理,抛物线2y x =在点C 处的切线CD 的方程为2222y x x x =-.………………10分 联立两条切线的方程2112222,2,y x x x y x x x ⎧=-⎪⎨=-⎪⎩ 解得12311(2)22x x x k k +==--,3121y x x k k==-, 所以点D 的坐标为111((2),)2k k k k---. ………………11分 因此点D 在定直线220x y ++=上. ………………12分因为点O 到直线220x y ++=的距离5d ==,所以OD ≥42(,)55D --时等号成立. ………………13分由3125y k k =-=-,得k =.所以当k =OD………………14分20.(本小题满分13分)(Ⅰ)解:由等比数列{}n a 的14a =,12q =, 得14a =,22a =,31a =,且当3n >时,01n a <<. ……………… 1分所以14b =,22b =,31b =,且当3n >时,[]0n n b a ==. ……………… 2分即 ,6, 2,4, 17, 3.n n n T n ==⎧⎪=⎨⎪⎩≥ ……………… 3分(Ⅱ)证明:因为 201421()n T n n =+≤,所以 113b T ==,120142(2)n n n b T T n -=-=≤≤. ……………… 4分因为 []n n b a =,所以 1[3,4)a ∈,2014[2,3)(2)n a n ∈≤≤. ……………… 5分 由 21a q a =,得 1q <. ……………… 6分 因为 201220142[2,3)a a q =∈, 所以 20122223qa >≥, 所以 2012213q<<,即 120122()13q <<. ……………… 8分 (Ⅲ)证明:(充分性)因为1a N *Î,q N *Î,所以11n n a a q N -*=?,所以 []n n n b a a == 对一切正整数n 都成立. 因为 12n n S a a a =+++L ,12n n T b b b =+++L ,所以 n n S T =. ……………… 9分(必要性)因为对于任意的n N *Î,n n S T =,当1n =时,由1111,a S b T ==,得11a b =;当2n ≥时,由1n n n a S S -=-,1n n n b T T -=-,得n n a b =.所以对一切正整数n 都有n n a b =. 由 n b Z Î,0n a >,得对一切正整数n 都有n a N *Î, ………………10分所以公比21a q a =为正有理数. ………………11分 假设 q N *Ï,令p q r=,其中,,1p r r N *?,且p 与r 的最大公约数为1.因为1a 是一个有限整数,所以必然存在一个整数()k k N Î,使得1a 能被k r 整除,而不能被1k r +整除.又因为111211k k k k a p a a qr++++==,且p 与r 的最大公约数为1.所以2k a Z +Ï,这与n a N *Î(n N *Î)矛盾. 所以q *∈N .因此1a N *Î,q *∈N . ……………13分。
北京市西城(北区)2012-2013学年高一上学期期末考试数学试题

北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学 2013.1试卷满分:150分 考试时间:120分钟A 卷 [必修 模块4] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的. 1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3π B.23π C.43π D.53π 2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( )A.(4,2)-B.(4,2)--C.(4,2)D.(4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( )A.3-B.3C.13- D.135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是π(0)2,,那么()f x 的解 析式可以是( ) A.sin x B.cos x C.sin 1x +D.cos 1x +6. 已知向量(1,=a ,(=-b ,则a 与b 的夹角是( )A. 6πB.4π C.3π D.2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos2y x =的图象( ) A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( )A.4π B.2π C.πD.2π9. 设角θ的终边经过点(3,4)-,则πcos()4θ+的值等于( )A.10B.10C.10D.10-10. 在矩形ABCD中,AB =,1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( ) A .3B .2C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=sin2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______.16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>. 其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号)三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+.(Ⅰ)求()3f π的值; (Ⅱ)求()f x 的单调递增区间; (Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 AB 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.AB 卷 [学期综合] 本卷满分:50分一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.1. 已知集合{11}P x x =-<<,{}M a =. 若M P ⊆,则a 的取值范围是________.2. lg2lg5+-=________. 3. 满足不等式122x>的x 的取值范围是_______.4. 设()f x 是定义在R 上的奇函数,若()f x 在(0,)+∞上是减函数,且2是函数()f x 的一个零点,则满足()0x f x >的x 的取值范围是________.5. 已知集合{1,2,,}U n = ,n *∈N .设集合A 同时满足下列三个条件: ①A U ⊆;②若x A ∈,则2x A ∉; ③若U x C A ∈,则2U x C A ∉.(1)当4n =时,一个满足条件的集合A 是________;(写出一个即可) (2)当7n =时,满足条件的集合A 的个数为________.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6. (本小题满分10分)已知函数21()1f x x =-. (Ⅰ)证明函数()f x 为偶函数;(Ⅱ)用函数的单调性定义证明()f x 在(0,)+∞上为增函数.7. (本小题满分10分)设函数(2)(4)2()(2)()2x x x f x x x a x -+≤⎧=⎨-->⎩. (Ⅰ)求函数()f x 在区间[2,2]-上的最大值和最小值;(Ⅱ)设函数()f x 在区间[4,6]-上的最大值为()g a ,试求()g a 的表达式.8. (本小题满分10分)已知函数()log a g x x =,其中1a >.(Ⅰ)当[0,1]x ∈时,(2)1x g a +>恒成立,求a 的取值范围; (Ⅱ)设()m x 是定义在[,]s t 上的函数,在(,)s t 内任取1n -个数1221,,,,n n x x x x -- ,设12x x << 21n n x x --<<,令0,ns x t x==,如果存在一个常数0M >,使得11()()nii i m xm x M -=-≤∑恒成立,则称函数()m x 在区间[,]s t 上的具有性质P . 试判断函数()()f x g x =在区间21[,]a a上是否具有性质P ?若具有性质P ,请求出M 的最小值;若不具有性质P ,请说明理由.(注:1102111()()()()()()()()nii n n i m x m xm x m x m x m x m x m x --=-=-+-++-∑ )北京市西城区2012 — 2013学年度第一学期期末试卷(北区)高一数学参考答案及评分标准 2013.1A 卷 [必修 模块4] 满分100分一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B. 二、填空题:本大题共6小题,每小题4分,共24分.11. 2; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③.注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分. 17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分所以sin 3tan cos 4ααα==-. …………………5分 (Ⅱ)24sin22sin cos 25ααα==-, …………………8分27cos22cos 125αα=-=, …………………11分 所以24717sin 2cos2252525αα+=-+=-. …………………12分 18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122==. …………………4分(Ⅱ)()cos )sin 1f x x x -+ …………………6分sin 1x x =+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分 又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()22AP a a = ,(2,0)AB a =, …………………3分所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分B 卷 [学期综合] 满分50分一、填空题:本大题共5小题,每小题4分,共20分.1.{11}a a -<<; 2. 12; 3. {1}x x >-; 4. (2,0)(0,2)- ;5. {2},或{1,4},或{2,3},或{1,3,4};16. 注:一题两空的试题每空2分. 二、解答题:本大题共3小题,共30分. 6. 证明:(Ⅰ)由已知,函数()f x 的定义域为{0}D x x =∈≠R . …………………1分设x D ∈,则x D -∈,2211()11()()f x f x x x -=-=-=-. …………………3分 所以函数()f x 为偶函数. …………………4分(Ⅱ)设12x x ,是(0,)+∞上的两个任意实数,且12x x <,则210x x x ∆=->,21222111()()1(1)y f x f x x x ∆=-=--- …………………6分 22212121222222121212()()11=x x x x x x x x x x x x --+=-=. …………………8分 因为120x x <<, 所以210x x +>,210x x ->,所以0y ∆>, …………………9分 所以()f x 在(0,)+∞上是增函数. …………………10分7.解:(Ⅰ)在区间[2,2]-上,()(2)(4)f x x x =-+.所以()f x 在区间[2,1]--上单调递增,在区间[1,2]-上单调递减, ……………1分 所以()f x 在区间[2,2]-上的最大值为(1)9f -=, …………………3分最小值为(2)0f =. …………………4分(Ⅱ)当2a ≤时,()f x 在[4,1]--上单调递增,在[1,6]-上单调递减,所以()f x 的最大值为9. …………………5分当28a <≤时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在2[2,]2a +单调递增,在2[,6]2a +上单调递减, 此时(1)9f -=,222()()922a a f +-=≤,所以()f x 的最大值为9. ……………7分 当810a <≤时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在2[2,]2a +单调递增,在2[,6]2a +上单调递减. 此时222()()(1)22a a f f +-=>-,所以()f x 的最大值为2(2)4a -.………………8分 当10a >时,()f x 在[4,1]--上单调递增,在[1,2]-上单调递减,在[2,6]单调递增,此时(6)4(6)(1)f a f =->-,所以()f x 的最大值为4(6)a -. …………………9分综上,298,(2)()810,44(6)10.a a g a a a a ≤⎧⎪-⎪=<≤⎨⎪->⎪⎩ …………………10分 8.解:(Ⅰ)当[0,1]x ∈时,(2)1xg a+>恒成立,即[0,1]x ∈时,log (2)1xa a +>恒成立, …………………1分因为1a >,所以2xaa +>恒成立, …………………2分即2xa a -<在区间[0,1]上恒成立,所以21a -<,即3a <, …………………4分 所以13a <<. 即a 的取值范围是(1,3). …………………5分 (Ⅱ)由已知()f x =log a x ,可知()f x 在2[1,]a 上单调递增,在1[,1]a上单调递减,对于21(,)a a 内的任意一个取数方法201211n n x x x x x a a -=<<<<<= ,当存在某一个整数{1,2,3,,1}k n ∈- ,使得1k x =时,1011211()()[()()][()()][()()]nii k k i f x f xf x f x f x f x f x f x --=-=-+-++-∑1211[()()][()()][()()]k k k k n n f x f x f x f x f x f x +++-+-+-++-21()(1)()(1)123f f f a f a=-+-=+=. …………………7分当对于任意的{0,1,2,3,,1}k n ∈-,1k x ≠时,则存在一个实数k 使得11k k x x +<<,此时1011211()()[()()][()()][()()]nii k k i f x f xf x f x f x f x f x f x --=-=-+-++-∑1211()()[()()][()()]k k k k n n f x f x f x f x f x f x +++-+-+-++-011()()()()()()k k k n k f x f x f x f x f x f x ++=-+-+-……(*) 当1()()k k f x f x +>时,(*)式01()()2()3n k f x f x f x +=+-<, 当1()()k k f x f x +<时,(*)式0()()2()3n k f x f x f x =+-<, 当1()()k k f x f x +=时,(*)式01()()()()3n k k f x f x f x f x +=+--<.……………9分综上,对于21(,)a a 内的任意一个取数方法201211n n x x x x x a a-=<<<<<= ,均有11()()3nii i f x f x-=-≤∑.所以存在常数3M ≥,使11()()ni i i f x f x M -=-≤∑恒成立,所以函数()f x 在区间21[,]a a上具有性质P .此时M 的最小值为3. …………………10分。
【百强校】北京101中学2018-2019学年上学期高一年级期末考试数学试卷

绝密★启用前【百强校】北京101中学2018-2019学年上学期高一年级期末考试数学试卷试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.若sin =,0< <,则cos =( ) A .B .C .D .2.集合M={Z},N={Z},则( )A .M NB .N MC .M N=D .M N=R 3.下列命题中正确的是( )A .共线向量都相等B .单位向量都相等C .平行向量不一定是共线向量D .模为0的向量与任意一个向量平行 4.下列函数为奇函数,且在(- ,0)上单调递减的是( ) A . B . C . D .5.已知函数( R , >0)的最小正周期为 ,为了得到函数的图象,只要将 的图象( ) A .向左平移个单位长度 B .向右平移个单位长度C .向左平移 个单位长度D .向右平移个单位长度 6.如图所示,函数 (且)的图象是( )…………线…………○………………线…………○……A . B .C .D .7.函数 ( >0)在区间[0,1]上至少出现10次最大值,则 的最小值是( ) A .10 B .20 C .D .8.设偶函数 在(- ,0)上是增函数,则 与 的大小关系是( )A .B .C .D .不确定第II卷(非选择题)请点击修改第II卷的文字说明二、填空题9.求值:2+=____________。
10.已知向量a=(1,1),b=(sinx,),∈(0,),若a∥b,则x的值是_______。
11.若tan=3,则2 sin2-sin cos-cos2=________。
12.若函数=cos(x+)(∈N*)图象的一个对称中心是(,0),则的最小值为_________。
13.函数的值域是__________。
14.已知点O为△ABC内一点,+2+3=0,则=_________。
北京市西城区2019~2020学年度第一学期期末考试高三数学试题(含答案解析)

北京市西城区2019 — 2020学年度第一学期期末试卷高三数学本试卷共5页.共150分。
考试时长120分钟。
考生务必将答案答在答题卡上•在试 卷上作答无效。
第I 卷(选择题共40分)-S 选择题:本大题共8小题■每小题5分.共40分•在每小题列出的四个选项中,选出 符合题目要求的一项.1. 设集合Λ = {x ∖r<a}. B = {—3,0∙l ∙5}・若集合A∩B 有且仅有2个元索.则实数α 的取值范围为(A) (-3,+∞)(B) (0> 1](C) [l ∙+α□)2. 若复数Z = 注.则在复平面内N 对应的点位于I-TI(A)第一象限 (B)第二象限(C)第三象限3. 在厶ABC 中.若 α=6, A=60o, 3 = 75°,则 C =(A) 4(B) 2√2(C) 2√3(D) 2^4. 设且兀y≠0,则下列不等式中一定成立的是(A)丄>丄(B)InlJrl >ln∣y 丨(C) 2-工<2-,CD) j ∙2>^25. 已知直线T Jry Jr2=0与圆τ ÷j∕2+2jc~2y jra = 0有公共点,则实数"的取值范围为(A) ( — 8. θ](B) [θ∙+oo)(C) [0, 2)(D) (—8, 2)2020. I(D) Eb 5)(D)第四象限6・设三个向b. c互不共线•则∙+b+c=(Γ是^以Iah ∖b∖, ICl为边长的三角形存在"的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件7.紫砂壶是中国特冇的手工制造陶土工艺品,其制作始于明朝正徳年间.紫砂壶的壶型众多•经典的有西施壶.掇球壶、石瓢壶.潘壶等•其中.石瓢壶的壶体可以近似看成一个圆台(即圆锥用平行于底面的平面截去一个锥体得到的)・下图给出了一个石瓢壶的相关数据(单位cm),那么该壶的容量约为(A)IOO cm5(B)200 cm3(C)300 cm3(D)400 cn√&已知函数∕Q)=√TTΓ+4 若存在区间O M].使得函数/Q)在区间DZ 上的值域为[α + l,6 + l],则实数〃的取值范围为(A) (-l,+oo) (B) (一 1. 0] (C) (一 +,+8) (D)( —斗,0]4 4第JI 卷(非选择题共110分)二、填空题:本大题共6小题■每小题5分,共3。
2019北京西城区高一化学第一学期期末试卷带答案Word版

北京市西城区2018 —2019学年度第一学期期末试卷高一化学2019.1本试卷共9页, 共100分。
考试时长90分钟。
考生务必将答案答在答题纸上, 在试卷上作答无效。
可能用到的相对原子质量: H 1 C 12 O 16 Na 23 S 32 Cl 35.5 Fe 56第一部分(选择题共40分)每小题只有一个选项......符合题意(每小题2分)1. 下列试剂中, 标签上应标注的是A.纯碱B.铁粉C.浓硫酸D.酒精B. Na2O2C. Fe2O3D. Fe(OH)32. 下列固体呈淡黄色的是A. Na2OA.Na2OB. NaCl溶液C. NaOH固体D. 乙醇3. 下列物质中, 属于电解质的是A. CuA.CuB. 漂白粉C. 赤铁矿D. 氯水4. 下列物质中, 属于纯净物的是A. 液氨A.液氨高一化学第一学期期末试卷第1页(共16页)B. CO2C. NO2D. NO5. 下列气体过量排放不会导致酸雨的是A. SO2A.SO26. 胶体与其它分散系的本质区别是B. 胶体微粒能通过滤纸A. 能产生丁达尔效应A.能产生丁达尔效应C. 分散质微粒直径在1~100 nm之间D. 胶体在一定条件下能稳定存在7. 合金是一类用途B. 青铜C. 生铁D. 水银广泛的金属材料。
下列物质不属于合金的是A. 不锈钢A.不锈钢B. 浓盐酸C. 硫酸铜溶液D. 稀硫酸8. 下列溶液中, 常温下可以用铁制容器装运的是A. 浓硝酸A.浓硝酸B. 金属钠C. 氯化铁D. 稀硝酸9. 下列物质中, 常用作还原剂的是A. 氯气A.氯气10. 下列四种基本反应类型与氧化还原反应的关系图中, 正确的是A. B., 不正确的是高一化学第一学期期末试卷第2页(共16页)A. 新制氯水需要避光保存B. Na可保存在煤油中C. NaOH固体需要密封保存D. 保存FeCl3溶液时需加入少量Fe粉12.下列各组离子中, 能在水溶液中大量共存的是A. Na+、Ag+、Cl-、CO3B. Na+、Mg2+、Cl-、SO4C. Fe3+、K+、SO4.OH-D. Fe2+、H+、SO4.NO13.配制100 mL 1 mol/L的NaCl溶液时, 下列做法不正确的是A. 选择容积100 mL的容量瓶B. 在容量瓶中溶解NaCl固体C. 转移NaCl溶液时用玻璃棒引流D. 定容时向容量瓶中滴加蒸馏水至液面与刻度线相切14. 下列实验能达到目的的是A. 加热除去Na2CO3固体中的NaHCO3B. 用NaOH溶液除去CO2中的SO2气体C. 用氯水除去Fe2(SO4)3溶液中的少量FeSO4D. 用BaCl2溶液除去NaCl溶液中的K2SO415. 下列有关实验现象与物质性质对应关系的说法中, 错误的是A. Na2CO3溶液遇酚酞变红, 说明Na2CO3溶液呈碱性B. Cl2使湿润的有色布条褪色, 说明Cl2具有漂白性C. NO遇空气变为红棕色, 说明NO具有还原性D.新制的Fe(OH)2遇氧气变为红褐色, 说明Fe(OH)2具有还原性16. 下列离子方程式书写正确的是A. Fe+2H+ === Fe3++H2↑B. Fe2O3+6H+ === 2Fe3++3H2OC. Na+2H2O === Na ++OH-+H2↑D. Cl2+H2O === 2H ++Cl-+ClO-17. 下列说法正确的是A. NaCl的摩尔质量是58.5 gB. 标准状况下, 22.4 L水中约含6.02×1023个H2O分子C. 常温常压下, 22 g CO2中所含氧原子数约为6.02×1023D. 将40 g NaOH固体溶于1 L H2O中, 得到1 mol/L的NaOH溶液18.下图是进行气体性质实验的常用装置, 下列对有关实验现象的描述中, 不正确的是高一化学第一学期期末试卷第3页(共16页)A. 若水槽中盛有水, 试管中盛满SO2, 可看到试管中液面上升B. 若水槽中盛有水, 试管中盛满NO2, 可看到试管中液面上升并充满试管C. 若水槽中盛有水(滴有酚酞), 试管中是NH3, 可看到试管内液面上升并呈红色D.若水槽中盛有NaOH溶液, 试管中是Cl2, 可看到试管内液面上升, 黄绿色褪去高一化学第一学期期末试卷第4页(共16页)20. 将SO2通入BaCl2溶液至饱和的过程中, 始终未观察到溶液中出现浑浊, 若再通入另一种气体A, 则产生白色沉淀。
北京市西城区2020-2021学年高一数学下学期期末考试数学试题含解析

则cosθ= =cos40°,
又由0°≤θ≤180°,故两个向量的夹角为40°,
故选:B.
9.在△ABC中,内角A和B所对的边分别为a和b,则a>b是sinA>sinB的( )
A.充分不必要条件B.必要不充分条件
(Ⅰ)判断函数y=x和y=cosx具有性质P?(结论不要求证明)
(Ⅱ)若函数f(x)具有性质P,且其对应的T=π,A=2.已知当x∈(0,π〗时,f(x)=sinx,求函数f(x)在区间〖﹣π,0〗上的最大值;
(Ⅲ)若函数g(x)具有性质P,且直线x=m为其图像的一条对称轴,证明:g(x)为周期函数.
解:圆锥的母线长l=5cm,底面半径长r=3cm,
所以圆锥的高h= = =4(cm),
所以该圆锥的体积为V= πr2h= π×32×4=12π(cm)3.
故选:A.
5.函数f(x)=cos22x﹣sin22x的最小正周期是( )
A. B.πC.2πD.4π
解:因为f(x)=cos22x﹣sin22x=cos4x,
北京市西城区2020-2021学年高一数学下学期期末考试试题(含解析)
一、选择题(共10小题,每小题4分,共40分).在每小题列出的四个选项中,选出符合题目要求的一项.
1.设向量 , ,则 ( )
A.11B.9C.7D.5
2.sin330°=( )
A. B. – C. D. –
3.在复平面内,复数z对应的点Z如图所示,则复数 ( )
A.2+iB.2﹣iC.1+2iD.1﹣2i
4.某圆锥的母线长为5cm,底面半径长为3cm,则该圆锥的体积为( )
北京市西城区2018-2019学年高一上学期期末考试数学试题(解析版)

北京市西城区2018-2019学年高一上学期期末考试数学试题(解析版)一、选择题(本大题共10小题,共40.0分) 1. sin(−π3)的值是( )A. 12B. −12C. √32D. −√32【答案】D【解析】解:sin(−π3)=−sin π3=−√32,故选:D .由条件利用诱导公式进行化简求值,可得结论. 本题主要考查利用诱导公式进行化简求值,属于基础题.2. 函数f(x)=sin(x2+π3)的最小正周期为( )A. πB. 2πC. 4πD. 6π【答案】C【解析】解:函数f(x)=sin(x 2+π3)的最小正周期为:T =2π12=4π.故选:C .直接利用三角函数的周期求解即可.本题考查三角函数的简单性质的应用,周期的求法,考查计算能力.3. 如果向量a ⃗ =(0,1),b ⃗ =(−2,1),那么|a ⃗ +2b⃗ |=( ) A. 6B. 5C. 4D. 3【答案】B【解析】解:由向量a ⃗ =(0,1),b ⃗ =(−2,1), 所以a ⃗ +2b ⃗ =(−4,3),由向量的模的运算有:|a ⃗ +2b ⃗ |=√(−4)2+33=5, 故选:B .本由向量加法的坐标运算有:a ⃗ +2b ⃗ =(−4,3),由向量的模的运算有|a ⃗ +2b ⃗ |=√(−4)2+33=5,得解.本题考查了向量加法的坐标运算及向量的模的运算,属简单题. 4.sin(π2−α)cos(−α)=( )A. tanαB. −tanαC. 1D. −1【答案】C 【解析】解:sin(π2−α)cos(−α)=cosαcosα=1.故选:C .利用诱导公式化简即可计算得解.本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.5. 已知函数y =sinx 和y =cosx 在区间I 上都是减函数,那么区间I 可以是( )A. (0,π2)B. (π2,π) C. (π,3π2) D. (3π2,2π)【答案】B【解析】解:A :y =sinx 在(0,π2)上是增函数; C :y =cosx 在(π,3π2)上是增函数;D :y =cosx 在(3π2,2π)上是增函数. 故选:B .依次分析四个选项可得结果.本题考查了正、余弦函数的单调区间,熟练掌握函数图象是关键,属基础题.6. 如图,在△ABC 中,D 是BC 上一点,则AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ =( ) A. BD⃗⃗⃗⃗⃗⃗ B. DB ⃗⃗⃗⃗⃗⃗ C. CD ⃗⃗⃗⃗⃗ D. DC ⃗⃗⃗⃗⃗【答案】D【解析】解:AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AD ⃗⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ . 故选:D .根据向量加法和减法的几何意义即可得出答案. 考查向量加法和减法的几何意义.7. 已知a ⃗ ,b ⃗ 为单位向量,且a ⃗ ⋅b ⃗ =−√22,那么向量a ⃗ ,b ⃗ 的夹角是( )A. π4B. π2C. 2π3D. 3π4【答案】D【解析】解:∵a ⃗ ,b ⃗ 为单位向量,且a ⃗ ⋅b ⃗ =−√22; ∴a ⃗ ⋅b ⃗ =|a ⃗ ||b ⃗ |cos <a ⃗ ,b ⃗ >=cos <a ⃗ ,b ⃗ >=−√22;又0≤<a ⃗ ,b ⃗ >≤π;∴<a ⃗ ,b ⃗ >=3π4.故选:D .根据条件即可求出cos <a ⃗ ,b ⃗ >=−√22,根据向量夹角的范围即可求出向量a ⃗ ,b ⃗ 的夹角. 考查单位向量的概念,向量数量积的计算公式,以及向量夹角的范围.8. 设α∈[0,2π),则使sinα>12成立的α的取值范围是( )A. (π3,2π3)B. (π6,5π6)C. (π3,4π3)D. (7π6,11π6)【答案】B【解析】解:∵α∈[0,2π),sinα>12, ∴π6<α<5π6.∴设α∈[0,2π),则使sinα>12成立的α的取值范围是(π6,5π6).故选:B .利用正弦函数的图象和性质直接求解.本题考查满足正弦值的角的取值范围的求法,考查正弦函数的图象和性质等基础知识,考查运算求解能力,是基础题.9. 已知函数f(x)=A 1sin(ω1x +φ1),g(x)=A 2sin(ω2x +φ2),其图象如图所示.为得到函数g(x)的图象,只需先将函数f(x)图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再( )A. 向右平移π6个单位 B. 向右平移π3个单位 C. 向左平移π6个单位D. 向左平移π3个单位【答案】A【解析】解:函数f(x)=A 1sin(ω1x +φ1),g(x)=A 2sin(ω2x +φ2),其图象如图所示, 可见f(x)的周期为2π,g(x)的周期为π,且f(x)图象上的点(0,0),在g(x)的图象上对应(π6,0),为得到函数g(x)的图象,只需先将函数f(x)图象上各点的横坐标缩短到原来的12倍(纵坐标不变),在向右平移π6个单位, 故选:A .利用函数y =Asin(ωx +φ)的图象变换规律,得出结论.本题主要考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.10. 在△ABC 中,A =π2,AB =2,AC =1.D 是BC 边上的动点,则AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的取值范围是( )A. [−4,1]B. [1,4]C. [−1,4]D. [−4,−1]【答案】A【解析】解:建立平面直角坐标系,如图所示;则A(0,0),B(2,0),C(0,1), 设D(x,y),则x2+y =1,x ∈[0,2]; ∴AD⃗⃗⃗⃗⃗⃗ =(x,y), BC ⃗⃗⃗⃗⃗ =(−2,1),∴AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =−2x +y =−2x +(1−12x)=−52x +1∈[−4,1],则AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的取值范围是[−4,1]. 故选:A .建立平面直角坐标系,利用坐标表示向量AD ⃗⃗⃗⃗⃗⃗ 、BC ⃗⃗⃗⃗⃗ ,求出AD ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的取值范围即可. 本题考查了平面向量数量积的计算问题,是基础题.二、填空题(本大题共11小题,共44.0分)11. 若cosθ=−12,且θ为第三象限的角,则tanθ=______. 【答案】√3【解析】解:∵cosθ=−12,且θ为第三象限的角, ∴sinθ=−√1−sin 2θ=−√32, ∴tanθ=sinθcosθ=−√32−12=√3.故答案为:√3.由已知利用同角三角函数基本关系式先求sinθ,进而可求tanθ的值.本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.12. 已知向量a ⃗ =(1,2).与向量a ⃗ 共线的一个非零向量的坐标可以是______. 【答案】(2,4)【解析】解:2a⃗ =(2,4)与a ⃗ 共线; 即与向量a⃗ 共线的一个非零向量的坐标可以是(2,4). 故答案为:(2,4).可求出2a ⃗ =(2,4),而2a ⃗ 与a ⃗ 共线,即得出与向量a ⃗ 共线的一个非零向量的坐标可以是(2,4).考查共线向量基本定理,向量坐标的数乘运算.13. 如果tan(x +π3) =0 (x >0),那么x 的最小值是______. 【答案】2π3【解析】解:tan(x +π3) =0 (x >0), 可得x +π3=kπ, 即x =kπ−π3,k ∈N ∗, 可得x 的最小值为π−π3=2π3,故答案为:2π3,由正切韩寒说的图象和性质可得x +π3=kπ,k 为正整数,即可得到所求最小值. 本题考查三角方程的解法,注意运用正切函数的图象和性质,考查运算能力,属于基础题.14. 如图,已知正方形ABCD.若AD ⃗⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC⃗⃗⃗⃗⃗ ,其中λ,μ∈R ,则λμ=______.【答案】−1【解析】解:∵AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD⃗⃗⃗⃗⃗⃗ , ∴AD⃗⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ , ∴λ=−1,μ=1, ∴λμ=−1, 故答案为:−1.利用向量加减法容易把AD ⃗⃗⃗⃗⃗⃗ 表示成AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,从而得λ,μ,得解. 此题考查了向量加减法,属容易题.15. 在直角坐标系xOy 中,已知点A(3,3),B(5,1),P(2,1),M 是坐标平面内的一点.①若四边形APBM 是平行四边形,则点M 的坐标为______; ②若PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ ,则点M 的坐标为______. 【答案】(6,3) (4,2)【解析】解:①设M(x,y),则:AP ⃗⃗⃗⃗⃗ =(−1,−2),MB ⃗⃗⃗⃗⃗⃗ =(5−x,1−y); ∵四边形APBM 是平行四边形; ∴AP ⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ ;∴(−1,−2)=(5−x,1−y); ∴{1−y =−25−x=−1; 解得{y =3x=6;∴点M 的坐标为(6,3);②PA ⃗⃗⃗⃗⃗ =(1,2),PB ⃗⃗⃗⃗⃗ =(3,0),PM ⃗⃗⃗⃗⃗⃗ =(x −2,y −1); ∵PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ ;∴(1,2)+(3,0)=2(x −2,y −1); ∴(4,2)=(2(x −2),2(y −1)); ∴{2(y −1)=22(x−2)=4; 解得{y =2x=4;∴点M 的坐标为(4,2). 故答案为:(6,3),(4,2).①可设M(x,y),得出AP ⃗⃗⃗⃗⃗ =(−1,−2),MB ⃗⃗⃗⃗⃗⃗ =(5−x,1−y),根据四边形APBM 为平行四边形即可得出AP ⃗⃗⃗⃗⃗ =MB ⃗⃗⃗⃗⃗⃗ ,从而得出(−1,−2)=(5−x,1−y),从而得到{1−y =−25−x=−1,解出x ,y 即可;②可求出PA ⃗⃗⃗⃗⃗ =(1,2),PB ⃗⃗⃗⃗⃗ =(3,0),PM ⃗⃗⃗⃗⃗⃗ =(x −2,y −1),根据PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =2PM ⃗⃗⃗⃗⃗⃗ 即可得出(4,2)=(2(x −2),2(y −1)),从而得出{2(y −1)=22(x−2)=4,解出x ,y 即可.考查相等向量的概念,根据点的坐标可求向量的坐标,向量坐标的加法和数乘运算.16.设函数f(x)=sin(ωx+π3).若f(x)的图象关于直线x=π6对称,则ω的取值集合是______.【答案】{ω|ω=6k+1,k∈Z}【解析】解:由题意ωπ6+π3=kπ+π2,k∈Z,得ω=6k+1,k∈Z,故答案为:{ω|ω=6k+1,k∈Z}.利用正弦函数图象的对称轴为x=kπ+π2,列出关于ω的方程,得解.此题考查了正弦函数的对称性,难度不大.17.若集合A={x|0<x<3},B={x|−1<x<2},则A∪B=______.【答案】{x|−1<x<3}【解析】解:∵集合A={x|0<x<3},B={x|−1<x<2},∴A∪B={x|−1<x<3}.故答案为:{x|−1<x<3}.利用并集定义直接求解.本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.18.函数f(x)=1log2x的定义域是______.【答案】{x|0<x<1或x>1}【解析】解:由函数的解析式可得log2x≠0,即{x≠1x>0,解得函数的定义域为{x|0<x<1或x>1},故答案为{x|0<x<1或x>1}.由函数的解析式可得log2x≠0,即{x≠1x>0,由此求得函数的定义域.本题主要考查函数的定义域的求法,对数函数的单调性和特殊点,对数函数的定义域,属于基础题.19.已知三个实数a=312,b=√2,c=log32.将a,b,c按从小到大排列为______.【答案】c<b<a【解析】解:312=√3>√2>1,log32<log33=1;∴c<b<a.故答案为:c<b<a.容易得出312>√2>1,log32<1,从而a,b,c从小到大排列为c<b<a.考查对数函数和y =√x 的单调性,以及增函数的定义.20. 里氏震级M 的计算公式为:M =lgA −lgA 0,其中A 0=0.005是标准地震的振幅,A 是测震仪记录的地震曲线的最大振幅.在一次地震中,测震仪记录的地震曲线的最大振幅是500,则此次地震的里氏震级为______级;8级地震的最大振幅是5级地震最大振幅的______倍. 【答案】5 1000【解析】解:根据题意,假设在一次地震中,测震仪记录的最大振幅是500,此时标准地震的振幅为0.005,则M =lgA −lgA 0=lg500−lg0.005=lg105=5. 设8级地震的最大的振幅是x ,5级地震最大振幅是y , 8=lgx +5,5=lgy +5,解得x =103,y =1, ∴x y=1000.故答案为:5;1000.根据题意中的假设,可得M =lgA −lgA 0=lg500−lg0.005=lg105=5;设8级地震的最大的振幅是x ,5级地震最大振幅是y ,8=lgx +5,5=lgy +5,由此知8级地震的最大的振幅是5级地震最大振幅的1000倍.本题考查对数的运算法则,解题时要注意公式的灵活运用,是基础题.21. 已知函数f(x)={x −1, c <x ≤3.x 2+x, −2≤x≤c若c =0,则f(x)的值域是______;若f(x)的值域是[−14,2],则实数c 的取值范围是______.______. 【答案】[−14,+∞) [12,1] [12,1]【解析】解:c =0时,f(x)=x 2+x =(x +12)2−14, f(x)在[−2,−12)递减,在(−12,0]递增, 可得f(−2)取得最大值,且为2,最小值为−14; 当0<x ≤3时,f(x)=1x 递减,可得f(3)=13, 则f(x)∈[13,+∞),综上可得f(x)的值域为[−14,+∞);∵函数y =x 2+x 在区间[−2,−12)上是减函数, 在区间(−12,1]上是增函数,∴当x ∈[−2,0)时,函数f(x)最小值为f(−12)=−14, 最大值是f(−2)=2;由题意可得c>0,∵当c<x≤3时,f(x)=1x 是减函数且值域为[13,1c),当f(x)的值域是[−14,2],可得12≤c≤1.故答案为:[−14,+∞);[12,1].若c=0,分别求得f(x)在[−2,0]的最值,以及在(0,3]的范围,求并集即可得到所求值域;讨论f(x)在[−2,1]的值域,以及在(c,3]的值域,注意c>0,运用单调性,即可得到所求c的范围.本题给出特殊分段函数,求函数的值域,并在已知值域的情况下求参数的取值范围,着重考查了函数的值域和二次函数的单调性和最值等知识,属于中档题.三、解答题(本大题共6小题,共66.0分)22.已知α∈(0,π2),且sinα=35.(Ⅰ)求sin(α−π4)的值;(Ⅱ)求cos2α2+tan(π4+α)的值.【答案】解(Ⅰ):因为α∈(0,π2),sinα=35,所以cosα=√1−sin2α=45.所以sin(α−π4)=√22(sinα−cosα)=−√210.(Ⅱ):因为sinα=35,cosα=45,所以tanα=sinαcosα=34.所以cos2α2+tan(π4+α)=1+cosα2+1+tanα1−tanα=7910.【解析】(Ⅰ)根据同角的三角函数的关系,以及两角差的正弦公式即可求出,(Ⅱ)根据二倍角公式和两角和的正切公式即可求出.本题考查同角的三角形函数的关系,以及两角差的正想说和二倍角公式,属于中档题23.函数f(x)=Asin(ωx+φ)的部分图象如图所示,其中A>0,ω>0,|φ|<π.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间[π2,π]上的最大值和最小值;(Ⅲ)写出f(x)的单调递增区间.【答案】(Ⅰ)解:由函数f(x)=Asin(ωx +φ)的部分图象可知 A =3, 因为 f(x)的最小正周期为T =7π6−π6=π,所以 ω=2πT=2.令 2×π6+φ=π2,解得 φ=π6,适合|φ|<π. 所以 f(x)=3sin(2x +π6).(Ⅱ)解:因为x ∈[π2,π],所以2x +π6∈[7π6, 13π6].所以,当2x +π6=13π6,即x =π时,f(x)取得最大值32,当2x +π6=3π2,即x =2π3时,f(x)取得最小值−3.(Ⅲ)解:结合f(x)的图象可得它的单调递增区间为[ kπ−π3, kπ+ π6 ](k ∈Z). 【解析】(Ⅰ)由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得f(x)的解析式.(Ⅱ)利用正弦函数的定义域和值域,求得f(x)在区间[π2,π]上的最大值和最小值. (Ⅲ)由f(x)的图象,可得它的单调递增区间.本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,正弦函数的定义域和值域,正弦函数的增区间,属于中档题.24. 在直角坐标系xOy 中,已知点A(−1,0),B(0,√3),C(cosθ,sinθ),其中θ∈[ 0, π 2]. (Ⅰ)求AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的最大值;(Ⅱ)是否存在θ∈[ 0, π 2],使得△ABC 为钝角三角形?若存在,求出θ的取值范围;若不存在,说明理由.【答案】解:(Ⅰ)由题意,AC⃗⃗⃗⃗⃗ =(cosθ+1,sinθ), BC ⃗⃗⃗⃗⃗ =(cosθ,sinθ−√3); ……………………(2分)所以 AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =(cosθ+1)⋅cosθ+sinθ⋅(sinθ−√3)……………………(3分)=cosθ−√3sinθ+1=2cos(θ+π3)+1; ……………………(4分)因为 θ∈[ 0, π2],所以 θ+π3∈[π3, 5π6]; ……………………(5分)所以 当θ+π3=π3,即θ=0时,AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 取得最大值2; ……………………(6分) (Ⅱ)因为|AB|=2,|AC| =√(1+cosθ)2+sin 2θ=√2+2cosθ,|BC| =√cos 2θ+(sinθ−√3)2=√4−2√3sinθ; 又 θ∈[ 0, π2],所以 sinθ∈[0,1],cosθ∈[0,1], 所以|AC|≤2,|BC|≤2;所以 若△ABC 为钝角三角形,则角C 是钝角, 从而CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ <0;………………(8分) 由(Ⅰ)得2cos(θ+π3)+1<0,解得cos(θ+π3)<−12; ……………………(9分)所以 θ+π3∈(2π3, 5π6],即θ∈(π3, π2]; ……………………(11分) 反之,当θ∈(π3, π2]时,CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ <0, 又 A ,B ,C 三点不共线,所以△ABC 为钝角三角形;综上,当且仅当θ∈(π3, π2]时,△ABC 为钝角三角形.……………………(12分)【解析】(Ⅰ)由平面向量数量积的坐标运算,利用三角恒等变换求得AC ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ 的最大值2; (Ⅱ)由两点间的距离公式求得|AC|、|BC|,并判断△ABC 为钝角三角形时角C 是钝角, 利用CA ⃗⃗⃗⃗⃗ ⋅CB⃗⃗⃗⃗⃗ <0,结合题意求得θ的取值范围. 本题考查了平面向量的数量积与解三角形的应用问题,是中档题.25. 已知函数f(x)=xx 2−1.(Ⅰ)证明:f(x)是奇函数;(Ⅱ)判断函数f(x)在区间(−1,1)上的单调性,并用函数单调性的定义加以证明. 【答案】解:(Ⅰ):函数f(x)的定义域为D ={x|x ≠±1}.……………………(1分) 对于任意x ∈D ,因为 f(−x)=−x(−x)2−1=−f(x),……………………(3分) 所以 f(x)是奇函数. ……………………(4分)(Ⅱ)解:函数f(x)=xx 2−1在区间(−1,1)上是减函数.……………………(5分) 证明:在(−1,1)上任取x 1,x 2,且 x 1<x 2,……………………(6分)则 f(x 1)−f(x 2)=x 1x 12−1−x2x 22−1=(1+x 1x 2)(x 2−x 1)(x 12−1)(x 22−1). ……………………(8分)由−1<x 1<x 2<1,得 1+x 1x 2>0,x 2−x 1>0,x 12−1<0,x 22−1<0,所以 f(x 1)−f(x 2)>0,即 f(x 1)>f(x 2).所以 函数f(x)=xx 2−1在区间(−1,1)上是减函数.……………………(10分)【解析】(Ⅰ)先求定义域,再用奇函数的定义f(−x)=−f(x)证明f(x)为奇函数; (Ⅱ)按照①取值,②作差,③变形,④判号,⑤下结论,这5个步骤证明. 本题考查了奇偶性与单调性的综合,属中档题.26. 已知函数f(x)=ax 2+x 定义在区间[0,2]上,其中a ∈[−2,0].(Ⅰ)若a =−1,求f(x)的最小值; (Ⅱ)求f(x)的最大值.【答案】解:(Ⅰ)根据题意,当a =−1时,f(x)=−x 2+x =−(x −12)2+14; 所以 f(x)在区间(0,12)上单调递增,在(12,2)上f(x)单调递减. 因为 f(0)=0,f(2)=−2, 所以 f(x)的最小值为−2. (Ⅱ)①当a =0时,f(x)=x . 所以 f(x)在区间[0,2]上单调递增, 所以 f(x)的最大值为f(2)=2.当−2≤a <0时,函数f(x)=ax 2+x 图象的对称轴方程是x =−12a . ②当0<−12a ≤2,即−2≤a ≤−14时,f(x)的最大值为f(−12a )=−14a . ③当−14<a <0时,f(x)在区间[0,2]上单调递增, 所以 f(x)的最大值为f(2)=4a +2.综上,当−2≤a ≤−14时,f(x)的最大值为f(−12a )=−14a ; 当−14<a ≤0时,f(x)的最大值为4a +2.【解析】(Ⅰ)根据题意,将a =−1代入函数的解析式,结合二次函数的性质分析可得 f(x)在区间(0,12)上单调递增,在(12,2)上f(x)单调递减,分析可得答案;(Ⅱ)根据题意,按a 的取值范围分情况讨论,求出函数的最大值,综合即可得答案. 本题考查二次函数的性质以及函数的最值,注意结合函数的单调性进行讨论.27. 已知函数f(x)的定义域为D.若对于任意x 1,x 2∈D ,且x 1≠x 2,都有f(x 1)+f(x 2)<2f(x 1+x 22),则称函数f(x)为“凸函数”.(Ⅰ)判断函数f 1(x)=2x 与f 2(x)=√x 是否为“凸函数”,并说明理由; (Ⅱ)若函数f(x)=a ⋅2x +b(a,b 为常数)是“凸函数”,求a 的取值范围; (Ⅲ)写出一个定义在(12,+∞)上的“凸函数”f(x),满足0<f(x)<x.(只需写出结论)【答案】(本小题满分10分)(Ⅰ)解:对于函数f 1(x)=2x ,其定义域为R .取x 1=0,x 2=1,有f(x 1)+f(x 2)=f(0)+f(1)=2,2f(x 1+x 22)=2f(12)=2,所以 f(x 1)+f(x 2)=2f(x 1+x 22),所以 f 1(x)=2x 不是“凸函数”.…………(2分)对于函数f 2(x)=√x ,其定义域为[0,+∞).对于任意x1,x2∈[0,+∞),且x1≠x2,由[f(x1)+f(x2)]2−[2f(x1+x22)]2=(√x1+√x2)2−(2√x1+x22)2=−(√x1−√x2)2<0,所以[f(x1)+f(x2)]2<[2f(x1+x22)]2.因为f(x1)+f(x2)>0,2f(x1+x22)>0,所以f(x1)+f(x2)<2f(x1+x22),所以f2(x)=√x是“凸函数”.……………(4分) (Ⅱ)解:函数f(x)=a⋅2x+b的定义域为R.对于任意x1,x2∈R,且x1≠x2,f(x1)+f(x2)−2f(x1+x22)=(a⋅2x1+b)+(a⋅2x2+b)−2(a⋅2x1+x22+b)……………………(5分)=a(2x1+2x2−2×2x1+x22)=a(2x12−2x22)2.……………………(7分)依题意,有a(2x12−2x22)2<0.因为(2x12−2x22)2>0,所以a<0.……………………(8分)(Ⅲ)f(x)=√x−12 (x>12).(注:答案不唯一)……………………(10分)【解析】(Ⅰ)取x1=0,x2=1,有f(x1)+f(x2)=f(0)+f(1)=2,2f(x1+x22)=2f(12)=2,验证,然后利用单调性证明即可.(Ⅱ)函数f(x)=a⋅2x+b的定义域为R.对于任意x1,x2∈R,且x1≠x2,f(x1)+f(x2)−2f(x1+x22)转化证明即可.(Ⅲ)f(x)=√x−12 (x>12).本题考查函数与方程的应用,考查转化思想以及计算能力.。
北京市西城区2019届高三上学期期末考试数学(文)试卷 Word版含解析

2018-2019学年北京市西城区高三(上)期末数学试卷(文科)一、选择题(本大题共8小题,共40.0分)1.已知集合,,那么( )A. B.C. D.【答案】B【解析】【分析】先求出集合A,B,由此能求出A∩B.【详解】解:∵集合A={x|x=2k,k∈Z},B={x|x2≤5}={x|},∴A∩B={﹣2,0,2}.故选:B.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的是()A. B. C. D.【答案】C【解析】【分析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案.【详解】解:解:根据题意,依次分析选项:对于A,y=x2+2x为二次函数,其对称轴为x=﹣1,不是偶函数,不符合题意;对于B,y=x3,是奇函数,不符合题意;对于C,y=ln|x|,是偶函数又在区间(0,+∞)上单调递增,符合题意;对于D,y=cos x为偶函数,在区间(0,+∞)上不是单调函数,不符合题意,故选:C.【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题.3.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为()A. B. C. D.【答案】C【解析】【分析】由三视图可知:该几何体如图所示,PA⊥底面ABCD,PA=2,底面是一个直角梯形,其中BC∥AD,AB⊥AD,BC=AB=1,AD=2.即可得出.【详解】解:由三视图可知:该几何体如图所示,PA⊥底面ABCD,PA=2,底面是一个直角梯形,其中BC∥AD,AB⊥AD,BC=AB=1,AD=2.可知其最长棱长为PD2.故选:C.【点睛】本题考查了四棱锥的三视图的有关计算,考查空间想象能力,属于基础题.4.设x,y满足约束条件,则z=x+3y的最小值为()A. B. C. 1 D. 2【答案】A【解析】【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由x,y满足约束条件作出可行域如图,联立,解得A(2,﹣1),化目标函数z=x+3y为y,由图可知,当直线y过A时,直线在y轴上的截距最小,z有最小值为﹣1.故选:A.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.5.执行如图所示的程序框图,若输入的m=1,则输出数据的总个数为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年北京市西城区高一上学期期末考试数学试题2019.01学校 班级 姓名 成绩一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,2}A =,{|02}B x x =<<,则A B =I ( )(A ){1} (B ){1,2} (C ){0,1,2} (D ){02}x x <≤(2)已知向量(,6)m =a ,(1,3)=-b ,且a b P ,则m = ( )(A )18 (B )2 (C )18- (D )2-(3)下列函数中,既是奇函数又在(0,)+∞上是增函数的是 ( )(A )()2x f x -= (B )3()f x x = (C )()lg f x x = (D )()sin f x x =(4)命题2:2,10p x x ∀>->,则p ⌝是 ( )(A )22,10x x ∀>-≤ (B )22,10x x ∀≤->(C )22,10x x ∃>-≤ (D )22,10x x ∃≤-≤(5)已知3tan 4α=,sin 0α<,则cos α= ( ) (A )35 (B )35- (C )45 (D )45- (6)若角α的终边经过点0(1,)y ,则下列三角函数值恒为正的是( )(A )sin α (B )cos α(C )tan α(D )sin(π)α+(7)为了得到函数πsin()3y x =--的图象,只需把函数sin y x =的图象上的所有点( )(A ) 向左平移2π3个单位长度 (B ) 向左平移π3个单位长度 (C ) 向右平移π3个单位长度 (D ) 向右平移5π3个单位长度(8)如图,在平面直角坐标系xOy 中,角α以Ox 为始边,终边与单位圆O 相交于点P .过点P 的圆O 的切线交x 轴于点T ,点T 的横坐标关于角α的函数记为()f α. 则下列关于函数()f α的说法正确的是( )(A )()f α的定义域是π{|2π,}2k k αα≠+∈Z (B )()f α的图象的对称中心是π(π,0),2k k +∈Z(C )()f α的单调递增区间是[2π,2ππ],k k k +∈Z (D )()f α对定义域内的α均满足(π)()f f αα-= 二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.(9)已知()ln f x x =,则2(e )f = .(10)已知(1,2)=a ,(3,4)=b ,则⋅=a b ______;2-=a b ______.(11)已知集合{1,2,3,4,5}A =,{3,5}B =,集合S 满足S A ¹Ì,S B A =U .则一个满足条件的集合S 是 .(12)已知()f x 是定义域为R 的偶函数,当0x ³时,()f x x =,则不等式()20f x ->的解集是 .(13)如图,扇形AOB 中,半径为1,»AB 的长为2,则»AB 所对的圆心角的大小为 弧度;若点P 是»AB 上的一个动点,则当OA OP OB OP ⋅-⋅u u u r u u u r u u u r u u u r取得最大值时,,OA OP <>=u u u r u u u r . (14)已知函数122, ,()2,.x x a f x x a x a -⎧<=⎨-+≥⎩(Ⅰ)若函数()f x 没有零点,则实数a 的取值范围是________;(Ⅱ)称实数a 为函数()f x 的包容数,如果函数()f x 满足对任意1(,)x a ∈-∞,都存在2(,)x a ∈+∞,使得21()()f x f x =.在①12-; ②12;③1;⑤32中,函数()f x 的包容数是_____ ___.(填出所有正确答案的序号)BO三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题共11分) 已知函数π()2sin(2)3f x x =+. (Ⅰ)求()f x 的最小正周期T ; (Ⅱ)求()f x 的单调递增区间;(Ⅲ)在给定的坐标系中作出函数ππ()([,])66f x x T ∈--+的简图,并直接写出函数()f x 在区间π2[,π]63上的取值范围.(16)(本小题共10分)已知函数2()f x x bx c =++,存在不等于1的实数0x 使得00(2)()f x f x -=.(Ⅰ)求b 的值;(Ⅱ)判断函数()f x 在(1,)+∞上的单调性,并用单调性定义证明; (Ⅲ)直接写出(3)c f 与(2)c f 的大小关系.(17)(本小题共11分)如图,在四边形OBCD 中,2CD BO =u u u r u u u r ,2OA AD =u u u r u u u r ,90D ∠=︒,且1BO AD ==u u u r u u u r. (Ⅰ)用,OA OB u u u r u u u r 表示CB u u u r;(Ⅱ)点P 在线段AB 上,且3AB AP =,求cos PCB ∠的值.(18)(本小题共12分)设函数()f x 定义域为I ,对于区间D I ⊆,如果存在12,x x D ∈,12x x ≠,使得12()()2f x f x +=,则称区间D 为函数()f x 的ℱ区间.(Ⅰ)判断(,)-∞+∞是否是函数31xy =+的ℱ区间;(Ⅱ)若1[,2]2是函数log a y x =(其中0,1a a >≠)的ℱ区间,求a 的取值范围; (Ⅲ)设ω为正实数,若[π,2π]是函数cos y x ω=的ℱ区间,求ω的取值范围.附加题:(本题满分5分。
所得分数可计入总分,但整份试卷得分不超过100分) 声音靠空气震动传播,靠耳膜震动被人感知.声音可以通过类似于图①和图②的波形曲线来描述,图①和图②是一位未成年女性和一位老年男性在说“我爱中国”四个字时的声波图,其中纵坐标表示音量(单位:50分贝),横坐标代表时间(单位:52.310-⨯秒).声音的音调由其频率所决定,未成年女性的发声频率大约为老年男性发声频率的2倍.下面的图③和图④依次为上面图①和图②中相同读音处的截取的局部波形曲线,为了简便起见,在截取时局部音量和相位做了调整,使得二者音量相当,且横坐标从0开始.已知点()800,0位于图④中波形曲线上.(Ⅰ)描述未成年女性声音的声波图是_____;(填写①或②)(Ⅱ)请你选择适当的函数模型()[],0,2000y f x x =∈来模仿图④中的波形曲线:()f x =___________________________(函数模型中的参数取值保留小数点后2位).高一年级期末统一练习数 学参考答案及评分标准 2019.01一. 选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共6小题,每小题4分,共24分.(9)2 (10)11(11){1,2,3,4}(或{1,2,4,5}或{1,2,4}) (12){|1,x x <-或1}x > (13)2;0 (14)0a <或2a >;②③ 注:两空的题,每空2分;(12)题对一半(只答出1x <-,或1x > ),给2分;(14)题第一空,答对一半给1分,第二空,有错选,此空得0分,若只少选一个给1分。
三.解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. (15)(本小题满分11分) 解:(Ⅰ)2ππ2T ==. ……………………2分 (Ⅱ)由πππ2π22π232k x k -+≤+≤+,k ∈Z 得 ……………………4分 5ππππ1212k x k -+≤≤+, k ∈Z . 所以 函数()f x 的单调递增区间是:5ππ[π,π]1212k k -++,k ∈Z . ……………………6分(Ⅲ)函数ππ()([,])66f x x T ∈--+的简图如图所示. ……………………8分函数()f x 在区间π2[,π]63上的取值范围是[-. ……………………11分注:[-中每一个端点正确给1分,括号正确1分。
(16)(本小题满分10分)解:(Ⅰ)因为 实数0x 使得00(2)()f x f x -=,所以 220000(2)(2)x b x c x bx c -+-+=++, ……………………1分即0(24)(1)0b x +-=. 因为 01x ≠,所以 240b +=,即2b =-. ……………………3分 经检验,2b =-满足题意,所以 2b =-.(Ⅱ)函数()f x 在(1,)+∞上单调递增,证明如下: ……………………4分 任取1x ,2x (1,)∈+∞,当12x x <时,12120,20x x x x -<+->.所以 1212()(2)0x x x x -+-<. ……………………6分所以 22121122()()2(2)f x f x x x x x -=--- ……………………7分2212121212(22)()(2)0x x x x x x x x =---=-+-<,即12()()f x f x <.所以 函数()f x 在(1,)+∞上单调递增. ……………………8分 (Ⅲ)当0c =时,(3)(2)c c f f =;当0c ≠时,(3)(2)c c f f >. ……………………10分注:直接答(3)(2)c c f f ≥,给2分;若只有(3)(2)c c f f >,给1分。
(17)(本小题满分11分)(Ⅰ)因为 2OA AD =u u u r u u u r,所以32DO AO=u u u r u u u r……………………1分因为 2CD BO =u u u r u u u r ,所以=++CB CD DO OBu u u r u u u r u u u r u u u r……………………3分322BO AO OB =++u u u r u u u r u u u r32OA OB =--u u ur u u u r . (5)分(Ⅱ)因为 2CD BO =u u u r u u u r,所以 OB CD P . ……………………6分因为 2OA AD =u u u r u u u r ,所以 点,,O A D 共线. 因为 90D ∠=︒, 所以 90O ∠=︒.以O 为坐标原点,OA 所在的直线为x 轴,建立如图所示的平面直角坐标系.因为 1BO AD ==u u u r u u u r,2CD BO =u u u r u u u r ,2OA AD =u u u r u u u r ,所以 (2,0), (0,1), (3,2)A B C .所以 (1,2)AC =u u u r ,(2,1)AB =-u u u r. ……………………7分因为 点P 在线段AB 上,且3AB AP =,所以 121(,)333AP AB ==-u u u r u u u r . (8)分所以 55(,)33CP AP AC =-=--u u u r u u u r u u u r . (9)分因为 (3,1)CB =--u u u r,所以553cos 55CP CB PCB CP CB +⋅∠===⋅u u u r u u u r u u u r u u u r . ……………………11分 (18)(本小题满分12分)解:(Ⅰ)(,)-∞+∞不是函数31xy =+的ℱ区间,理由如下: ……………………1分因为 对(,)x ∀∈-∞+∞,30x>,所以 311x+>. ……………………2分 所以 12,(,)x x ∀∈-∞+∞均有12(31)(31)2x x+++>, 即不存在12,(,)x x ∈-∞+∞,12x x ≠,使得12()()2f x f x +=.所以 (,)-∞+∞不是函数31xy =+的ℱ区间. ………………………3分 (Ⅱ)由1[,2]2是函数log a y x =(其中0,1a a >≠)的ℱ区间,可知 存在121,[,2]2x x ∈,12x x ≠,使得12log log 2a a x x +=.所以 212x x a =. ……………………4分因为 121212,212,2,x x x x ⎧≤≤⎪⎪⎪≤≤⎨⎪≠⎪⎪⎩所以 12144x x <<,即2144a <<. ……………………5分又因为 0a >且1a ≠,所以 1(,1)(1,2)2a ∈U . ……………………6分(Ⅲ)因为 [π,2π]是函数cos y x ω=的ℱ区间,所以 存在12,[π,2π]x x ∈,12x x ≠,使得12cos cos 2x x ωω+=. 所以 12cos 1,cos 1.x x ωω=⎧⎨=⎩ ……………………7分所以 存在,k l ∈Z ,使得122π,2π.x k x l ωω=⎧⎨=⎩不妨设12π2πx x ≤<≤. 又因为 0ω>, 所以 12π2πx x ωωωω≤<≤. 所以 222k l ωω≤<≤.即在区间[,2]ωω内存在两个不同的偶数. ……………………8分①当4ω≥时,区间[,2]ωω的长度24ωω-≥,所以 区间[,2]ωω内必存在两个相邻的偶数,故4ω≥符合题意.……………………9分 ②当04ω<<时,有02228k l ωω<≤<≤<, 所以 2,2{2,4,6}k l ∈.(i )当24,26k l =⎧⎨=⎩时,有4,62,ωω≤⎧⎨≤⎩即34ω≤≤.所以 34ω≤<也符合题意. ……………………10分(ii )当22,24k l =⎧⎨=⎩时,有2,42,ωω≤⎧⎨≤⎩即2ω=.所以 2ω=符合题意. (iii )当22,26k l =⎧⎨=⎩时,有2,62,ωω≤⎧⎨≤⎩即2,3.ωω≤⎧⎨≥⎩此式无解.综上所述,ω的取值范围是{2}[3,)+∞U . ……………………12分 附加题(Ⅰ)②……………………2分(Ⅱ)cos0.03x(答案不唯一)……………………5分注:对于其它正确解法,相应给分.。