第五章相交线与平行线知识点讲解
七年级下册第五章相交线与平行线

七年级下册第五章相交线与平行线一、相交线的性质相交线是两条在某一点相遇的直线。
两条相交的直线会在交点处形成锐角和钝角。
在相交线中,如果一个角是锐角,那么它的补角就是钝角;如果一个角是钝角,那么它的补角就是锐角。
这是相交线的性质之一。
因此,我们可以用这种方法来比较两条直线是否垂直。
二、对顶角与邻补角对顶角是两条直线相交形成的相对的两个角。
它们的度数总和为180度。
而邻补角则是相邻的两个角的度数之和为90度。
这些关系对于解决一些几何问题非常有用。
三、平行线的判定平行线是指两条在同一平面内不相交的直线。
我们可以通过以下方法来判定两条直线是否平行:同位角相等、内错角相等、同旁内角互补。
这些方法可以帮助我们确定两条直线是否平行,从而解决一些几何问题。
四、平行线的性质平行线具有以下性质:同位角相等、内错角相等、同旁内角互补。
这些性质都可以用来解决一些几何问题,例如计算角度、证明线段相等等等。
五、平行线与相交线的综合应用在解决几何问题时,我们经常需要将平行线和相交线的知识结合起来使用。
例如,我们可以利用相交线的性质和平行线的性质来判断两条直线是否垂直或平行,或者利用这些性质来计算角度和线段长度等。
六、空间中的平行关系在三维空间中,我们也可以定义平行关系。
例如,两个平面或两条直线可以被定义为平行的,如果它们在三个方向上都相等或成比例。
此外,两个平面或两条直线也可以被定义为垂直的,如果它们在三个方向上都相交于90度的角度。
这些关系在解决一些空间几何问题时非常有用。
七、命题与证明在几何学中,一个命题是由一个或多个已知事实和一个结论所组成。
如果命题的结论是由已知事实经过推理而得出的,那么这个命题就被称为定理。
证明一个命题就是要用逻辑推理的方法证明它是正确的。
证明的方法通常包括使用定义、公理、定理和已知事实等。
通过证明,我们可以确定一个命题是否为真,从而提高我们对数学知识的理解。
八、互逆命题互逆命题是一种特殊的命题形式,它指的是两个命题中的每一个都是另一个的逆命题。
相交线与平行线知识点总结

相交线与平行线知识点总结在几何学中,相交线和平行线是基础概念。
它们在理解和解决几何问题时起着重要的作用。
本文将对相交线和平行线的概念、性质以及应用进行总结。
一、相交线的概念及性质相交线是指在同一个平面内交于一点或多个点的两条或多条线段。
我们来看一下相交线的性质。
1. 相交线的定义:两条线段在平面内交于一点或多个点。
2. 相交线的种类:根据其相交方式,相交线可以分为垂直相交线和斜交线两种。
垂直相交线是指交于一点且互相垂直的两条线段;斜交线是指交于一点但不互相垂直的两条线段。
3. 相交线上的角:相交线会形成一些特殊的角,主要包括相邻角、对顶角、内错角和外错角。
相邻角是指在同一侧的相交线上,且共享一个端点的两个角;对顶角是指在相交线的对立面上,且互相垂直的两个角;内错角是指在同一侧的相交线上,且不相邻的两个角;外错角是指在同一侧的相交线上,且与内错角互补的两个角。
4. 直线的平分线:两条相交直线的交点处的角被称为直线的平分线。
平分线将原角分成两个相等的角。
二、平行线的概念及性质平行线是指在同一平面内,永不相交的两条直线。
接下来我们来了解一下平行线的性质。
1. 平行线的定义:在同一平面内,两条直线如果不相交,则它们是平行线。
2. 平行线的判定:常用方法有欧几里得假设、对角线法、平行线法则等。
3. 平行线的性质:平行线之间相互平行;平行线与同一条直线的交线上的对应角相等;平行线与同一平行线的交线上的对应角相等;平行线与平行线之间的距离相等。
4. 平行线的应用:平行线在实际问题中有着广泛的应用,比如在测量、建筑、地理等领域。
通过平行线的性质,我们可以解决许多与位置、角度、距离等有关的问题。
三、相交线与平行线的关系相交线和平行线之间有着紧密的联系,它们的性质可以相互应用。
1. 垂直相交线与平行线:如果两条平行线被一条垂直相交线所截,那么所截得的对应角互为互补角。
2. 斜交线与平行线:如果两条平行线被一条斜交线所截,那么所截得的对应角互为相等角或互为互补角。
人教版七年级下册数学教学课件 第五章 相交线与平行线 命题、定理、证明

课程讲授
2 真命题与假命题
归纳: 1.要判断一个命题为真命题,可以用演绎推理加以
论证; 2.要判断一个命题为假命题,只要举出一个例子,
说明该命题不成立.
课程讲授
3 定理与证明
定义:数学中这些命题的正确性是人们在长期实践中
总结出来的,并把它们作为判断其他命题真假的原始 依据,即出发点.这样的真命题视为基本事实.我们也 称它为公理.
理才能作出判断,这个推理过程叫作证明.
证明几何命题的一般步骤:
1.明确命题中的_已__知___和__求__证__; 2.根据题意,_画__出__图__形__,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出_要__证__的__结__论_的途径,写出证明过程.
课程讲授
3 定理与证明
例 已知直线b∥c, a⊥b .求证:
a⊥c.
b
c
证明:∵ a ⊥b(已知), ∴ ∠1=90°(垂直的定义).
1
2
a
∵ b ∥ c(已知),
∴∠1=∠2(两直线平行,同位角相等),
∴ ∠2=∠1=90°(等量代换), ∴ a ⊥ c(垂直的定义).
课程讲授
3 定理与证明
练一练:求证:内错角相等,两直线平行.
已知:如图,直线l3分别与l1,l2交于点A,点B,且∠1=∠2.
求证:l1∥l2. 证明:∵ ∠1=∠2 (已知),
∠3=∠2 (对顶角相等),
l3
1(
)3 B
l2
)2 A
l1
∴ ∠1=∠3 (等量代换).
∴ l1∥l2 (同位角相等,两直线平行).
随堂练习
1.下列句子中,哪些是命题?哪些不是命题? ⑴对顶角相等; 是 ⑵画一个角等于已知角; 不是 ⑶两直线平行,同位角相等; 是 ⑷a,b两条直线平行吗?不是 ⑸温柔的李明明; 不是 ⑹玫瑰花是动物; 是 ⑺若a2=4,求a的值; 不是 ⑻若a2= b2,则a=b. 是
人教版数学七年级下册第五章 相交线与平行线 课件(30张ppt)

知识点 对顶角的概念和性质
比例规张开的相对的两个角,就是一对对顶角.
知识点 对顶角的概念和性质
相等的角不一定是对顶角.
知识点 垂线与垂线段
用直角三角尺和量角器画垂线的方法:
知识点 垂线与垂线段
垂线段是图形,点到直线的距离是数量,是该点到直线的垂线段的长度, 所以不能说“垂线段是距离”,也不能说“作出点到直线的距离”.
平行线的判定与性质之间的关系.
知识点 命题、定理和证明
妈妈要榨果汁,她有苹果、橙子、雪梨三种水果,且其克数比为 9∶7∶6,小明发现妈妈榨完果汁后,苹果、橙子、雪梨的克数比变为 6∶3∶4,且榨果汁时妈妈没有使用雪梨.
知识点 命题、定理和证明
小明这样想:原来苹果、橙子、雪梨的克数比为9∶7∶6,即 18∶14∶12;榨汁后苹果、橙子、雪梨的克数比变为6∶3∶4,即 18∶9∶12.由于没有使用雪梨,所以也没有使用苹果. 他利用所学数学知识推断出妈妈榨果汁时只使用了橙子.
借助三角尺与直尺画平行线时,必须保持紧靠,否则画出的直线不平行.
知识点 平行公理及其推论
在绘制斑马线时,只要保证相邻的两条线彼此平行,就能保证所有的斑 马线都彼此平行.
知识点 平行线的判定方法
木工用角尺的一边紧靠木料边缘,另一边画两条直线a,b,根据“同位角 相等,两直线平行”可知这两条直线平行.
知识点 平行线的判定方法
同一平面内,垂直于同一直线的两条直线互相平行,即在同一平面内,若 a⊥c,b⊥c,则a∥b.
第五章 相交线与平行线
5.3 平行线的性质
知识点 平行线的性质
一条公路两次转弯后又回到与原来相同的方向,如果第一次转弯时 ∠A=140°,根据性质2可得∠B=140°.
七年级数学下册 第五章 相交线与平行线全章知识点归纳 (新版讲解

第五章相线与平行线两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.直线外一点到这条直线的垂线段的长度,叫做________________________.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.设a 、b 、c 为平面上三条不同直线,若//,//a b b c ,则a 与c 的位置关系是_________;若,a b b c ⊥⊥,则a 与c 的位置关系是_________;若//a b ,b c ⊥,则a 与c 的位置关系是________.如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠PAG 的大小.如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°. 21.,AD BC FE BC ⊥⊥90EFB ADB ∴∠=∠= //EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠ 1 2.∴∠=∠ 22. ∠A =∠F.∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。
相交线与平行线知识点归纳总结

名师总结优秀知识点《相交线与平行线》知识点总结段.它只能量出或求出,而不能说画出,画出的是垂线段这个图形.一:相交线三、平行线( 1 )相交线的定义1、在同一平面内,两条直线的位置关系有两种:平行和相交.两条直线交于一点,我们称这两条直线相交.相对的,我们称这两( 1)平行线的定义 :在同一平面内 ,不相交的两条直线叫平行线.条直线为相交线.记作: a∥ b;读作:直线 a 平行于直线 b .( 2 )两条相交线在形成的角中有特殊的数量关系和位置关系的有对顶角和邻补角两类.( 2)同一平面内,两条直线的位置关系:平行或相交,对于这一( 3 )在同一平面内,两条直线的位置关系有两种:平行和相交知识的理解过程中要注意:( 4 )对顶角:有一个公共顶点,并且一个角的两边分别是另一个①前提是在同一平面内;角的两边的反向延长线,具有这种位置关系的两个角,互为对顶②对于线段或射线来说,指的是它们所在的直线.角.∠ 1 和∠ 3,∠ 2 和∠ 4 是对顶角 .( 3)平行公理:经过直线外一点,有且只有一( 5 )邻补角:只有一条公共边,它们的另一边互为反向延长线,条直线与这条直线平行.具有这种关系的两个角,互为邻补角.2如图,过点 P 只有直线 a 与直线 b平行如图:∠ 1 和∠ 2,∠ 2 和∠ 3 是邻补角 .( 4)平行公理中要准确理解“有且只有”的含义.从作图的角度说,( 6 )对顶角的性质:对顶角相等.(如图∠ 1 =∠ 3,13它是“能但只能画出一条”的意思.∠2=∠ 4)4( 5)平行公理的推论:如果两条直线都与第三条直线平行,那么( 7 )邻补角的性质:邻补角互补,即和为180°.这两条直线也互相平行.(如图∠ 1+∠ 2 = 180 °)如图,如果 a ∥ c, b∥ c,那么 a ∥c( 8 )邻补角、对顶角成对出现,在相交直线中,一个角的邻补角2、同位角、内错角、同旁内角有两个.邻补角、对顶角都是相对与两个角而言,是指的两个角的( 1)同位角:两条直线被第三条直线所截形成的角中,若两个角一种位置关系.它们都是在两直线相交的前提下形成的。
人教版七年级数学下册第五章相交线与平行线知识点归纳总结

第五章相交线与平行线知识点归纳总结1.对顶角,同位角,同旁内角,内错角,邻补角;垂线,角平分线,平行线2.定理总结:(1)对顶角相等。
(2)经过直线外或直线上一点,有且只有一条直线与已知直线垂直。
(3)经过已知直线外一点,有且只有一条直线与已知直线平行。
(4)如果两条直线都和第三条直线平行,那么这两条直线也平行。
(5)连接直线外一点与直线上各点的所有线段中,垂线段最短。
(6)平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。
(7)平行线的特征:两条直线平行,被第三条直线所截,其同位角,内错角,同旁内角有如下关系:(1)两直线平行,被第三条直线所截,同位角相等;(2)两直线平行,被第三条直线所截,内错角相等(3)两直线平行,被第三条直线所截,同旁内角互补。
题型:一.确定角之间的关系(同位角,内错角,同旁内角)或计数(数一共几对)。
二.角度的计算;实际问题(a地理偏向; b白纸折叠 c走路拐弯儿)利用垂直、平行,余角,补角,对顶角等关系进行计算。
例题1:选择:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少,那么这两个角是30()、、1010、104213842138A. B. 都是 C. 或 D. 以上都不对例题2:判断:如果乙船在甲船的北偏西35°的方向线上, 那么从甲船看乙船的方向角是南偏东35°.( )例题3:如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE、∠AOG 的度数.例题4:折叠:如图,先找到长方形纸的宽DC 的中点E ,将∠C 过E 点折起任意一个角,折痕是EF ,再将∠D 过E 点折起,使DE 和C'E 重合,折痕是GE ,请探索下列问题:(1)∠FEC'和∠GEC'互为余角吗?为什么?(2)∠GEF 是直角吗?为什么?(3)在上述折纸图形中,还有哪些互为余角?还有哪些互为补角?例题5:如图,直线AB 、CD 、EF 相交于同一点O,而且∠BOC=∠AOC,∠DOF=∠AOD,2313那么∠FOC=______度.FE OD CBA例题6:一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是() A. 第一次向左拐,第二次向右拐 B. 第一次向右拐,第二次向左拐303050130 C.第一次向右拐,第二次向右拐 D.第一次向左拐,第二次向左拐5013050130三.利用平行线、垂线的性质计算角度、证明平行或证明角之间的关系例题1:如图,AB ⊥BD,CD ⊥MN,垂足分别是B 、D 点,∠FDC=∠EBA.(1)判断CD 与AB 的位置关系;(2)BE 与DE 平行吗?为什么?例题2:如图,已知,,是的平分线,,求的度数。
相交线与平行线的知识点

相交线与平行线的知识点一、相交线。
1. 邻补角。
- 定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。
- 性质:邻补角互补,即它们的和为180°。
例如,∠AOC和∠BOC是邻补角,那么∠AOC+∠BOC = 180°。
2. 对顶角。
- 定义:有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种位置关系的两个角,互为对顶角。
- 性质:对顶角相等。
如∠AOC和∠BOD是对顶角,则∠AOC = ∠BOD。
3. 垂直。
- 定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 性质:- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
- 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
- 点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
二、平行线。
1. 平行线的定义。
- 在同一平面内,不相交的两条直线叫做平行线。
用符号“∥”表示平行关系,如直线a平行于直线b,记作a∥b。
2. 平行公理及推论。
- 平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
- 推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
即如果a∥b,b∥c,那么a∥c。
3. 平行线的判定。
- 同位角相等,两直线平行。
例如,直线a、b被直线c所截,如果∠1 = ∠2(∠1和∠2是同位角),那么a∥b。
- 内错角相等,两直线平行。
如直线a、b被直线c所截,若∠2 = ∠3(∠2是内错角,∠3是同位角),则a∥b。
- 同旁内角互补,两直线平行。
当直线a、b被直线c所截,若∠2+∠4 = 180°(∠2和∠4是同旁内角),那么a∥b。
4. 平行线的性质。
- 两直线平行,同位角相等。
若a∥b,则∠1 = ∠2(∠1和∠2是同位角)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 相交线与平行线知识点讲解5.1相交线1、邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作: 如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记) ⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线的画法:A B C DO⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4、点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离 记得时候应该结合图形进行记忆。
如图,PO ⊥AB ,同P 到直线AB 的距离是PO 的长。
PO 是垂线段。
PO 是点P 到直线AB 所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5、如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
分析它们的联系与区别:⑴垂线与垂线段 区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度。
联系:具有垂直于已知直线的共同特征。
(垂直的性质)⑵两点间距离与点到直线的距离 区别:两点间的距离是点与点之间,点到直线的距离是点与直线之间。
联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与垂足)间距离。
⑶线段与距离 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。
5.2平行线1、平行线的概念:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a ∥b 。
2、两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
因此当我们得知在同一平面内两直线不相交时,就可以肯定它们平行;反过来也一样(这里,我们把重合的两直线看成一条直线)P A B O判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定: ①有且只有一个公共点,两直线相交; ②无公共点,则两直线平行;③两个或两个以上公共点,则两直线重合(因为两点确定一条直线) 3、平行公理――平行线的存在性与惟一性经过直线外一点,有且只有一条直线与这条直线平行 4、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行如左图所示,∵b ∥a ,c ∥a ∴b ∥c注意符号语言书写,前提条件是两直线都平行于第三条直线,才会结论,这两条直线都平行。
5、三线八角两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。
如图,直线b a ,被直线l 所截①∠1与∠5在截线l 的同侧,同在被截直线b a ,的上方,叫做同位角(位置相同) ②∠5与∠3在截线l 的两旁(交错),在被截直线b a ,之间(内)内且交错)③∠5与∠4在截线l 的同侧,在被截直线b a ,之间(内),叫做同旁内角。
④三线八角也可以成模型中看出。
同位角是“A ”型;内错角是“Z ”型;同旁内角是“U ”型。
6、如何判别三线八角判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。
例如:a b cab l1 2 3 4 5 6 78 1 6 B A D 2 3 4 5 7 89 F EC如图,判断下列各对角的位置关系:⑴∠1与∠2;⑵∠1与∠7;⑶∠1与∠BAD ;⑷∠2与∠6;⑸∠5与∠8。
我们将各对角从图形中抽出来(或者说略去与有关角无关的线),得到下列各图。
如图所示,不难看出∠1与∠2是同旁内角;∠1与∠7是同位角;∠1与∠BAD 是同旁内角;∠2与∠6是内错角;∠5与∠8对顶角。
注意:图中∠2与∠9,它们是同位角吗?不是,因为∠2与∠9的各边分别在四条不同直线上,不是两直线被第三条直线所截而成。
7、两直线平行的判定方法方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简称:同位角相等,两直线平行方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行 简称:内错角相等,两直线平行方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行 简称:同旁内角互补,两直线平行 几何符号语言:∵ ∠3=∠2 ∴ AB ∥CD (同位角相等,两直线平行) ∵ ∠1=∠2 ∴ AB ∥CD (内错角相等,两直线平行) ∵ ∠4+∠2=180°∴ AB ∥CD (同旁内角互补,两直线平行)请同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。
平行线的判定是写角相等,然后写平行。
A B2 1 A C 1 7A B C D 2 6A DB F 1 BAF E 5 8CA B C DE 1 2 3 4注意:⑴几何中,图形之间的“位置关系”一般都与某种“数量关系”有着内在的联系,常由“位置关系”决定其“数量关系”,反之也可从“数量关系”去确定“位置关系”。
上述平行线的判定方法就是根据同位角或内错角“相等”或同旁内角“互补”这种“数量关系”,判定两直线“平行”这种“位置关系”。
⑵根据平行线的定义和平行公理的推论,平行线的判定方法还有两种:①如果两条直线没有交点(不相交),那么两直线平行。
②如果两条直线都平行于第三条直线,那么这两条直线平行。
典型例题:判断下列说法是否正确,如果不正确,请给予改正:⑴不相交的两条直线必定平行线。
⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。
⑶过一点可以且只可以画一条直线与已知直线平行解答:⑴错误,平行线是“在同一平面内不相交的两条直线”。
“在同一平面内”是一项重要条件,不能遗漏。
⑵正确⑶不正确,正确的说法是“过直线外一点”而不是“过一点”。
因为如果这一点不在已知直线上,是作不出这条直线的平行线的。
典型例题:如图,根据下列条件,可以判定哪两条直线平行,并说明判定的根据是什么?解答:⑴由∠2=∠B可判定AB∥DE,根据是同位角相等,两直线平行;⑵由∠1=∠D可判定AC∥DF,根据是内错角相等,两直线平行;⑶由∠3+∠F=180°可判定AC∥DF,根据同旁内角互补,两直线平行。
5.3平行线的性质1、平行线的性质:性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补。
几何符号语言:∵AB∥CD∴∠1=∠2(两直线平行,内错角相等)∵AB∥CD∴∠3=∠2(两直线平行,同位角相等)∵AB∥CD∴∠4+∠2=180°(两直线平行,同旁内角互补)2、两条平行线的距离如图,直线AB∥CD,EF⊥AB于E,EF⊥CD于F,则称线段EF的长度为两平行线AB与CD间的距离。
注意:直线AB∥CD,在直线AB上任取一点G,过点G作CD的垂线段GH,则垂线段GH的长度也就是直线AB与CD间的距离。
3、命题:⑴命题的概念:判断一件事情的语句,叫做命题。
⑵命题的组成每个命题都是题设、结论两部分组成。
题设是已知事项;结论是由已知事项推出的事项。
命题常写成“如果……,那么……”的形式。
具有这种形式的命题中,用“如果”开始的部分是题设,用“那么”开始的部分是结论。
有些命题,没有写成“如果……,那么……”的形式,题设和结论不明显。
对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式。
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述;命题的结论部分,有时也可用“求证……”或“则……”等形式表述。
4、平行线的性质与判定①平行线的性质与判定是互逆的关系两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补。
A BC DEF1234AEGBCFH D其中,由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质。
典型例题:已知∠1=∠B ,求证:∠2证明:∵∠1=∠B (已知)∴DE ∥BC (同位角相等, 两直线平行) ∴∠2=∠C (两直线平行 同位角相等) 注意:在了DE ∥BC ,不需要再写一次了,得到了DE ∥BC ,这可以把它当作条件来用了。
典型例题:如图,AB ∥DF ,DE ∥BC ,∠1=65°,求∠2、∠3的度数.解答:∵DE ∥BC (已知)∴∠2=∠1=65°(两直线平行,内错角相等) ∵AB ∥DF (已知) ∴AB ∥DF (已知)∴∠3+∠2=180°(两直线平行,同旁内角互补) ∴∠3=180°-∠2=180°-65°=115°5.4平移1、平移变换①把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。
②新图形的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 ③连接各组对应点的线段平行且相等 2、平移的特征:①经过平移之后的图形与原来的图形的对应线段平行(或在同一直线上)且相等,对应角相等,图形的形状与大小都没有发生变化。
②经过平移后,对应点所连的线段平行(或在同一直线上)且相等。
A D FB EC1 2 3典型例题:如图,△ABC经过平移之后成为△DEF,那么:⑴点A的对应点是点_________;⑵点B的对应点是点______。
⑶点_____的对应点是点F;⑷线段AB的对应线段是线段_______;⑸线段BC的对应线段是线段_______;⑹∠A的对应角是______。
⑺____的对应角是∠F。
解答:⑴D;⑵E;⑶C;⑷DE;⑸EF;⑹∠D;⑺∠ACB。
思维方式:利用平移特征:平移前后对应线段相等,对应点的连线段平行或在同一直线上解答。