功能高分子材料第四章电功能高分子材料.ppt

合集下载

《功能高分子材料》课件

《功能高分子材料》课件

未来功能高分子材料的发展将更加注重环境友
展,涉及新材料合成、性能优化、应用创新等
好性、可持续性和多功能性,以满足不断增长
方面。
的应用需求。
五、总结

功能高分子材料的优势:多样性、可调节性和高性能特性。

功能高分子材料的发展前景:在多个领域展示出广阔的发展前景和应
用潜力。
应用于医疗领域,如
保领域具有重要应
源存储和转换方面扮
如有机发光二极管
药物控释、组织工程
用,例如水处理、污
演着重要角色,例如
(OLEDs)、柔性电
等,为治疗和诊断提
染物检测和清洁技术
太阳能电
等。
池等。
四、功能高分子材料发展现状和未来发展
方向
发展现状
未来发展方向
功能高分子材料的研究和应用取得了巨大的进
特的特性。
二、功能高分子材料的制备与性能
1
合成方法
通过不同的合成方法,如聚合反应、共
物理性质 ⚖️
2
聚反应等,可以制备出具有特定功能的
高分子材料。
功能高分子材料具有多种物理性质,如
机械强度、热稳定性、电导率等,可以
广泛应用于不同领域。
3
化学性质 ⚗️
功能高分子材料可以通过不同的化学反
功能性能
功能高分子材料可以表现出一系列独特
的功能性能,如荧光性、导电性、自修
复性等。
4
应与其他物质发生作用,实现特定的化
学性质和反应。
三、功能高分子材料应用领域
电子领域应用
⚡️
医疗领域应用

环保领域应用
♻️
能源领域应用
⚡️

功能高分子化学课件电致发光材料及器件

功能高分子化学课件电致发光材料及器件
功能高分子化学课件电致发光 材料及器件
在这个课件中,我们将介绍电致发光材料及器件的基础知识、性质和广泛应 用。通过这个课件,您将会了解到电致发光技术的原理和未来发展趋势。
电致发光基础知识
发光机理
电致发光是通过电流激发发光分子产生能量释放的现象。激发电子跃迁至激 发态,然后通过光致发光机制将能量以光的形式释放。
电致发光材料和器件的应用
广泛应用于
电致发光材料和器件广泛应用于手机、平板、电视等消费电子产品和照明等 领域。
未来发展趋势
未来的电致发光材料和器件将实现更高的亮度、更低的功率消耗,并进一步 应用于可穿戴设备等领域。
结语
• 电致发光材料和器件的发展前景十分广阔。 • 未来,我们有望见证更多创新的发光材料和器件应用的出现。
电致发光材料的性质
1 发光性能
衡量发光材料亮度、色彩饱和度和发光效率等方面的性能。
2 稳定性
评估材料在长时间使用中的稳定性,如寿命、耐热性和抗氧化性。
3 加工性能等
材料在制备电致发光器件时的可加工性、薄膜制备条件等方面的性能。
电致发光器件
器件种类
电致发光器件根据使用的材料不同可分为有机电致发光器件和无机电致发光器件。
发光颜色发生机制
发光颜色的发生取决于发光材料的能带结构和有机染料(用于有机电致发光 材料)的分子结构。
常见的电致发光材料
有机电致发光材料
含有有机分子的材料,可实现丰富多彩的颜色和高亮度。
无机电致发光材料
使用无机物质制备的材料,具有稳定性和长寿命的特点。
杂化电致发光材料
结合有机和无机组分的材料,优化了发光性能和稳定性。
器件构成
发光层、电子传输层、电子注入层、提取层等是组成电致发光器件的关键组成部分。

功能高分子材料-电活性高分子材料..

功能高分子材料-电活性高分子材料..
• • • • 4.2.2 聚合物电致发光器件结构和发光原理 4.2.2.1 电致发光器件的结构 (1)“三明治”式 (2)在(1)的基础上引进电荷传输层,分为 电子传输层和空穴传输层两种 • 若发光层以空穴传输性质为主,在阴极(电 子注入电极)和发光层之间放入电子传输层; 若发光层以电子传输性质为主,在阳极(空 穴注入电极)和发光层之间放入空穴传输层
4.2 电致发光高分子材料
• 聚合物型电致发光材料优点: • 相对于无机电致发光材料而言,机械加工 性能好,成膜简单,很容易实现大面积显 示,发光器件体积小,驱动电压低,制作 简单,造价低,响应速度快 • 相对于有机小分子电致发光材料,Tg高, 不易结晶,挠曲性和机械强度好
4.2 电致发光高分子材料
4.1 概述
• ⑤高分子介电材料:指在电场作用下,材 料具有较大极化能力,以极化方式储存电 荷的高分子材料 • ⑥电极修饰材料:指用于对各种电极表面 进行修饰,改变电极性质,从而达到扩大 使用范围、提高使用效果的高分子材料
4.1 概述
• 4.1.2 电物理变化和电化学变化 • 由于电参量易控制且易测定,电活性材料 发展迅速,涉及各种领域 • 电物理变化:高分子介电材料,高分子驻 极体,高分子电致发光材料 • 电化学变化:高分子电致变色材料 • 而聚合物修饰电极两种情况都可能发生 • 此外,电活性高分子材料的性能往往由器 件的结构和组成决定,即预定性能的好坏 不仅取决于材料本身
激发态电子能量耗散
4.2 电致发光高分子材料
• 荧光与磷光的区别:当入射光关闭后,荧 光立即消失,而磷光仍可观察 • 电致发光的光谱性质依赖于发光材料的价 带和导带间的能隙宽度 • 通过改变分子结构,调整能隙宽度,可制 备出发出各种波长光的电致发光材料 • 第四代全彩色电致发光显示器:超薄、超 轻、低耗、宽视角、主动发光 • 前三代:阴极射线管,液晶和等离子体

《功能高分子 》课件

《功能高分子 》课件

VS
详细描述
功能高分子材料具有良好的光电性能和化 学稳定性,可用于制造太阳能电池和燃料 电池。同时,一些功能高分子材料还可作 为锂电池的电极材料,提高电池的能量密 度和安全性。
04 功能高分子材料的未来发 展
新材料开发
高性能化
通过改进合成方法、引入新型功 能基团等方式,提高功能高分子 的性能,如强度、耐热性、耐腐 蚀性等。
功能高分子材料
指在分子水平上设计并合成的高分子 材料,具有特定功能和性能,以满足 各种应用需求。
分类
01
02
03
按功能分类
导电高分子、光敏高分子 、磁性高分子、吸附分离 高分子等。
按合成方法分类
加聚型、缩聚型、共聚型 等。
按应用领域分类
电子、能源、环保、生物 医药等。
常见功能高分子材料
导电高分子材料
环保领域
总结词
功能高分子材料在环保领域的应用包括水处理、空气净化、 土壤修复等。
详细描述
功能高分子材料具有吸附、分离、富集等功能,可用于水处 理和空气净化。同时,一些功能高分子材料还可用于土壤修 复,帮助去除重金属和有害物质。
新能源领域
总结词
功能高分子材料在新能源领域的应用包 括太阳能电池、燃料电池、锂电池等。
能源环保
利用功能高分子材料的特殊性质,开发高效能电 池、太阳能电池、环境治理材料等,推动清洁能 源和环保产业的发展。
智能制造
利用功能高分子材料的传感和响应特性,开发智 能传感器、驱动器等关键部件,推动智能制造和 工业自动化的发展。
绿色可持续发展
可降解性
开发可生物降解的功能高分子材料,降低对环境的污染和资源消 耗。
智能化
利用传感器、响应性高分子等技 术,开发具有自适应、自修复、 自感知等功能的智能高分子材料 。

《高分子电功能材》课件

《高分子电功能材》课件

CHAPTER
05
高分子电功能材料在新能源领 域的应用
在太阳能电池中的应用
光吸收与转换
高分子电功能材料在太阳能电池 中主要用作光吸收和能量转换的 介质,通过吸收太阳光并将其转 换为电能。
稳定性与寿命
高分子电功能材料在长时间使用 中保持稳定,不易降解,提高了 太阳能电池的使用寿命。
柔性应用
一些高分子电功能材料具有较好 的柔韧性,使得太阳能电池能够 适应不同的应用场景,如穿戴设 备、建筑表面等。
热学性能测试
总结词
热学性能测试主要关注高分子电功能材料的热稳定性、热膨胀系数和热导率等参数。
详细描述
常用的热学性能测试方法包括热重分析、差热分析、热膨胀分析和热导率测量等。这些测试方法可以帮助我们了 解材料在高温下的稳定性、热膨胀行为和热量传递机制,对于评估材料在实际应用中的耐热性和可靠性具有重要 意义。
性能
高分子电功能材料的电学性能受其化学结构、分子量、聚集态等因素影响,可 通过调节这些因素来优化其性能。
高分子电功能材料的应用领域
电子器件
新能源
高分子电功能材料在电子器件领域具 有广泛应用,如导电高分子在电极材 料、电磁屏蔽材料等方面应用。
高分子电功能材料在新能源领域也有 广泛应用,如太阳能电池、燃料电池 等。
在燃料电池中的应用
催化作用
高分子电功能材料在燃料电池中作为催化剂 ,加速化学反应过程,提高燃料电池的效率 和性能。
气体分离与传导
高分子电功能材料具有较好的气体分离性能和离子 传导性能,能够实现燃料电池中氧气和氢气的有效 分离和传导。
耐腐蚀与稳定性
高分子电功能材料具有较好的耐腐蚀性和稳 定性,能够承受燃料电池工作过程中的高温 和化学腐蚀环境。

功能高分子05第4章导电高分子材料PPT教学课件

功能高分子05第4章导电高分子材料PPT教学课件

2020/10/16
12
复合型导电高分子材料的导电作用主要通过其中的 导电材料完成。
复合型导电高分子材料的结构形式:
(1)分散复合结构 导电性粉末 、纤维分散在基体中
(2)层状复合结构 导电层独立存在,两面覆盖基体材 料
(3)表面复合结构 导电材料复合到基体表面
(4)梯度复合结构 两材料连续相间有浓度渐变的过渡 层
因为σ电子是无法延主链移动的,而π电子虽较易
移动,但也相当定域化,因此必需再加以掺杂,亦
即移去主链上部分电子(氧化)或注入数个电子(还原),
这些电洞或额外电子可以在分子链上移动,使此高
分子成为导电体。
2020/10/16
18
当聚乙炔被氧化或还原后主链上即产生自由 基离子或称为极子。
以卤素为氧化剂及碱金属为还原剂为例,掺 杂反应式如下:
2020/10/16
7
按其结构特征及导电机理又可分为: 电子导电聚合物、 离子导电聚合物、 氧化还原型导电聚合物。
2020/10/16
8
复合型导电高分子材料是由绝缘性高分子材 料和各种导电物质通过复合方式制成。
导电物质:炭黑、石墨、碳纤维、金属粉、金 属纤维、金属氧化物等。
复合型导电高分子材料兼有高分子材料的易加 工特性和金属的导电性。
2020/10/16
13
复合型导电高分子材料的性质: (1)导电性质
分散相在连续相中形成导电网络 (2) 压敏性质
材料受到外力作用时,其电性能明显变化 (3) 热敏性质
温度变化时,材料电性能明显变化
2020/10/16
14
复合型导电高分子材料的应用:
(1) 导电性质的应用
金属/环氧树脂导电胶粘剂用于电子器件的连接, 抗震性能好

功能高分子材料-PPT

功能高分子材料-PPT

除了单纯的连锁聚合和逐步聚合之外,采用多 种单体进行共聚反应制备功能高分子也是一种常见 的方法。特别是当需要控制聚合物中功能基团的分 布和密度时,或者需要调节聚合物的物理化学性质 时,共聚可能是最行之有效的解决办法。
(2)功能性小分子通过聚合包埋与高分子 材料结合
该方法是利用生成高分子的束缚作用将 功能性小分子以某种形式包埋固定在高分子 材料中来制备功能高分子材料。在聚合反应 之前,向单体溶液中加入小分子功能化合物, 在聚合过程中小分子被生成的聚合物所包埋。 在高分子药物、固定化酶的制备方面有独到 的优势。
例如,维生素C在空气中极易被氧化而变黄。 采用溶剂蒸发法研制以乙基纤维素、羟丙基甲基纤 维素苯二甲酸酯等聚合物为外壳材料的维生素C微 胶囊,达到了延缓氧化变黄的效果。将维生素C微 胶囊暴露于空气中一个月,外观可保持干燥状态, 色泽略黄。这种维生素C微胶囊进入人体后,两小 时内可完全溶解释放。
2. 已有高分子材料的功能化
一次功能主要有下面的八种: ①力学功能:如惯性、粘性、流动性、润滑性、成型性、 超塑性、恒弹性、高弹性、振动性和防震性。 ②声功能:如隔音性、吸音性。 ③热功能:如传热性、隔热性、吸热性和蓄热性等。 ④电功能:如导电性、超导性、绝缘性和电阻等。
⑤磁功能:如硬磁性、软磁性、半硬磁性等。 ⑥光功能:如遮光性、透光性、折射光性、反射光性、吸 光性、偏振光性、分光性、聚光性等。 ⑦化学功能:如吸附作用、气体吸收性、催化作用、生物 化学反应、酶反应等。 ⑧其他功能:如放射特性、电磁波特性等。
❖ 60年代以后,特种高分子和功能高分子得到发展。
特种高分子:高强度、耐高温、耐辐射、高频绝缘、 半导体等。
功能高分子:分离材料(离子交换树脂、分离膜
等)、导电高分子、感光高分子、高分子催化剂、 高吸水性树脂、医用高分子、药用高分子、高分 子液晶等。

功能高分子材料 课件

功能高分子材料 课件

1.新型高分子材料和传统的三大合成材料有何区别和联 系?
提示:二者在本质上并没区别。从组成元素上看,都是由 C、H、O、N、S等元素组成的;从合成反应上看,都是由单 体经加聚或缩聚反应形成的;从结构上看,都有线型、体型结 构。它们的重要区别在功能和性能上,与传统材料相比,新型 有机高分子材料的性能更优异,往往具备传统材料所没有的特 殊性能,可用于许多特殊领域。
复合材料 两种或两种以上材料组合 成的一种新型的材料。含 有基体和增强剂两种材料
强度高、质量轻、耐高 温、耐腐蚀
功能高分子材料
复合材料
用途
高分子分离膜用于生 活污水、工业废液的 处理、海水淡化、食 品工业。医用高分子 材料可制成人造器官
用作宇航材料,用于 汽车工业、机械工 业、体育用品、人类 健康
【答案】 D
复合材料和功能高分子材料的比较高分子化合物与高分子 材料的比较
1.功能高分子材料和复合材料的比较
定义 性能
功能高分子材料
既有传统高分子的机械性 能,又有一些特殊性能的高 分子材料
高分子分离膜能让某些物质 有选择地通过,而把另外一 些物质分离掉。医用高分子 材料具有优异的生物相容 性、很高的机械性能
功能高分子材料
1.功能高分子材料概述 (1)含义:功能高分子材料是指既有___传__统__高__分__子__材__料___的 机械性能,又有_某__些__特__殊__功__能__的高分子材料。它是一类性能 特殊、使用量小、附加值高的高分子材料。是高分子材料渗透 到电子、生物、能源等领域后开始涌现出的一种新型材料。 (2)分类 ①新型_骨__架__结__构____的高分子材料。 ②特殊功能材料,即在合成高分子的_主__链__或__支__链___上引入 某 种 _功__能__原__子__团___ , 使 其 显 示 出 在 光 、 电 、 磁 、 声 、 热 、 化 学、生物、医学等方面的特殊功能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
导电性聚乙炔的出现不仅打破了高分子仅为 绝缘体的传统观念,而且为低维固体电子学和分 子电子学的建立打下基础,具有重要的科学意义。 上述三位科学家因此分享2000年诺贝尔化学奖。
3
黑格(Alan J. Heeger, 1936~)小传
1936年12月22日生于美国衣阿华州 1957年毕业于内布拉斯加大学物理系,获物理学土学位 1961年获加州大学伯克利分校物理博士学位。 1962年至1982年任教于宾夕法尼亚大学物理系,1967 年任该校物理系教授。后转任加利福尼亚大学圣芭芭拉 分校物理系教授并任高分子及有机固体研究所所长 20世纪70年代末,在塑料导电研究领域取得了突破性的 发现,开创导电聚合物这一崭新研究领域
5
白川英树(Hideki Shirakawa,1936~)小传
1961年毕业于东京工业大学理工学 部化学专业,毕业后留校于该校资 源化学研究所任助教; 1976年到美国宾夕法尼亚大学留学; 1979年回国后到筑波大学任副教授 1982年升为教授; 2000年获诺贝尔化学奖。
1983年他的研究论文《关于聚乙炔的研究》获得日本高分子学会奖, 还著有《功能性材料入门》、《物质工学的前沿领域》等书。
6
7
8
一、 材料的导电性能
根据欧姆定律,当对试样两端加上直流电压V 时,若流经试样的电流为I,则试样的电阻R为:
RV I
(4 - 1)
电阻的倒数称为电导,用G表示:
G I V
(4 - 2)
9
电阻和电导的大小不仅与物质的电性能有关,
还与试样的面积S、厚度d有关。实验表明,试样的 电阻与试样的截面积成反比,与厚度成正比:
在本章的讨论中,将不区分高分子半导体和 高分子导体,统一称作导电高分子。
16
表4-1列出了这四大类材料的电导率及其典型代表。
材料
绝缘体 半导体
导体 超导体
表4-1 材料导电率范围
电导率/ Ω-1·cm-1
<10-10
典型代表
石英、聚乙烯、聚苯乙烯、聚 四氟乙烯
10-10~102 硅、锗、聚乙炔
102~108 汞、银、铜、石墨
>108
铌(9.2K)、铌铝锗合金(23.3K)、 聚氮硫(0.26K)
17
二、高分子材料的导电特点
所谓导电高分子是由具有共轭π键的高分子 经化学或电化学“掺杂”使其由绝缘体转变为导 体的一类高分子材料。
通常导电高分子的结构特征是由有高分子链 结构和与链非键合的一价阴离子或阳离子共同组 成。即在导电高分子结构中,除了具有高分子链 外,还含有由“掺杂”而引入的阴离子(p型掺杂) 或阳离子(n型掺杂)。
18
在共轭高分子中分子内存在空间上一维或二 维的共轭键,π电子轨道相互交替使π电子具有 许多类似金属中自由电子的特征。π电子可以在 共轭体系中自由运动,分子间的迁移通过跳跃机 理实现。
导高分子材料具有质量轻、易成型、电阻率 可调节、可通过分子设计合成具有不同特性的导 电性等特点。
19
导电高分子不仅具有由于掺杂而带来的金属 特性(高电导率)和半导体(p和n型)特性之外, 还具有高分子结构的可分子设计性,可加工性和 密度小等特点。为此,从广义的角度来看,导电 高分子可归为功能高分子的范畴。
Rd
S
同样,对电导则有:
Байду номын сангаас
(4 - 3)
G S
(4 - 4)
d
上两式中,ρ称为电阻率,单位为(Ω·cm),
σ称为电导率,单位为(Ω-1·cm-1)。
10
显然,电阻率和电导率都不再与材料的尺寸 有关,而只决定于它们的性质,因此是物质的本 征参数,都可用来作为表征材料导电性的尺度。
在讨论材料的导电性时,更习惯采用电导率 来表示。
第四章 电功能高分子材料
4.1 概 述
物质按电学性质可分为绝缘体、半导体、导 体和超导体四类。
高分子材料通常属于绝缘体的范畴。 但1977年美国科学家黑格(A.J.Heeger)、 麦克迪尔米德(A.G. MacDiarmid)和日本科学 家百川英树(H.Shirakawa)发现掺杂聚乙炔具 有金属导电特性以来,有机高分子不能作为导电 材料的概念被彻底打破。
共19获 99美年国6月专)利。4据0余S项CI.所发作19表的90论1年0文年创6统立35计U篇N(I(A1X统9公8计0司~至并自任董事长及总裁 1989),在全世界各研究20领00域年所,有因发在表导电论聚文合被物方面的贡献荣获诺贝尔化学奖 引用次数的排名中(包括所有学科)他名列第 64名,是该l0年统计中唯一进入前100名的物理 学家。
4
麦克迪尔米德小传 (Alan G. MacDiarmid, 1927~2007)
1927年生于新西兰。曾就读于新西 兰大学、美国威斯康星大学以及英 国剑桥大学; 1955年开始在宾夕法尼亚大学任教; 1973年开始研究导电高分子; 2000年获诺贝尔化学奖。
发表过六百多篇学术论文拥有二十项专利技术
11
材料的导电性是由于物质内部存在的带电粒子 的移动引起的。这些带电粒子可以是正、负离子, 也可以是电子或空穴,统称为载流子。载流子在外 加电场作用下沿电场方向运动,就形成电流。可 见,材料导电性的好坏,与物质所含的载流子数目 及其运动速度有关。
12
假定在一截面积为S、长为l的长方体中,载流
子的浓度(单位体积中载流子数目)为N,每个载
Nq
(4 - 7)
14
当材料中存在n种载流子时,电导率可表示为:
n
N i qi i i 1
(4 - 8)
此可见,载流子浓度和迁移率是表征材料导
电性的微观物理量。
15
材料的电导率是一个跨度很大的指标。从最 好的绝缘体到导电性非常好的超导体,电导率可 相差40个数量级以上。
根据材料的导电率大小,通常可分为绝缘体、 半导体、导体和超导体四大类。这是一种很粗略 的划分,并无十分确定的界线。
流子所带的电荷量为q。载流子在外加电场E作用
下,沿电场方向运动速度(迁移速度)为ν,则单
位时间流过长方体的电流I为:
I NqS
(4 - 5)
13
而载流子的迁移速度ν通常与外加电场强度E
成正比:
v E
(4 - 6)
式中,比例常数μ为载流子的迁移率,是单位
场强下载流子的迁移速度,单位为(cm2·V-1·s-1)。 结合式(4-2),(4-4),(4-5)和(4-6),可知
相关文档
最新文档