电场中的导体和电介质
电磁学02静电场中的导体与介质

A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:
电场中的导体与电介质

电场中的导体与电介质一般的物体分为导体与电介质两类。
导体中含有大量自由电子;而电介质中各个分子的正负电荷结合得比较紧密。
处于束缚状态,几乎没有自由电荷,而只有束缚电子当它们处于电场中时,导体与电介质中的电子均会逆着原静电场方向偏移,由此产生的附加电场起着反抗原电场的作用,但由于它们内部电子的束缚程度不同。
使它们处于电场中表现现不同的现象。
1.3.1、静电感应、静电平衡和静电屏蔽①静电感应与静电平衡把金属放入电场中时,自由电子除了无规则的热运动外,还要沿场强反方向做定向移动,结果会使导体两个端面上分别出现正、负净电荷。
这种现象叫做“静电感应”。
所产生的电荷叫“感应电荷”。
由于感应电荷的聚集,在导体内部将建立起一个与外电场方向相反的内电场(称附加电场),随着自由电荷的定向移动,感应电荷的不断增加,附加电场也不断增强,最终使导体内部的合场强为零,自由电荷的移动停止,导体这时所处的状态称为静电平衡状态。
处于静电平衡状态下的导体具有下列四个特点:(a)导体内部场强为零;(b)净电荷仅分布在导体表面上(孤立导体的净电荷仅分布在导体的外表面上);(c)导体为等势体,导体表面为等势面;(d)电场线与导体表面处处垂直,表面处合场强不为0。
图1-3-1②静电屏蔽静电平衡时内部场强为零这一现象,在技术上用来实现静电屏蔽。
金属外壳或金属网罩可以使其内部不受外电场的影响。
如图1-3-1所示,由于感应电荷的存在,金属壳外的电场线依然存在,此时,金属壳的电势高于零,但如图把外壳接地,金属壳外的感应电荷流入大地(实际上自由电子沿相反方向移动),壳外电场线消失。
可见,接地的金属壳既能屏蔽外场,也能屏蔽内场。
在无线电技术中,为了防止不同电子器件互相干扰,它们都装有金属外壳,在使用时,这些外壳都必须接地,如精密的电磁测量仪器都装有金属外壳,示波管的外部也套有一个金属罩就是为了实现静电屏蔽,高压带电作用时工作人员穿的等电势服也是根据静电屏蔽的原理制成。
静电场中的导体和电介质

-
目录
静电场中的导体 和电介质
0
静电场中的导体和电介质
静电场中的导体和电介质
静电场是指在没有电流流动的情况下,电荷分布所产生的电场。在静电场中,导体和电介质 是两种不同的物质,它们的特性和作用也不同,本文将探讨导体和电介质在静电场中的性质 和应用 首先,我们需要了解导体和电介质的基本概念。导体是一种具有良好导电性能的物质,常见 的导体包括金属等。导体内的自由电子可以在外加电场的作用下移动,形成电流。而电介质 则是一种不良导电的物质,它的电导率远远低于导体。电介质在外加电场下无法形成连续的 电流,而是通过极化现象来响应电场的作用 在静电场中,导体和电介质的行为有很大的不同。对于导体来说,其特点是在静电平衡状态 下,内部电场为零。这是因为导体内的自由电子能够自由移动,它们会在外加电场的作用下 重新分布,直到达到平衡状态。这种现象被称为电荷运动的屏蔽效应。导体的另一个重要性 质是表面上的电荷分布是均匀的,这也是导体可以用来储存电荷的
与导体不同,电介质在静电场中的响应更加复杂。当外加电场作用于电介质时,电介 质分子会发生极化现象,即分子内部正、负电荷的分离。这种分离会导致电介质内部 产生电位移场,从而相应地改变电场分布。电介质的极化程度可以用极化强度来衡量 ,极化强度与外加电场的强度成正比。除了极化现象,电介质还可能发生击穿现象, 即在电场强度过高时,电介质内部的绝缘失效,导致电流的突然增加
0
静电场中的导体和电介质
导体在静电场中的一个重要应用 是电路中的导线。电路中的导线 由导体制成,它们能够有效地传 导电流。在电力系统中,导体连 接电源和电器设备,将电能传输 到目标地点。此外,在电子设备 制造中,导体用于制作电路板, 连接不同的电子元件,实现电信 号的传输和处理
静电场中的导体与电介质

§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
静电场中的导体和电介质教学教案

第九章 静电场中的导体和电介质1、D分析:带电导体达到静电平衡时0=内E ,导体为等势体,导体表面的电场强度垂直于导体表面;2、B分析:两金属球用细长导线相连成等势体,由于是细长导线,可视为两孤立的导体球,孤立导体球的电势)0(=∞U 242400=⇒=qQ r qr Qπεπε 3、C分析:因为金属球不带电,当在其下方放置一电量为q 的点电荷时,只有当金属球下方感应异号电荷后金属球内的电场强度才可能为零,必定可以看到金属秋下移的现象;4、B直接应用两等大的金属平板带电的分布规律: SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 依据上式有:2,212σσσσ-==5、D 均匀带电球面的电场强度公式为:204R QE πε= m R E Q R 3689021********.11094--⨯=⇒⨯⨯⨯⨯==πε 6、C有介质时的高斯定理为:E D q S d D r S εε00,==⋅⎰∑选项A :E 是空间点和产生的,如果高斯面内没有自由电荷,但是外部可能有电荷,一般而言,E 不为零,故D 也不为零;选项B :两同心球壳上带等量异号电荷后,再做一个同心的大球面为高斯面,因为0=E 则高斯面上0=D ;选项C :从高斯定理可以解出高斯面的D 通量仅仅与面内的自由电荷有关;7、B依据等效电容的规律: 212121,111C C C C C C C C +=+=若中1C 插入r ε的电介质,则11'C C r ε=,且1>r ε,即1C 的电容增大;总电容: C C C C C C C C C C r>+=+=ε21212121'''8、B电容器充电后,断开电路,基板上的电荷量不变,然后充满电介质,有:0C C r ε=,电容增大;r U U ε0=,电压减小; ,2121022C q C q W r ε==能量减小; 9、B在q 不变的条件下,已知02021C q W =,充满电介质后,0C C r ε=, rr W C q C q W εε00222121=== 10、rE r D r επελπλ02,2== 应用有介质时的高斯定理:⎰∑=⋅s q S d D 0在两同轴圆柱之间取一半径为r 的单位长度同轴圆柱面为高斯面,λπ===⋅⎰⎰rD DdS S d D s 2侧面∴rE r D r επελπλ02,2== 11、)(21B A Q Q s q -==σ,d Q Q S U B A AB )(210-=ε 应用静电平衡的结果:S Q Q S Q Q S Q Q B A B A B A 2,2,23241--=-=+==σσσσ )(21,2B A B A Q Q s q S Q Q -==-=σσ A 、 B 间为均匀电场,场强为:)(2100B A Q Q SE -==εεσ 电势差:d Q Q S Ed U B A AB )(210-==ε12、SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 应用电荷守恒原理:121Q s s =+σσ243Q s s =+σσ在AB 板内取一点p,该点的0=E , 0222204030201=---εσεσεσεσ 在CD 板内取一点o,该点的0=E , 0222204030201=-++εσεσεσεσ 由以上四个式子可以解出: SQ Q S Q Q S Q Q B AB A B A 2,2,23241--=-=+==σσσσ 13、CdF 2 ,CdF 2 两极板间的相互作用力为一个极板在另外一个极板上产生的电场强度求,该极板上的电量为q : d SC S q q qE F 0020,22εεεσ==⋅== CdF q CdF SF q 22202=⇒==ε CdF C q U 2==∆ 14、dsU 22120ε 依据能量公式:dsU CU C Q W 22121212022ε=== 15、41,161 16、c q c q 9291103.13',1067.6'--⨯=⨯= ,V 3100.6⨯分析:两个导体球相连后成为一个等势体,由于两球相距很远,可以看做孤立的导体球,导体球的电势为:r QU 04πε=,.0.2,0.1,100.111821cm r cm r c q q ==⨯==- 2021014'4'r q r q πεπε=, 2121''q q q q +=+ 解得:c q c q 9291103.13',1067.6'--⨯=⨯= V r q U 3101100.64'⨯==πε17、)()(122112r R R Q R Q R r q ++= 原来不带电的导体球与半径为1R 的导体球壳相连后,导体球带电为q,半径为1R 的导体球壳带电为q Q -1,根据电势相等的条件有: rq R Q R q Q 020*******πεπεπε=+- 化简得:rq R Q R q Q =+-2211 )()(122112r R R Q R Q R r q ++=18、RQ πε82R UQ C R QU πεπε4,4=== RQ C Q W πε82122== 应用积分法:422223221,4rQ E r Q E m επεωπε=== dr r Q dr r r Q dV dW m 2224228432πεπεπω=== R Q r dr Q dW W R πεπε88222===⎰⎰∞ 19、J J 16.0,32.0电容串联后的等效电容:F C C C C C μ322121=+= c CV q 4610810120032--⨯=⨯⨯== J C q W 32.010)108(2121624121=⨯⨯⨯==- J C q W 16.010)108(4121624222=⨯⨯⨯==- 20、1dq R q04πε 2R Q 028πε解:1当球上已带有电荷q 的条件下,外力将dq 从无穷远移动到球上时,外力做的功为: ∞→→∞=R R dW dW 电外)]()([R E E p p -∞-=)(R E p = )(R dqU = dq R q04πε= 2 R Q Q R dq q R dW W Q 022*********πεπεπε=⨯===⎰⎰外外21、利用电势相等来解; b Q a Q ba0044πεπε=Q Q Q b a =+由以上两式可以解得: ba bQ Qb a aQ Q b a +=+=, U Q U Q Q C b a=+=dq)(4414000b a Q b a Qa a a Q U a+=+==πεπεπε ∴)(40b a C +=πε。
大学物理-第18章静电场中的导体与电介质

+
O
+- H+ - H+
++
-
++
+
He
H2O
有极分子对外影响等效为一个电偶极子,电矩 Pe ql
事只实不上过lq所在为中为有无从心分分电负 的子子 场电 有中均 时荷 向所可 ,作 线有等 无用 段正效 极中电为 分心荷电 子指的偶 的向代极电正数子偶电和的极作;模矩用型为
综 1)不管是位移极化还是取向极化,其最后的 述:宏观效果都是产生了极化电荷。
2)两种极化都是外场越强,极化越厉害 所产生的分子电矩的矢量和也越大。
三、电介质内的场强、有介质时的高斯定理
1、电介质内的场强
EE0E'
c
E0
E'
a
b
EE0E'
实验发现,在均匀介质中
E
2 3 0 ……(3)
在板内任选一点P,其场强是四个面的场强的叠加,有
EP210220230240
又 EP 0 12340 Q
联立四式得:
……(4) 1 2 3 4
12432Q S
I
II III
P
由于静电平衡时表面面电荷密度与表面附近场强大小成
E0
E
E0
r
r 1
0
++
E0
+ +-
E
+ +-
《导体,电介质》课件

2
电介质的性质
电介质的密度通常比导体大,并且可以在电场中存储电荷。
3
导体和电介质的相互作用
导体和电介质在一定条件下可以互相作用,例如电容器。
导体和电介质的应用
电动机
电容器
电动机利用导体在磁场中的运动 产生动力,如电风扇、电动车等。
电容器是利用导体和电介质的相 互作用存储电荷的装置。
电子器件
导体和电介质在电子器件中有着 广泛的应用,如灯泡、集成电路 等。
导体和电介质的示例
1 导体示例
你身边的许多物品都是导 体,如金属勺子、电线、 手机等。
2 电介质示例
你身边也有很多电介质, 如空气、玻璃、塑料等。
3 导体和电介质的区别
区别导体和电介质的最简 单的方法是看是否能传导 电流。
导体和电介质的实验方法
电导实验
通过电压和电流的关系,测定导体的电导率。
电介质实验
《导体, 电介质》PPT课 件
欢迎来学习导体和电介质,这门课程将会涵盖物理,化学,电ቤተ መጻሕፍቲ ባይዱ和电子等领 域的知识。
导体的介绍
金属导体
金属导体是指具有良好导电性的 金属材料,如铜和银。
非金属导体
非金属导体是指除金属以外的材 料,如石墨、某些半导体等。
导体在自然界中的应用
导体在自然界中有着广泛的应用, 如闪电的传导、大地的导电层等。
电介质的介绍
电介质的定义
电介质是指电场中能够储存电荷的材料,如空气、玻璃等。
电介质的应用
电介质在电力,电子器件,地球物理探测等领域有广泛使用。
导体和电介质的区别
导体和电介质最大的区别是导电性,导体具有良好的导电性,电介质通常没有。
2.3 静电场中的导体与电介质

被积函数 代入原式
r r r r r r P(r ') ∇′ ⋅ P(r ')) 1 P(r ') ⋅∇′ = ∇′ ⋅ − R R R
r r r r P (r ') r 1 ∇′ ⋅ P (r ') ϕ p (r ) = ∇′ ⋅ dV ′ − ∫ dV ′ ∫V ′ V′ 4π ε0 R R
+
+++ +
+
+ + +
感应电荷
CQU
+ + + +
+ + + +
+ + + +
v E0
CQU
v E0
v E=0
v' E
+ + + + + + + +
v E0
v v v' E = E0 + E = 0
导体内电场强度 外电场强度 感应电荷电场强度
CQU
静电平衡条件: 静电平衡条件 (1)导体内部任何一点处的电场强度为零; )导体内部任何一点处的电场强度为零; 都与导体表面垂直; (2)导体表面处的电场强度的方向 都与导体表面垂直 )导体表面处的电场强度的方向,都与导体表面垂直 (3)导体为一等位体,导体表面为等位面; )导体为一等位体,导体表面为等位面; (4)电荷(或感应电荷)分布在导体表面上,形成面电荷 )电荷(或感应电荷)分布在导体表面上,形成面电荷. 导体表面是等势面
2.3 静电场中的导体与电介质
CQU
导体与介质放在电场中会发生什么现象? 导体与介质放在电场中会发生什么现象? 导体:静电感应; 介质:极化现象。 导体:静电感应; 介质:极化现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、电容器
1、电容器的定义
两个带有等值而异号电荷的导体 所组成的系统,叫做电容器。
+Q
-Q
2、电容器的电容
如图所示的两个导体放在真空中,它们所 带的电量为+Q、-Q,它们的电势分别为 V1、V2,定义电容器的电容为: 计算电容的一般步骤为: •设电容器的两极板带有等量异号电荷; •求出两极板之间的电场强度的分布; •计算两极板之间的电势差; •根据电容器电容的定义求得电容。
3-4 物质中的电场
在静电场中总是有导体或电介质存在的,而且静电场 的一些应用都要涉及静电场中导体和电介质的行为, 以及它们对静电场的影响。
一、静电场中的导体
1、静电感应及静电平衡
若把导体放在静电场中,导体中的自由电子将在电场力的 作用下作宏观定向运动,引起导体中电荷重新分布而呈现 出带电的现象,叫作静电感应。 开始时, E’< E0 ,金属内部的场强不零, 自由电子继续运动,使得E’增大。这个过 程一直延续到E’= E0即导体内部的场强为零 时为止。此时导体内没有电荷作定向运动, 导体处于静电平衡状态。
根据静电平衡条件,空腔 由静电平衡条件,腔内壁非均匀 分布的负电荷对外效应等效于: 导体内表面总的感应电荷为 -q, 非均匀分布;外表面,总的感 在与 q 同位置处置 q 。 应电荷为 q,非均匀分布。
9
R
q q q U U U U U 0 q 壳 地 内壁 外壁 q q O o d q外壁 0
C Q V
Q C= 4 0 R V
孤立导体的电容与导体的 形状有关,与其带电量和 电位无关。
3、电容的单位
法拉(F) 1F=1C.V-1 微法 1μF=10-6F 皮法 1pF=10-12F
4、关于电容的说明:
•导体的电容是导体的一种性 质,与导体是否带电无关; •导体的电容是反映导体储存 电荷或电能的能力的物理量; •导体的电容只与导体本身的 性质和尺寸有关。
•圆柱越长,电容越大;两圆柱之间的间隙越小,电容越大。 •用d表示两圆柱面之间的间距,当d<<RA时
RB RA d d d ln ln ln( 1 ) RA RA RA RA
E
高斯面
n
S1
S2
5、表面电荷分布
孤立导体处于静电平衡时,它 的表面各处的面电荷密度与各 处表面的曲率有关,曲率越大 的地方,面电荷密度越大。
应用:火花放电设备的电极往往做 尖端放电: 成尖端形状;避雷针也是根据尖端 带电体尖端附近的场强较 放电的原理做成的。 大,大到一定的程度,可 不利的一面:浪费电能。 以使空气电离,产生尖端 避免方法:金属元件尽量做成球形, 放电现象。 并使导体表面尽可能的光滑。
E
金属球放入前电场 为一均匀场
金属球放入后电力线发生弯 曲,电场为一非均匀场
5
3、静电平衡时导体上电荷的分布
实心导体
在静电平衡时,导体内部的场强 为零,所以通过导体内部任一高 斯面的电场强度通量必为零
结论:
E dS 0
在静电平衡时,导体所带的电荷只能分布在导体的表 面上,导体内部没有净电荷。
Qd VA VB E dl Ed S 0 A
B
于是平板电容器的电容为
S Q C= 0 VA VB d
平板电容器的电容与极板的面 积成正比,与极板之间的距离 成反比,还与电介质的性质有 关。
例2、圆柱形电容器
圆柱形电容器由半径分别为RA和RB 的同轴圆柱导体A、B组成,且圆柱 体的长度l比半径R大得多,因而A、 B两圆柱面之间的电场可以看成无限 长圆柱面的电场。设内、外圆柱分别 带有+Q、-Q的电荷,单位长度上的 电荷线密度为λ=Q/l,两圆柱面之间 距圆柱体轴线为r处的电场强度为
〈2〉外壳接地后电荷分布如何变化?
内壁电荷分布不变
〈3〉由叠加法求球心处电势
U 0 U q U内壁 1 1 ( ) 4 0 d R q
q 4 0 d
q 4 0 R
10
求 ①电荷及场强分布;球心的电势
例2. 已知 R1 R2 R3 q Q.
Q q
B
q q
E
E
l
E
有极分子的极化
F
F
E
无外电场
有外电场
18
4、极化电荷
在外电场中,出现束缚电荷的现象叫做电介质的极化。
E
5、电介质中的电场强度
E
E=E0+E
E= E0
E=E0 E
r
r 叫做电介质的相对电容率或相对介电常数 相对电容率r与真空电容率0的乘积=r0叫做电容率
24
例1、平行板电容器:
如图所示,平板电容器由两个彼此靠得很近的平行 极板导体A、B组成,两极板的面积均为S,分别带 有+Q、-Q的电荷,于是极板上的电荷面密度为 σ=Q/S,两极板之间的电场接近于匀强电场。由高 斯定理可得极板间的场强为 Q E 0 S 0
Q Q
E
上面的情况是两极板之间的距离d比极板的线度小得多时 的近似。于是两极板之间的电势差为
Q q
E
q 4 0 r 2
Qq 4 0 r 2
B
q q
r R3
A R1 O
R2
R3
球心的电势:
R3 R2 R1 U o E dr Edr Edr Edr Edr 0 0 R1 R2 R3
1 1 1 qQ ( ) 4 0 R1 R2 4 0 R3 q
R1 AO
R2
②如用导线连接A、B,再作计算
R3
解: ①电荷在各表面的分布分别为:
q
由高斯定理得 场强分布:
q
Q q
r R1 R2 r R3
0
q 4 0 r Qq 4 0 r 2
2
E
R1 r R2
Hale Waihona Puke r R3110
r R1 R2 r R3 R1 r R2
也可用电势叠加原理计算
12
②用导线连接A、B,再作计算 Q q
连接 A、B, q ( q ) 中和
B
q q
A R1 O
R2
球壳外表面带电 Q q
R3
r R3
E0
R3
Qq U o Edr Edr 4 0 R3 0 R3
r R3
Qq E 4 0 r 2
三 、有电介质时的高斯定理
1 因为束缚电荷是不可测量的,所以上式 E dS Q0 Q 用起来不方便,我们换用另外一形式.
S 0
E=
E0
E dS Eds
s s
r
4 0 r r
Q0
2
这个高斯面的电通量是:
令
D= 0 r E E D dS Q0
电介质的极化现象
E
极化电荷 (束缚电荷)
电介质在外场作用下, 在垂直于电场方向的介质 表面产生极化电荷——电介质的极化现象 15
2、无极分子的极化机理——位移极化
无外电场时,分子的正负电荷中心重合; 有外电场时,正、负电荷将被电场力拉开, 偏离原来的位置,形成一个电偶极子,叫 作诱导电偶极矩。 对于处于外电场中的电介质来说,每个分子 都有一定的诱导电偶极矩,而且排列方向大 致与外电场方向相同,以致在电介质与外电 场垂直的两个表面上出现正电荷和负电荷。 这种电荷不能用导电的方法使它们脱离电介 质而单独存在,所以把它们叫作极化电荷或 束缚电荷。撤去外电场后,正负电荷的中心 又将重合而恢复原样。
E
3、有极分子的极化机理——取向极化
有极分子有一定的电偶极子。当没 有外电场时,由于分子的无规则的 热运动,电偶极子的排列是杂乱无 章的,因而对外不显电性。当有外 电场时,每个电偶极子都将受到一 个力矩的作用。在此力矩的作用下, 电介质中的电偶极子将转向外电场 的方向。虽然由于分子的热运动, 各电偶极子的排列并不是十分整齐, 但对于整个电介质来说,在垂直于 电场方向的两个表面上,也将产生 极化电荷。撤去外电场,由于分子 的无规则的热运动,电偶极子的排 列又将变成杂乱无章。
S
4 0 r r
Q0
2
ds
0 r
Q0
电位移通量
电位移矢量 在静电场中,通过任意一个闭合曲面的电位移矢量通量等 于该面所包围的自由电荷的代数和,这就是有介质时的高 斯定理。
3-5 电容 电场的能量
一、孤立导体的电容
1、引入
•所谓孤立导体是指其它导体或带电体都离它足够远, 以至于其它导体或带电体对它的影响可以忽略不计。
用电势表示: •导体是各等势体; •导体表面是等势面。 对于导体中的任何两点A和B
U AB
B
A
E dl 0
对于导体中表面的两点A和B
U AB
B
A
Et dl 0
导体表面附近的场强方向处处与表面垂直。
E
++ + + + ++
[例1] 内半径为 R 的导体球壳原来不带电,在腔 内离球心距离为 d (d R) 处,固定一电量 q 的 点电荷,用导线将球壳接地后再撤去地线,求球心处 电势.
解: 〈1〉画出未接地前的电荷分布图.
q q q R o d