动车组牵引传动系统CRH380B(L)

动车组牵引传动系统CRH380B(L)
动车组牵引传动系统CRH380B(L)

CRH380B动车组牵引传动系统

本章主要介绍动车组牵引传动系统工作原理及主要组成部件牵引变压器、变流器、牵引电机及限压电阻等电气设备结构、性能特点。

第一节动车组牵引传动方式

CRH380B动车组整列为一个高压单元,由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。CRH380BL动车组由两个独立的高压单元组成(前、后八辆分别为一个高压单元),每个高压单元由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。如图4-1所示

图4-1 CRH380BL动车组高压单元

CRH380B和CRH380BL动车组高压供电系统组成、工作原理基本相同:接触网高压电经受电弓进入动车组,经主断路器(MCB)等高压部件,一路直接进入本牵引单元、另一路经隔离开关(RLDS)、车顶高压电缆进入另一牵引单元。

CRH380B动车组牵引传动系统采用4动4拖的动力配置,01、03、06、08车为动车,02、04、05、07车为拖车,全列由2个牵引单元组成,每个牵引单元由1台变压器、两台变流器和2个动车的8台牵引电机组成,全车共计16台牵引电动机;CRH380BL动车组牵引传动系统采用8动8拖的动力配置,01、03、06、08、09、11、14、16车为动车,02、04、05、07、10、12、13、15车为拖车,全列由四个牵引单元组成,每个牵引单元由一台变压器、两台变流器和2个动车的8台牵引电机组成,全车共计32台牵引电动机。

第二节牵引系统构成及工作原理

一、原理及基本组成

CRH380B动车组整列为一个高压单元,由两个对称的牵引单元组成(每四辆车为一个牵引单元,如图4-2),牵引单元间由车顶高压线缆连接。

CRH380BL动车组由两个独立的高压单元组成(前、后八辆分别为一个高压单元),每个高压单元由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。

图4-2 牵引单元

CRH380B(L)动车组高压供电系统组成、工作原理基本相同。接触网高压电经受电弓进入动车组,经主断路器(MCB)等高压部件,一路直接进入本牵引单元,接连接到牵引变压器的原边绕组,另一路经隔离开关(RLDS)、车顶高压电缆进入另一牵引单元。

牵引单元主要由主变压器、牵引变流器和牵引电机等组成。动车组高压设备安装在变压器车02、07、10(CRH380BL)、15(CRH380BL)车顶上,每个变压器车安装1架受电弓,正常运行时,每个高压单元仅升起1架受电弓,另一架受电弓备用,处于折叠状态。本高压单元高压部件或牵引单元发生故障时,可将故障受电弓或牵引单元隔离,不影响另一个动力单

元。

牵引变流器连接到主变压器次边牵引绕组上,通过预充电单元(在接通期间)给两个并联整流模块供电,其作用是将单相输入电压转变为DC链路的直流电压,实现主电路和DC 链路之间的能量转换,DC链路含有电容器、谐波电路、接地故障检测和保护模块,DC链路电压经脉冲逆变器变换成三相变频脉冲电压,电压振幅和频率可以设定,给三相异步牵引电机供电。

牵引电机相对于列车方向横向安装在动力转向架上,通过四个固定点固定到转向架的电机支撑上,采用由轴向、径向都具有柔性的联轴器以及齿轮传动装置将牵引电机的驱动力矩传递到轮对。

二、牵引设备组成

(一)CX-PG型受电弓

CRH380B(L)动车组安装CX-PG型受电弓,如图4-3所示,主要由底架、下臂、上臂、下拉杆、上拉杆、平衡系统、弓头、自动降弓装置、APIM装置、减震器、绝缘子和柔性联轴节组成。

1底架 2下臂 3上臂 4下拉杆 5上拉杆 6平衡系统 7弓头 8自动降弓装置9APIM 装置 10减震器 11铭牌 13绝缘子 31柔性联轴节

图4-3 CX-PG型受电弓

该型受电弓由气囊组成的气动平衡系统控制,气囊的压力空气由气动控制单元提供。在压力空气作用下气囊产生扭矩,通过凸轮及弹性连接轴作用在下臂的铰链处,从而使受电弓根据设定速度升弓。

气动控制单元见图4-4所示,该控制单元有以下功能:受电弓升弓命令,受电弓升弓速度控制,受电弓降弓速度控制,在额定静力下控制气囊内压力,过滤气动控制单元的压力空气,在维护过程中命令受电弓升弓,提供受电弓升降弓信息。通过气动控制单元调整压缩空气的压力,在该压力作用下不断改变受电弓的升弓高度,使弓头和接触线之间保持一定的接触力。

图4-4 CX-PG型受电弓气动控制单元

如果压力空气供应中断或者低压电源供应发生故障,受电弓会自动降弓,随着气囊内的压力空气排空后由重力作用自动实现降弓。

(二)主断路器

动车组在变压器车车顶设置一台主断路器,主要由高压接头、真空开关管、触头压力机构、脱动机构、控制装置和动作气缸组成,如图4-5所示。主断路器采用电空控制方式,实现动车组高压系统与接触网接通、断开控制,动车组供电系统过流、短路等故障保护。

图4-5 主断路器

真空主断路器将受电弓接受的25KV AC供电与车顶电缆连接,主断路器中集成了接地绝缘和电流互感器用于测量动车组的电流,从电流互感器出来的信号通过中央控制单元进行评估,而从变压器出来的信号通过中央控制单元和牵引控制单元进行评估。带有接地绝缘的真空断路器将受电弓和其牵引单元主变压器原边绕组连接起来,同时通过车顶电缆与另一个牵引单元主变压器原边绕组连接起来。

主断路器为单极真空主断路器,内置有弹簧式压缩空气作动器以及真空电弧放电室,主断路器通过电磁阀线圈得电,压缩空气进入压力缸推动气缸内活塞,活塞推动作动器动触头动作,与静触头接触,主触点闭合,同时吸持电磁线圈得电保证接触压力,当吸持电磁线圈失电时,在复位弹簧的作用下,头触头与静触头断开。正常情况下,主断路器作动器所需的压缩空气由动车组主风管提供;当主风管压力不足时,动车组将启动辅助空气压缩机提供压缩空气,主断路合闸过程如图4-6所示。

(1)开断时刻(2)打开电磁阀

(3)主触头移动(4)主触头闭合

图4-6 主断路合闸过程

(三)隔离开关

隔离开关为单极开关,安装在变压器车车顶,如图4-7所示。正常情况下,隔离开关处于闭合状态;发生故障时,隔离开关打开,将车顶高压电路断开。

隔离开关采用电空控制,正常情况下,隔离开关驱动机构所需的压缩空气由动车组主风管提供;当主风管压力不足时,动车组将启动辅助空气压缩机提供压缩空气。

图4-7 隔离开关

为了确保动车组在故障时的运行能力,借助车顶隔离开关将相关的动力单元在电气上断开。动车组牵引是交流传动方式。由牵引变流器驱动三相异步牵引电机,变流器由四象限斩波器(4QC)、DC中间连接和一个脉宽调制(PWM)逆变器组成。四象限斩波器(4QC)确保稳定的供电系统并且允许再生制动能量反馈到接触网供电系统。

(四)接地开关

接地开关安装在变压器车车顶主断路器旁边的底座上,通过手柄手动操作,带有安全连

锁钥匙,用于主断路器两侧电路的接地。正常情况下处于打开位置,闭合时将闸刀转入刀夹内,使主断路器两端触点接通,动车组主断路器两侧电路均接地。接地开关结构如图4-8

所示。

图4-8接地开关结构示意图

(五)避雷器

避雷器安装在车顶受电弓安装区域,用于保护动车组及电气系统,如图4-9所示。接触网过压保护避雷器防止过电压通过接触网进入动车组(如闪电过压)。变压器过压保护避雷器用于保护主变压器,防止主断路器闭合时主变压器过压,变压器避雷器技术参数见表5-6。

1.合复合材料外壳

2.有气体分流器的凸缘

3.缩弹簧

4.线性金属氧化晶体管

5.间板

6.放孔

图4-9 避雷器结构图

(六)互感器

1.电压互感器

如图4-10所示,电压互感器原边绕组与受电弓相连接,位于受电弓与主断路器之间,用于测量、监视接触网线电压。

图4-10 电压互感器

2.电流互感器

每辆变压器车安装有3个直通式电流互感器,分别为线电流互感器(LCT)、主变压器电流互感器(TCT)、主变压器回流互感器(ECT),如图4-11所示。

线电流互感器安装在车顶,用于检测每个高压单元的电流;主变压器电流互感器安装在车顶,用于检测每个主变压器输入端电流;主变压器回流互感器安装在主变压器框架中,用于检测每个主变压器的回流电流。通过同一高压单元中线电流互感器、两个主变压器电流互感器的检测值间的比较,可以判断动车组高压系统是否存在接地故障。通过每个主变压器电流互感器、主变压器回流互感器的检测值间的比较,可以判断主变压器是否存在接地故障。

图4-11 线电流互感器

(七)车顶电缆

如图4-12所示,动车组两个牵引单元的高压系统通过车顶高压电缆相互连接。车辆间高压电缆连接通过位于车端的支撑绝缘子和跨接电缆实现。

图4-12 跨接电缆的基本结构

(八)运行电流回流/接地

动车组接地分为保护性接地、电磁兼容接地、运行接地。运行接地(运行电流回流)以及保护接地(列车车体接地)分别保护在线路短路的情况下车体不接触电压,以下电压等级的设备必须接地:直流大于50V;交流大于24V。

1.电磁兼容接地

电磁兼容接地主要是电缆屏蔽层接地,电缆屏蔽层两端接地,不论对电场还是对磁场都能起到屏蔽作用。

2.运行接地

用来把高压电网电流反馈到轨道上,轨道的作用是充当电流回馈变电所的导体。

3.保护性接地

所有可能接触且故障时可能带有高电压的导电部件,必须与车体(车体某部件)直接连接或通过接地线连接,包括电气设备附近可接触导电部件,如厨房设备、金属柜、天线等。

4.接地装置布置

以CRH380B动车组为例,整列电动车组的保护性接地装置安装在牵引单元中04、05车两台转向架的四个轴头上,运行接地装置安装在02、07车转向架两个轴头上,每个接地装置通过电缆连接到变压器的汇流排上。

(九)主变压器

1.主变压器箱体安装在动车组的02、07、10(CRH380BL)、15(CRH380BL)拖车的地板车下,主要由油箱、储油柜、铁芯绕组、变压器、油冷却系统、监视保护装置等部件组成,如图4-13所示。

图4-13 主变压器及冷却单元

2.冷却系统

牵引变压器部冷却采用了油循环风冷却方式,冷却单元、冷却系统循环路径如图4-14所示。冷却系统主要由油冷却器、电动油泵、冷风机等部件组成。电动冷风机从车辆侧面吸入冷却风,经防护网空气过滤器送往油冷却器,热交换后的空气从进气风道对面的排气风道排出,绝缘油在油冷却器冷却后被送往变压器。油在流经绕组表面和铁心侧面时吸收热量,吸收热量后的油经集成在冷却回路中的冷却泵再次送往油冷却器进行热交换。

1冷却设备 2法兰叶 3密封套管 4 PT100 5流量计 6冷却油泵

7补偿器 8主变压器 9澎胀油箱

图4-14 冷却单元、冷却系统循环路径示意图

(十)牵引变流器

牵引变流器安装在01、03、06、08、09(CRH380BL)、11(CRH380BL)、14(CRH380BL)、16(CRH380BL)车下牵引设备箱中,采用结构紧凑,易于运用和检修的模块化结构,如图4-15所示。牵引变流器由2个四象限斩波器(4QC)、带谐振电路的中间电压电路、1个制动斩波器以及1个脉冲宽度调制逆变器(PWMI)组成,模块具有互换性,其输入线路接触器由牵引控制单元TCU控制。

图4-15 牵引变流器结构

(十一)牵引电机及冷却风扇

牵引电机为4极三相异步电机,主要由定子、转子、轴承和端盖组成,如图4-16所示。每辆动车组装有4个牵引电机,具有结构坚固,重量轻,噪音低,设计紧凑等特征。

图4-16 牵引电机结构及剖面图

牵引电机采用弹性波纹管联结的开路循环通风系统强迫冷却,冷却风经机座上方凸缘通路进入,之后流过定子冷却风道和转子铁心上的冷却风孔,经传动端端盖上的出风口排出。在牵引电机上装有温度监测元件和速度监控元件,必须使用监控系统以保证电机不超过最大速度,最大电压和最大电流值,以预防电机过热、确保行车安全。

1.定子

电机定子由机座、定子铁芯和定子线圈等部件组成。

电机机座采用高质量的球墨铸铁制造,结构紧凑合理,机座内轴向冷却风道的散热筋,赋予机座非常高的强度和刚性,具有极高的抗振质量。

定子铁心由绝缘冷轧硅钢板叠压, 采用绝缘拉杆固定,使定子铁心成为一个圆形壳体。

定子绕组为双层成型绕组,采用专用的涨形机制造,成型后嵌进定子槽中。为了得到足够的机械强度、良好的电气性能与优良的热稳定性,定子绕组用端箍固定,带绕组的定子铁心整体经真空压力浸漆(VPI)、旋转烘培后热套进机座中,组成定子单元。

整个电机的绕组绝缘为200 级耐电晕绝缘系统。

2.转子

转子为鼠笼结构,由转轴、铁心、鼠笼绕组等部件组成。

转轴由高强度的锻造合金钢制成。绝缘冷轧硅钢板叠压组成的转子铁心及压板热套安装到转轴上。铜导条插入铁心槽内,在传动端和非传动端分别与铜合金端环铜焊在一起,形成鼠笼绕组。每端转子压板有一个圆形槽,将平衡块放置并紧固以保证转子动平衡。

3.轴承、端盖

铝合金端盖装入定子机座的两侧,支撑转子。

两端轴承分别压入钢质轴承盖内,并在端盖内用螺栓固定。转子在传动端由深沟球轴承、非传动端由圆柱滚子轴承支撑。轴承用润滑脂润滑,可通过锥形注油嘴添加润滑脂,在传动端端盖、非传动端端盖底部集油孔内收集用过的润滑脂。

4.牵引电机冷却风扇

每个牵引电机冷却风扇同时给同一转向架的2个牵引电机提供规定数量的冷却空气。牵引电机的冷却风扇安装在动车组转向架附近的车体下,牵引电机通风机如图4-17所示。

图4-17 牵引电机通风机

(十二)过电压限制电阻

动车组装有4个、8(CRH380BL)个相互独立的过压限制电阻器单元,每一组过压限制电阻器单元组成一个功率单元。每两个过压限制电阻器分别被安装在04、05(其中CRH380BL 动车组在04、05、12、13)车顶上设备箱中,如图4-18所示。

当电制动所产生的能量不能被弓网吸收时,过压限制电阻器会及时地将这些能量转换成热能,外罩上设有用于空气吸入的栅格。

图4-18过压限制电阻单元

第三节辅助供电系统

一、辅助供电设备组成

CRH380B(L)动车组的辅助供电系统主要由单辅助变流器、双辅助变流器、充电机、蓄电池、AC440V/AC230V变压器、DC110V/AC230V逆变器、DC110V/DC24V变换器组成。

在02、07、10(CRH380BL)、15(CRH380BL)车设有单辅助变流器,在04、05、12(CRH380BL)、13(CRH380BL)车上设有双辅助变流器,他们与MVB相连接,如图4-19。辅助变流器用于提供 3×440VAC 60Hz电压(动车组也可以通过外接插座得到3×400VAC 50Hz电源)。

图4-19 辅助供电设备组成

充电机安装在04、05、12(CRH380BL)、13(CRH380BL)车上,充电机控制单元与MVB 相连。充电机将3×440VAC 60Hz电变换为110VDC负载所需的供电电压和蓄电池充电电压。

在15(CRH380BL)、10(CRH380BL)、07和02变压器车上配备有一个单辅助变流器单元。他们与头车16(CRH380BL)、01以及中间车09(CRH380BL)、08的牵引变流器中间电路相连,在中间车13(CRH380BL)、12(CRH380BL)、05和04分别配备了一个双辅助变流器。他们分别与中间车14(CRH380BL)、11(CRH380BL)、06和03内牵引变流器的中间电路相连,在双辅助变流器和单辅助变流器的输入端都与一根电缆相连接,这样可以实现在从一个继续有效的牵引变流器同时给辅助变流器供电。

CRH380BL动车组每节动车上都配备一台牵引变流器,电能输入模块连接在牵引变流器

的中间电路。在供电失效的情况下可以通过牵引变流器中间电路将牵引电机发出的电继续供给车载电源系统。在25kV 供电的分相区,列车度达到70km/h 以上时可以实现上述功能。

CRH380BL动车组设有4组高倍率蓄电池(CRH380B为2组),每组容量为2X163Ah。地面三相AC380V/50Hz电源也可以为车上辅助负载供电。

二、辅助设备供电方式

CRH380B(L)动车组的辅助供电系统采用母线供电方式,CRH380BL的1-8车与9-16车分为两个独立的辅助供电系统,两个辅助供电系统之间的中、低压母线互不贯通。

辅助供电制式分为以下5种:AC 三相440V 60HZ、AC 单相230V 60HZ、AC 单相230V 50HZ 、DC110V、DC24V。

辅助电源为列车辅助设备如冷却风机、空调装置、照明、网络控制系统、制动装置、旅客信息、列车无线电等设备提供电能。正常情况下,所有的辅助变流器都向母线输出同相位三相440V 60HZ电源,实现联网供电。

三、辅助供电设备工作原理

辅助变流器的脉宽调制逆变器采用最先进的IGBT技术,脉宽调制逆变器采用PWM工作原理。辅助变流器由其中央控制系统控制和诊断,同时脉宽调制逆变器的控制系统也对其有辅助作用,控制系统除配备诊断端口和服务端口外,还有车辆总线接口(MVB)。

辅助变流器直接连接到牵引变流器的中间电路上电压为DC 3000V。如果满足接通条件,DC输入电压经由滤波电容器、主接触器和预充电接触器以及阻塞线供给PWMI模块。脉冲调宽逆变器模块(PWMI)接通并启动。如果脉冲调宽逆变器的输出电压处于规定范围内,则输出接触器关闭。单辅助变流器的控制器则向机车控制器发出信息,表明3AC输出已经准备好。AC 440V输出则经由主变压器、EMC滤波器以及脉冲调宽逆变器模块后的输出熔丝进行供电。

当一个辅助变流器单元或一个牵引变流器故障时,车载交流供电网络必须能由其余的辅助变流器单元连续供电。当双的辅助变流器单元中的一个辅助变流器单元故障时,另外一个辅助变流器单元应能够继续工作。当一个辅助变流器单元或一个牵引变流器单元故障时,不会减少必须的供电。当两个辅助变流器单元故障或一个双辅助变流器单元故障时,只有与旅客舒适性相关的与之对应的8 辆车部分的负载需减少(空调或部分取暖)。可以不用减少的继续给辅助牵引、主空气压缩、电池充电供电。

此外,当辅助变流器单元故障,例如由于接触限电压故障或因为所有主断路器断开,电池的充电模式结束。充电的电池这时向电池总线供电。

思考题:

1、CRH380BL动车组由几个牵引单元组成?每个牵引单元的组成有哪些?

2、CRH380BL动车组车顶高压设备有哪些组成?

3、CRH380BL动车组辅助变流器的布置?

最新09动检《动车组牵引控制系统》复习资料

09动检《动车组牵引控制系统》复习资料 1、CRH2导线线号的定义 1~99:控制指令回路 100~199:DC100V系统 500~599:主变换回路 900~906:主回路接地、主回路过电流检测 MF+3位号码:光缆的线号 M+3位号码:车辆信息控制装置的输出输入线号 J+3位号码:LKJ2000的线号 2、CRH2电气设备图形符号与电器类型的对应关系(给出图能说类型,给出类型会画图)继电器、接触器、计时继电器、按钮式开关、按钮式自返回开关 3、CRH2电气设备代号定义 5SR:5km/h速度继电器 B运非R:制动控制手柄(运转-快速)定位继电器 B1非R:制动控制手柄(1N-快速)定位继电器 B2非R:制动控制手柄(2N-快速)定位继电器 B3非R:制动控制手柄(3N-快速)定位继电器 CSR:恒速继电器 EGSR:紧急接地开关继电器 GS:接地开关 MCR:主控制器继电器 PANDS:受电弓降弓开关 PANDWR:受电弓降弓继电器 PANUR:受电弓升弓继电器 PANUS:受电弓升弓开关 PANUV:受电弓升弓阀 4、一个CRH2动车组单元中,主电路的基本部件有哪些?在列车中是如何分布的? 一个CRH2动车组单元中,主电路的由:受电弓(1台)、VCB(主断路器)(1台)、牵引变压器(1台),牵引变流器(2台)、牵引电机(8台)构成。 在列车中,受电弓位于4、6车,VCB位于2、6车,牵引变压器位于2、6车,牵引变流器位于2、3、6、7车,牵引电机在2、3、6、7车各有4台。 5、写出CRH2的25kV特高压电路? 电源是25kV、50Hz单相交流电,使用搭载在4号车、6号车的受电弓的其中一个(2个受电弓的1个通常处于下降状态)从接触网上受电,2号车与6号车之间用25kV特高压电缆贯通连接。 M2车上搭载有牵引变压器,通过特高压电缆而贯通连接在各车的25kV特高电源,经由各车的特高压接头、主断路器VCB,连接到牵引变压器原边绕组上。 6、写出CRH2的原边电流回路? CRH2的原边电流回路经过的路径是:接触网、受电弓、特高压电缆、电流互感器、主断路器VCB、主变压器原边绕组、接地装置、车轮、钢轨、牵引变电所。

动车组牵引变流器冷却系统冷却方式研究

动车组牵引变流器冷却系统冷却方式研究 文章介绍了动车组牵引变流器冷却系统构成和原理,对影响功率器件IGBT 的散热特性进行了分析,对自然冷却、强迫风冷、液体冷却、相变冷却几种冷却方式特点做了一一分析,说明采用相变冷却方式的优点,即高效率,均匀热表面温度,无局部过热点,可靠安全,适用于动车组牵引变流器的冷却。 标签:牵引变流器;冷却系统;冷却方式;相变冷却 1 概述 随着功率器件小型化、紧凑型发展要求,其功率密度不断增加,散热问题已就成为影响功率器可靠運行的主要因素。在动车中,牵引变流器是牵引系统关键部件,主要实现电能与机械能转换。而牵引变流器主要功率元件是IGBT。IGBT 是高频的开、关功率元件,工作时要消耗电能,把电能转化为热能的形式。通常流过IGBT的电流较大,IGBT的开、关频率也较高,故器件的发热量较大。若产生的热量不能及时有效散掉,IGBT器件内部的结温将会超过允许值,IGBT 就可能损坏。有关资料表明,电子元器件温度每升高2℃,可靠性下降10%,温升50℃时的寿命只有温升为25℃时的1/6,因此只有快速、及时的将产生的热量散走,才能保证IGBT的正常运行。实践经验表明,牵引变流器冷却系统散热能力的好坏,直接影响到变流器性能和牵引系统安全稳定的工作。 由牛顿冷却公式[1]有: tw=+tf 其中,Q-IGBT的热量;h-表面传热系数;S-IGBT与冷却散热基板接触的表面积;tw-IGBT与冷却散热基板接触的壁温;tf-冷却液体的温度。 当热量Q的下降时会引起tw的下降,但在IGBT产生的热量不会下降太多,所以使tw下降的方法在应用上有限。 表面积S的增加可以引起tw的下降,但是由于实际产品的重量和体积要求等限制,以及动车牵引系统自身需求使得表面积的S增大有限,使tw下降的空间被限制。 冷却液体的温度tf的降低可以引起tw的下降,但是冷却液体的温度tf的降低也受外界一些因素的影响。 表面传热系数h的提高可以引起tw的下降,一般不受其他条件的限制,可以有效的降低tw。因此,解决问题的关键是如何获得冷却散热基板最大的表面传热系数h,这也是研究的目的。

CRH3型动车组牵引与控制特性分析

2 CRH3型动车组牵引与控制特性分析 2.1 CRH3动车组牵引系统组成部分 在CRH3动车组上装有四个完全相同且互相独立的动力单元。每一个动力单元有一个牵引变流器和一个控制单元,四个并联的牵引电动机以及一个制动电阻器单元。牵引零部件辅助设备所需的3相AC 440V60Hz 电流由动车组的辅助变流器单元提供。每个基本的动力单元主要包含以下关键器件: 1. 主变压器。主变压器设计成单制式的变压器,额定电压为单相AC 25kV 50Hz。变压器被布置在动车组没有驱动的变压器车车底,并且每一个变压器的附近都布置有一套冷却系统。主变压器箱体是由钢板焊接的,主变压器箱安装在车下,主变压器采用强迫导向油循环风冷方式。主变压器的次级绕组为牵引变流器提供电能。它使用一个电气差动保护、冷却液流量计和电子温度计对主变压器进行监控和保护。 2. 牵引变流器。牵引变流器采用结构紧凑,易于运用和检修的模块化结构。在运用现场通过更换模块可方便更换和维修。牵引变流器由多重四象限变流器、直流电压中间环节和逆变器组成,牵引变流器的模块具有互换性。 3. 牵引电机。动车组总共由16个牵引电机驱动,位于动力转向架上。牵引电机按高速列车的特殊要求而设计。具有坚固的结构,优化重量,低噪音排放,高效率和紧凑设计的特征。四极三相异步牵引电机按绝缘等级200 制造。牵引电机是强迫风冷式。牵引电机使用的是牵引变流器的电压源逆变器供电,变频变压( VVVF) 调速运行方式。 4. 其他部件。动车组其他牵引系统部件还包括牵引电机通风机、过压限制电阻等。某些零部件被设计成即使出现故障也能在小幅度减少或不减少性能的情况下运行。 CRH3型动车组采用交-直-交传动方式。以交流异步感应电动机作为牵引电机的高速动车组适宜采用再生制动方式。制动时它将交流电动机做为发电机使用,从而产生制动力矩,并将其所发出的电能反馈回电网。在所有的制动方式中,再生制动是唯一向电网反馈能量的制动方式,同电阻制动相比,减少了庞大而笨重的制动电阻,同时免去了一整套通风冷却装置。目前国外大多数动车均采用了

CRH2C型动车组牵引传动系统

第四章牵引传动系统 第一节动车组牵引传动方式 CRH2C型动车组采用交流传动系统,动车组由受电弓从接触网获得AC25kV/50Hz电源,通过牵引变压器、牵引变流器向牵引电机提供电压频率均可调节的三相交流电源(如图4-1所示)。 图4-1 牵引传动系统简图 一、牵引工况:受电弓将接触网AC25kV单相工频交流电,经过相关的高压电气设备传输给牵引变压器,牵引变压器降压输出1500V单相交流电供给牵引变流器,脉冲整流器将单相交流电变换成直流电,经中间直流电路将DC2600~3000V的直流电输出给牵引逆变器,牵引逆变器输出电压/频率可调的三相交流电源(电压:0~2300V;频率:0~220Hz)驱动牵引电机,牵引电机的转矩和转速通过齿轮变速箱传递给轮对驱动列车运行(如图4-2所示)。 图4-2 牵引工况传动简图

二、再生制动:一方面,通过控制牵引逆变器使牵引电机处于发电状态,牵引逆变器工作于整流状态,牵引电机发出的三相交流电被整定为直流电并对中间直流环节进行充电,使中间直流环节电压上升;另一方面,脉冲整流器工作于逆变状态,中间直流回路直流电源被逆变为单相交流电,该交流电通过真空断路器、受电弓等高压设备反馈给接触网,从而实现能量再生(如图4-3所示)。 图4-3 再生制动工况传动简图 三、牵引电机采用三相鼠笼式牵引电机,其轴端设置速度传感器,实时检测电机转速(转子频率),对牵引和制动进行实时控制。 M1车和M2车传动系统独立控制,某动车故障时,故障动车将被隔离,无故障动车可以继续为列车提供动力;当某个基本单元故障时,可通过VCB 切除故障单元,而不会影响其它单元工作。图4-4 为牵引系统主电路原理图。

动车组牵引传动系统设计

(此文档为word格式,下载后您可任意编辑修改!) 动车组牵引传动系统设计 摘要 本文简述了我国动车组牵引传动系统的特点及发展现状,阐述了动车传动系统的设计思路,并讲解了动车组牵引传动系统分析仿真模型理论知识。论述了动车组牵引传动系统设计中包括传动系统功率的分析,牵引功率、黏着牵引力、启动加速度、平均加速度、列车运行最高速度等进行列 车牵引特性的设计。 通过动车组牵引传动系统的设计过程分析得到了设计过程中的规律讨论了在设计过程中遇到的问题,总结了设计时应注意的问题。 关键词:牵引传动系统、分析仿真模型,牵引功率,黏着牵引力,启动加速度

第一章CRH3型动车组的牵引传动系统的简介1.1 CRH3型动车组的牵引传动系统的简介 CRH3型动车组为8辆编组的动力分散交流传动电动车组,4动4拖,其中相邻的两辆动车为一个基本动力单元,每个动力单元具有独立的牵引传动系统,如图l所示,主要由1台主变压器、2台牵引变流器和8台牵引电机等组成。牵引变压器原边额定电压为单相交流25 kV/50 Hz,副边为l 550 V/50 Hz。牵引变流器输入侧为四象限脉冲整流器(4QC),2个4QC并联为一个共同的DC连接供电,中间电容区部分存储能量,输出平滑的直流电压。输出端为一个PWM逆变器,将DC连接电压转换成牵引系统所要求的变压变频i相电源驱动4个并联的异步牵引电机。本研究采用DTC系统来控制逆变和电机驱动部分,并对整个牵引传动系统进行建模研究。 1.2 CRH3型动车组的牵引传动系统的特点 CRH3型动车组在不同的速度时刻根据牵引/制动曲线输出所需的牵引力,使动车组顺利完成牵引或制动过程。 牵引工况时,牵引力和速度的数学关系为:

动车组牵引传动与控制技术1

动车组牵引传动与控制技术1 三、主观题(共4道小题) 9.什么叫异步电机的可逆运行特性? 参考答案: 异步电机的可逆运行特性是指异步电机既可工作于电动机状态来实施牵引,又可工作于发电机状态或电磁制动器状态来实施电气制动。当发电机的电能反馈电网时,称为再生制动。 10.异步牵引电动机为什么要进行恒磁通恒转矩的控制? 参考答案: 异步牵引电动机保持恒磁通就可以保持磁路的一定饱和程度,这样可以充分利用电机的铁磁材料,充分发挥电机转矩的能力。在恒磁通下进行恒转矩的控制,可以使动车组获得足够的起动牵引力,起动加速快且平稳。 11.简述牵引变流器牵引工况的工作过程 参考答案: 四象限脉冲整流器将牵引变压器二次侧的交流电整流成直流电,同时保证较高的功率因数(cosφ=1,电流波形接近正弦波)。逆变器把中间回路直流电压变换成幅值和频率可调的三相交流电压,供给异步牵引电机。在起动低速范围内,逆变器按SPWM模式进行控制;当速度达到规定值时,转入方波(六阶波)模式。 12.简述CRH1型动车组的编组形式、牵引传动主电路构成及其特点。 参考答案: CRH1型动车组采用8辆编组,5动3拖,由两个2动1拖单元和一个1动1拖单元组成;8辆车共有20个驱动轴,占车轴总数的5/8。 CRH1动车组牵引传动主回路主要由2个受电弓、5个主断路器、3台主变压器、5台牵引变流器及20台三相异步牵引电动机构成。 每台牵引变流器向4台异步牵引电机供电。每台牵引变流器包括:网侧变流器LCM,为两重四象限脉冲整流电路,带有直流环节滤波电容;2个电机变流器MCM,为三相桥式逆变器,带有直流滤波电容器和过电压斩波器,2个电机变流器分别向两个转向架的各2台牵引电机供电,这种供电方式称架控式。 一个变流器箱的网侧变流器除了向两个电机变流器供电外,还向一个辅助逆变器和一个蓄电池充电器供电。 动车组牵引传动与控制技术2 三、主观题(共4道小题) 9. 电压型脉冲整流器主电路一般结构如图1所示,简要说明正弦脉宽调制(SPWM)的原理,绘出正弦脉宽调制波形。

CRH2型动车组牵引传动系统工作原理及控制

CHR2型动车组牵引传动系统工作原理及控制 CRH2型动车组牵引传动系统设备配置及工作原理 概论 牵引传动系统是CRH2型高速动车组的动力来源。整个系统动力均匀分布于整列动车组的四个基本单元之中,形成了一个完整的组合的动力源。巨有牵引功率大、启动平稳、快速快捷、有效抑制空转和滑行保护到位等特性,并与多个系统连锁控制,实现运行平稳,多级调速和准确停车。 一、牵引传动系统的组成 CRH2型高速动车组以四动四托为编组,其中2,3,6,7号车为动车,1,4,5,8号车是拖车,配备两个牵引系统,首尾两车各设有司机室可双向行驶。正常情况下两个牵引系统均工作,当某一系统发生故障时可自动切断故障源继续行驶。 CRH2型高速动车组采用动力分散交流传动模式,主要有受电弓,牵引变压器,脉冲整流器,中间环节,牵引变流器,牵引电动机,齿轮传动等组成。

二、牵引传动系统的主要设备配置 2.1:车顶设备配置 各车辆间的主电路均采用高压电缆和高压电缆连接器连接。高压电缆连接器分为直线型,5度倾斜型,T型等几种,通过这些高压电缆连接器接通高压电缆。供电设备配置在4,6号车前部车顶,主要有受电弓和接地保护开关等。 2.2:车底设备配置 动车组牵引传动系统车底设备主要有网侧高压电气设备,牵引变压器,牵引变流器,牵引电动机等设备组成。全列共计2台牵引变压器,4台牵引变流器,16台牵引电动机。牵引变压器位于2,6号车底,牵引变流器和牵引电动机皆配置在2,3,6,7号车底。 三、动车组牵引传动系统主要设备 3.1:受电弓 动车组受电弓是从接触网获得电能的主要设备,也是动车组主电路的高压设备之一。受电弓主要通过列车运行时压缩空气进入升弓装置气囊升起受电弓,使受电弓滑板与接触线接触而获电;绛弓时排出 3.2

最新动车组网络控制系统复习题资料

动车组网络控制系统复习题 一、填空题 1.主断使能控制的计算机主要有CCU 和TCU 2.请翻译下列几个和MVB组件相关的单词MVB repeater 中继器Gateway网关 3.CRH380BL动车组高压急断回路(Emergency off loop)的功能是紧急情况下切断车组来 自接触网的高压电。 4.制动系统中继器位于T2车,网关位于TP和TPB车。制动系统中继器位于T2车,网关位 于TP和TPB车。 5.在主界面的自动状态时,车内显示器将滚动地显示列车的运行信息和实时的速度、车内外 温度等内容 6.受电弓不能正常升起的原因:蓄电池电压不足、总风压力不足、(网络系统通讯不良)、受 电弓本身故障、3车或6车(17XMB2N)负线端子排及短连片松动。 7.警报蜂鸣器用于检测系统,热轴箱预警和警报检测系统,抗蛇形检测系统,乘客紧急警报, 非转动车轴检测 8.M VB总线传输的三类数据是过程数据、消息数据和(监督)数据。 9.CRH5A动车组辅助变流器控制空气开关为17Q08。 10.CRH380A动车车辆信息控制装置采用贯穿列车的总线来传送信息,从而减轻了列车的重 量 11.CRH380A动车组在头、尾车司机室内各有二台显示器,能实时显示车辆运行过程中的相 关数据以及记录相应的运行数据。

12.传输线有光纤传输线和自我诊断信息传输线2种。 13.CRH380BL型车线电压互感器监测接触网电压,传送给车组的CCU 和TCU 控制单元 14.CRH5型动车组车内照明控制主要包括:全灯控制、半灯控制、灯光关闭控制,每节车 或整列车命令开关 15.牵引/制动手柄最小牵引力位的角度为10 ° 16.CRH5A动车组辅助变流器控制空气开关为17Q08。 17.CRH5A动车组速度设定手柄LV有4 个位置。 18.DJ回路是一个三级硬线回路,由通过自动车构的列车级电线和一个本地车辆级电线构成。 二、选择题 1.下列哪种情况下CRH380BL动车组从CCU会接替主CCU(A ) A.主ccu相应的网关故障 B.某个TCU故障 C.某个KLIP站故障 D.某个BCU 故障 2.对于CRH380BL型动车组HMI说法不正确的是(C) A.全车共8个HMI,3个CCU柜HMI,1个乘务员HMI,4个司机室HMI B.HMI通过MVB与列车进行数据交换 C.司机室的2个HMI相互之间无通讯 3..CRH5型动车组制动系统的复位操作,可通过(C )操作来实现。 A、TCMS的大复位 B、小复位 C、断蓄电池 D、断开安全环路 4.CRH5型动车组网络系统中,MVB总线分为几种(B ) A、2; B、3; C、4; D、5 5.CRH5型动车组TCU无法完成功能是(D )。 A、控制电机牵引/制动转矩; B、制设备发送的牵引/制动命令; C、电力设备的保护; D、

CRHA型动车组和CRHA型动车组列车网络控制系统的技术特点优选稿

C R H A型动车组和 C R H A型动车组列车网络控制系统的技术特点集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

CRH2A型动车组和CRH1A型动车组列车网络控制系统的技术特点 一、CRH2A型动车组网络控制系统: 1、网络控制概述: CRH2动车组列车网络控制系统采用贯穿全车的总线来传送信息,从而减轻了列车的重量,并且通过对列车运行以及车载设备动作的运行信息进行集中管理,可以有效地实现对司机和乘务员的辅助作用,加强对设备的保养和提高对乘客的服务质量。 2、网络控制系统的组成: CRH2动车组列车网络控制系统由监控器和控制传输部分两部分组成。硬件一体化装置,但各自独立构成网络,系统为自律分散型。 控制传输部分为双重系统,确保系统的冗余性。通信采用ARCNET网络标准。头车设置的中央装置为双重系统构成,确保其可靠性。前后中心的控制单元采用母线仲裁。 CRH动车组网络控制系统中引用额车载信息装置和类车信息终端装置构成,同时还有监控显示器以及显示控制器、车内信息显示器、IC读卡器等附属设施。 3、网络控制系统的功能: 1)牵引、制动指令传输; 2)设备启动、关闭指令的传输;3)显示灯/蜂鸣器控制指令传输;4)乘务员支持信息传输;5)服务设备控制信息传输;6)数据记录功能;7)车上试验;8)自我诊断传送线;9)远程装载功能;10)列车信息装置的自我诊断功能;11)信息显示功能。 4、网络控制系统的拓扑结构:

CRH2动车组网络控制系统采用列车和车辆两级网络结构。列车网络为连接编组各车辆的通信网络,以列车运行控制为目的,以光纤和双绞线为传输介质,连接各中央装置和终端装置,采用双重环结构。车辆级网络结构为连接车厢内设备的通信网络,主要传输介质为光纤和电流环传输线。 1)列车总线 列车总线有两种类型:其一为列车信息传输线,以光纤为传输介质,连接所有中央装置和终端装置,采用ARCNET协议,传送速度为 2.5Mb/s;其二为自我诊断传输网,以双绞线作为传输介质,连接中央装置和终端装置,采用HLC作为通信协议。 列车总线的设备由中央装置、终端装置、显示器、显示控制装置、IC卡架以及车内信息显示器构成。在光纤网中,中央装置和终端装置由双重环形构成的光纤连接,采用不易发生故障的双向环形网络方式。它具有向左和向右两条线路,是一种分散型的系统。如果在一个方向的环绕中检测到没有应答的情况,就向另一个方向的环绕传送,即使在2处以上的线路发生故障,环路网络断开时,也可以继续有其他连接着的正常线路进行传送,避开故障部位。 2)车辆总线: 车辆总线是指中央装置/终端装置与车辆内设备之间信息交换通道。各车的中央/终端装置与车辆设备之间的接口以光传送、电流环传送,DIO等形式传送,他们构成信息网络节点与车载设备的联系通道,车

动车组牵引传动系统的

动车组牵引传动系统设计 摘要 本文简述了我国动车组牵引传动系统的特点及发展现状,阐述了动车传动系统的设计思路,并讲解了动车组牵引传动系统分析仿真模型理论知识。论述了动车组牵引传动系统设计中包括传动系统功率的分析,牵引功率、黏着牵引力、启动加速度、平均加速度、列车运行最高速度等进行列 车牵引特性的设计。 通过动车组牵引传动系统的设计过程分析得到了设计过程中的规律讨论了在设计过程中遇到的问题,总结了设计时应注意的问题。 关键词:牵引传动系统、分析仿真模型,牵引功率,黏着牵引力,启动加速度

第一章 CRH3型动车组的牵引传动系统的简介1.1 CRH3型动车组的牵引传动系统的简介 CRH3型动车组为8辆编组的动力分散交流传动电动车组,4动4拖,其中相邻的两辆动车为一个基本动力单元,每个动力单元具有独立的牵引传动系统,如图l所示,主要由1台主变压器、2台牵引变流器和8台牵引电机等组成。牵引变压器原边额定电压为单相交流25 kV/50 Hz,副边为l 550 V/50 Hz。牵引变流器输入侧为四象限脉冲整流器(4QC),2个4QC并联为一个共同的DC连接供电,中间电容区部分存储能量,输出平滑的直流电压。输出端为一个PWM逆变器,将DC连接电压转换成牵引系统所要求的变压变频i相电源驱动4个并联的异步牵引电机。本研究采用DTC系统来控制逆变和电机驱动部分,并对整个牵引传动系统进行建模研究。 1.2 CRH3型动车组的牵引传动系统的特点 CRH3型动车组在不同的速度时刻根据牵引/制动曲线输出所需的牵引力,使动车组顺利完成牵引或制动过程。

牵引工况时,牵引力和速度的数学关系为: 再生制动时,制动力和速度的数学关系为:

CRH5型动车组牵引传动系统

CRH5型动车组牵引传动系统 发表时间:2018-05-16T17:14:41.190Z 来源:《基层建设》2018年第3期作者:苏丹[导读] 摘要:随着近几年我国高速铁路的投入运营和快速发展,人们出行变得方便快捷。 中国铁路哈尔滨局集团有限公司调度所黑龙江哈尔滨 150006 摘要:随着近几年我国高速铁路的投入运营和快速发展,人们出行变得方便快捷。动车组安全运用与维修的问题就变得更加突出。结合CRH5型动车组多年的运用经验积累,对CRH5型动车组的牵引传动系统的特点及原理进行深入研究、探讨,为 CRH5型动车组现场作业人员对牵引传动系统的知识学习及应急故障处理提供指导。 关键词:CRH5动车组牵引传动系统 1 牵引传动系统原理 1.1 CRH5型动车组牵引传动系统简介 牵引传动系统相当于动车组的心脏,将电能从接触网吸收下来,传输到各个电气设备,使之正常工作。如果牵引传动系统故障,列车可能会影响运行速度,旅客服务品质,甚至无法开动,更严重会造成救援等后果。 CRH5型动车组牵引系统使用交-直-交传动方式,主要由受电弓、主断路器、牵引变压器、牵引变流器及牵引电机组成。受电弓通过电网接入25kV的高压交流电,输送给牵引变压器,降压成1770V的交流电。降压后的交流电再输入牵引变流器,逆变成电压和频率均可控制的三相交流电,输送给牵引电机牵引整个列车。 牵引基本动力单元由1台牵引变压器、2台牵引变流器、8台牵引电机构成,1台牵引变流器驱动4台牵引电机。四台牵引电机并联使用。四台牵引电机特性差异控制在±5%以内,以便电流负荷分配均匀。 CRH5型动车组有两个相对独立的主牵引动力单元。正常情况下,两个牵引单元均工作。当设备故障时,M1车和M2车可分别使用。另外,整个基本单元可使用VCB(断路器)切除,不会影响其它单元工作。 1.2CRH5型动车组牵引传动系统布置 主牵引系统布置:3、6号车车下各设一台牵引变压器,而1号车、2号车(M1)、4号车(M2)、7号车(M1s)、8号车的车底下均悬挂一台牵引变流器,及车下转向架分别安装4台牵引电机。 其中3号车和6号车车顶均设受电弓、保护接地开关EGS、故障隔离开关一套,3、4号车之间和5、6号车之间的车顶上设置高压电缆连接器,4、5号车之间的车顶上,设置了高压电缆用倾斜型电缆连接器。 1.3CRH5型动车组牵引传动系统单元构成 CRH5型动车组牵引传动系统每个动力单元的牵引设备都由下列设备组成: 1.一个高压单元,具有受电设备、保护装置和主变压器,安装在TTP和TTPB车上。 2.一个主变压器,采用强制油冷却,安装在TTP和TTPB车上。 3.第一牵引动力单元具有3个牵引/辅助变流器,第二牵引动力单元具有2个牵引/辅助变流器,每台牵引/辅助变流器驱动2台牵引电机。牵引/辅助变流器获得可调节的直流电压,并驱动异步牵引电机的牵引和再生制动。在过电分相时由于再生制动短时停止工作,过渡的制动电阻器投入使用。每辆动车配置2台异步牵引电动机,底架悬挂,单台电机设计持续功率可达到550kW,并且车轮的直径差(在相同车轴上)接近3mm时也能够提供500kW的负载。 2 牵引传动系统受电弓 受电弓系统的概述及工作原理压缩空气通过电控阀经过滤器进入精密调压阀,精密调压阀用于调节受电弓接触压力,输出压力恒定的压缩空气,其精度偏差为±0.002 Mpa。因为气压每变化0.01Mpa(0.1kgf/c㎡)会使接触压力变化10N。 注:精密调压阀调压阀在工作过程中,为保证输出压力穏定,溢流孔和主排气孔始终有压缩空气间歇性排出,属正常现象。 压力表显示值仅作为参考,应以实测接触压力为准。单向节流阀用于调节升弓时间,单向节流阀用于调节降弓时间。如果精密调压阀出现故障,安全阀会起到保护气路的作用。 注:精密调压阀运用中不得随意改变其调整值,为保证各种控制阀正常使用,应严格防止水和其它杂质渗入。 3 CRH5型动车组牵引变流器 牵引变流器的概述及控制原理牵引/辅助变流器系阿尔斯通技术引进经国产化后用于CRH5型动车组的变流装置,内部分别有两组四象限整流器(4QC)和逆变器,同时还有一组辅助逆变器,每一组逆变器控制一台568kW 牵引电机,辅助逆变器向车载三相400V/50Hz用电设备供电。变流器的主要功能是将25KV/50Hz的单相交流电压通过牵引变压器降压后,输出单相AC1770V/50Hz的电压,经四象限整流得到3600V的中间直流电压,再经逆变器输出电压频率可调的0~2808V的三相交流电压来控制每台电机;同时辅助逆变器从中间回路输入直流3600V电压经斩波降压逆变后输出三相400V/50Hz的交流电压,为辅助系统的设备供电。变流器由8个组件平台构成,它们分别是两个辅助组件平台,两个牵引模块组件平台,两个用户组件平台,一个冷却系统平台,一个电阻组件平台,8 个平台通过中央线槽连接形成一个整体。 牵引/辅助变流器主要由两组四象限整流器(4QC)、牵引逆变器和一组辅助逆变器组成。每一组牵引逆变器控制一台568KW牵引电机,辅助逆变器向车载三相400V/50HZ用电设备供电。变流器的主要功能是将牵引变压器降压后输出单相AC1770V/50HZ的电压,经四象限整流得到3600V的中间直流电压,再经牵引逆变器输出电压频率可调的0~2808V的三相交流电压来控制每台电机;同时辅助逆变器从中间回路输入直流3600V电压经斩波降压逆变后输出三相400V/50HZ的交流电压,为辅助系统的设备供电。 4 CRH5型动车组牵引电机 牵引电机概述及控制原理列车上使用的电机是一种三相异步、六电极、强迫通风型电机,带有定子开启式分层,不带机壳。每节动车装有2个牵引电机。每个牵引电机由一个牵引逆变器提供能源8 车编组的每列列车上有1 0个电机。6FJA3257A 牵引电机是一个交流鼠笼式电机,敞开式的并且是强制风冷的。

动车组牵引系统常见故障浅析

动车组牵引系统常见故障浅析 摘要牵引系统是动车组电气系统的重要组成部分,其主要负责动车组的动力输出,决定了动车组运行的高效性及稳定性。随着高速动车组的发展,不断提升的列车运行速度对牵引系统的稳定性要求提出了更高的挑战。本文基于目前动车组牵引系统的常见故障进行分析,提出针对不同故障的应急方法,為动车组牵引系统故障排除提供参考。 关键词动车组;牵引系统;故障分析 前言 随着高速动车组的发展,人们对动车组运行速度的要求越来越高。牵引系统作为动车组的驱动系统,其稳定性与高效性直接决定了动车组的运行速度。但是由于动车组运行里程较长,经过的线路环境不一,高速运行的振动较大导致牵引系统在运行过程中难免发生一些故障。本文基于目前运行的动车组的常见牵引系统故障进行分析,提出针对不同情况的故障的应急方法,为动车组牵引系统安全、稳定、高速运行提供帮助。 1 牵引系统简介 我国运行的动车组列车往往采用的是8编组模式,对称的两个牵引单元组成。牵引系统主要元器件有受电弓,真空断路器、牵引交流器、牵引变压器、逆变器、牵引电机等,牵引系统主电路简图如图1所示[1]。 2 常见故障分析 2.1 受电弓故障 动车组利用受电弓采集接触网上的25KV交流电,利用压缩空气驱动装置实现受电弓的上升与下降,受电弓上臂支撑的碳滑板与接触网相连接,具体结构如图2所示。 受电弓运行状态下最常见的故障为受电弓自动降弓,导致列车无法与接触网连接,电流供给受阻。由于受电弓与接触网距离太小,在运行线路上不建议进行检查,受电弓问题需返库处理。返库后确认受电弓气动系统是否正常,是否可以满足要求;确认手电弓碳滑板是否由于磨损超限导致受电弓自动降弓;确认受电弓整体是否被异物击伤,表面是否有损伤[2]。 2.2 牵引变压器故障 牵引变压器主边绕组通过高压电器与接触网连接,副边绕组接入牵引变流器中,整体采用水冷方式冷却。牵引变压器主要故障存在两个方面,第一个方面是

动车组牵引传动系统CRH380B(L)

CRH380B动车组牵引传动系统 本章主要介绍动车组牵引传动系统工作原理及主要组成部件牵引变压器、变流器、牵引电机及限压电阻等电气设备结构、性能特点。 第一节动车组牵引传动方式 CRH380B动车组整列为一个高压单元,由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。CRH380BL动车组由两个独立的高压单元组成(前、后八辆分别为一个高压单元),每个高压单元由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。如图4-1所示 图4-1 CRH380BL动车组高压单元 CRH380B和CRH380BL动车组高压供电系统组成、工作原理基本相同:接触网高压电经受电弓进入动车组,经主断路器(MCB)等高压部件,一路直接进入本牵引单元、另一路经隔离开关(RLDS)、车顶高压电缆进入另一牵引单元。 CRH380B动车组牵引传动系统采用4动4拖的动力配置,01、03、06、08车为动车,02、04、05、07车为拖车,全列由2个牵引单元组成,每个牵引单元由1台变压器、两台变流器和2个动车的8台牵引电机组成,全车共计16台牵引电动机;CRH380BL动车组牵引传动系统采用8动8拖的动力配置,01、03、06、08、09、11、14、16车为动车,02、04、05、07、10、12、13、15车为拖车,全列由四个牵引单元组成,每个牵引单元由一台变压器、两台变流器和2个动车的8台牵引电机组成,全车共计32台牵引电动机。

第二节牵引系统构成及工作原理 一、原理及基本组成 CRH380B动车组整列为一个高压单元,由两个对称的牵引单元组成(每四辆车为一个牵引单元,如图4-2),牵引单元间由车顶高压线缆连接。 CRH380BL动车组由两个独立的高压单元组成(前、后八辆分别为一个高压单元),每个高压单元由两个对称的牵引单元组成(每四辆车为一个牵引单元),牵引单元间由车顶高压线缆连接。 图4-2 牵引单元 CRH380B(L)动车组高压供电系统组成、工作原理基本相同。接触网高压电经受电弓进入动车组,经主断路器(MCB)等高压部件,一路直接进入本牵引单元,接连接到牵引变压器的原边绕组,另一路经隔离开关(RLDS)、车顶高压电缆进入另一牵引单元。 牵引单元主要由主变压器、牵引变流器和牵引电机等组成。动车组高压设备安装在变压器车02、07、10(CRH380BL)、15(CRH380BL)车顶上,每个变压器车安装1架受电弓,正常运行时,每个高压单元仅升起1架受电弓,另一架受电弓备用,处于折叠状态。本高压单元高压部件或牵引单元发生故障时,可将故障受电弓或牵引单元隔离,不影响另一个动力单

CRH2型动车组牵引控制

CRH2型动车组牵引控制 牵引控制指牵引系统中的主要设备(受电弓、主断路器等)的管理及控制。 9.5.1受电弓管理 受电弓设置在T2-4车和M2-6车上,动车组只能由1个受电弓供电,当一个受电弓升起时,通过继电器(PanIR)联锁,另一个受电弓上升指令将不能发出。受电弓的升降可通过设置在操纵台和司机背面配电盘上的升/降开关进行控制或通过信息显示器触摸键进行切除和升弓操作。 (1)T2-4车和M2-6车上的联锁装置 如图9.45所示,在T2-4车、M2-6车上均设置升弓联锁继电器PanIR。当T2-4(M2-6)车的受电弓升起后,该 T2-4(M2-6)车的升弓联锁继电器PanIR励磁,通过联锁电路断开M2-6(T2-4)车的升弓电路,这样,在T2-4(M2-6)车的受电弓升起后,即使对M2-6(T2-4)车的受电弓进行升弓操作,也不会升起M2-6(T2-4)车的受电弓。 (2)升起受电弓控制

在接地保护开关(EGS)和主断器(VCB)断开时,接地保护开关EGSR和主断器辅助VCBRR得电,对应的触点闭合。如图9.46所示,升受电弓开关(PanUS)闭合后,升受电弓指令通过MCR、EGSR和VCBRR使106X线或者106Y线得电。106X 线得电是控制M2-6车上的受电弓升弓,106Y线是控制T2-4车上的受电弓升弓,升起哪个车的受电弓,由受电弓的切换开关(PanCGS)进行选择。如106Y线得电,PanUR得电励磁,PanUR的触点闭合。这时如果没有下降受电弓的指令,受电弓下降继电器(PanDWR)处于非励磁状态,受电弓上升电磁阀PanUV得电励磁,受电弓上升。 如果通过监控显示器输入升起受电弓的指令,单元指令继电器(UR04)切换到监控装置侧,监控装置通过UR04对PanUR励磁,实现升弓控制。 升弓状态被输入到终端装置并在信息显示器画面上显示。 (3)降下受电弓的指令 图9.46中VCB处于断开状态,主断路继电器(VCBRR)处于励磁状态,对应的触点闭合,受电弓下降开关(PanDS)闭合时,电源通过VCBRR和PanDS使107得电,107线被加压,受电弓下降继电器(PanDWR)被励磁,PanDWR常闭触点断开,PanUV成为非磁状态,受电弓下降。在受电弓下降开关合上时,同时给VCB断开指令的8线得电,控制VCB断开,以防

CRH2型动车组牵引传动系统

第六章 CRH2 型动车组牵引传动系统 第一节概述 一、CRH2 牵引传动系统基本组成 CRH2 动车组牵引传动系统主要由受电弓(包括高压电器设备)、牵引变压器、四象限变流器、牵引逆变器和牵引电机组成。1.高压电器设备高压电器主要作用是完成从接触网到牵引变压器的供电。主要包括:受电弓、主断路器、避雷器、电流互感器、接地保护开关等。 CRH2 动车组采用 DSA250 型受电弓。该受电弓为单臂型结构,额定电压/电流为 25kV/1000A,接触压力 70±5N,弓头宽度约 1950mm,具有自动降弓功能,适应接触网高度为 5300~6500mm,列车运行速度 250km/h。 CRH2 动车组采用 CB201C-G3 型主断路器。主断路器为真空型,额定开断容量为 100MVA,额定电流 AC200A,额定断路电流 3400A,额定开断时间小于 0.06s,采用电磁控制空气操作。 CRH2 动车组采用 LA204 或 LA205 型避雷器。额定电压为 AC42kV (RMS),动作电压为 AC57kV 以下(V1mA,DC),限制电压为107kV。由氧化锌(ZnO)为主的金属氧化物组成,是非线性高电阻体的无间隙避雷器。 CRH2 动车组采用 TH-2 型高压电流互感器。变流比为 200/5A,用于检测牵引变压器原边电流值。CRH2 动车组 SH2052C 型接地保护开关。额定瞬时电流为 6000A(15 周),电磁控制空气操作,具有安全连锁。 2.牵引变压器 CRH2 动车组采用的是 TM210 型牵引变压器,

一个基本动力单元 1 个,全列共计 2 个。采用壳式结构、车体下吊挂、油循环强迫风冷方式。具有 1 个原边绕组 (25kV,3060kVA)、 2 个牵引绕组(1500V,2×1285kVA),一个辅助绕组(400V,490kVA)。 3.牵引变流器 CRH2 动车组采用的是 CI11 型牵引变流器,一个基本动力单元 2 个,全列共计 4 个。采用车下吊挂、液体沸腾冷却方式。主电路结构为电压型 3 电平式,由脉冲整流器、中间直流电路、逆变器构成,不设 2 次谐振滤波装置和网侧谐波滤波器,采用 PWM 方式控制。中间直流电压为 2600V~3000V(随起牵引电机输出功率进行调整)。1 个牵引变流器采用矢量控制原理控制 4 台并联的牵引电机。 4.牵引电机 CRH2 动车组采用的是 MT205 型牵引电机,每节动力车 4 个(并联),一个基本动力单元 8 个,全列共计 16 个。牵引电机为 4 极三相鼠笼式异步电机,采用架悬、强迫风冷方式,通过弹性齿型联轴节连接传动齿轮。 、CRH2 牵引传动系统工作原理 CRH2 动车组采用交流传动系统,主要由受电弓(包括高压电器设备)、牵引变压器、四象限变流器、中间环节、牵引逆变器、牵引电机、齿轮传动系统等组成。动车组受电弓从接触网获得AC25000/50Hz 电源,为了满足动车组牵引特性的要求,牵引电机需要电压频率均可调节的三相交流电源。 CRH2 动车组牵引传动系统组成原理如图 6-1 所示。受电弓将接触网的 AC25kV

CRH5动车组牵引传动系统

第四章 动车组牵引传动系统 将司机发出的牵引指令按要求将电能转化为机械能,确保动车组实现动车组高速稳定的运行。这就需要牵引传动系统要有高度的可靠性和高效的转化能力。本章主要介绍CRH5型动车组牵引系统及辅助供电工作原理和功能。 第一节 动车组牵引传动方式 一、交流传动系统的基本组成 CRH5型动车组牵引系统使用交直交传动方式,主要由受电弓、主断路器、牵引变压器、牵引变流器及牵引电机组成。受电弓通过电网接入25kV 的高压交流电,输送给牵引变压器,降压成1770V 的交流电。降压后的交流电再输入牵引变流器,逆变成电压和频率均可控制的三相交流电,输送给牵引电机牵引整个列车。 二、交流传动工作原理及技术特点 牵引传动系统工作原理示意图如4-1所示: 图4-1 牵引传动系统工作原理示意图 CRH5型动车组牵引系统主变压器使用油冷方式。异步牵引电机的功率为550kW ,采用体悬方式,由万向轴传递牵引力。动车组有两个相对独立的主牵引系统,每个牵引单元配备一个完整的集电、牵引及辅助系统,以实现所需的牵引和辅助电路冗余,其中一个单元由3辆动车加1辆拖车构成(M-M-T-M ),另一个单元由2辆动车加2辆拖车构成(T-T-M-M )。见图4-2。 图4-2 牵引传动系统设备布置示意图 (一)每个动力单元带有一个主变压器和受电弓。在正常运行中,每列车只启用1个受 变压器 变流器 牵引电机 接触网 受电弓 高压电缆

电弓。每个牵引动力单元的牵引设备都由下列设备组成: 1.一个高压单元,带受电弓和保护装置; 2.一个主变压器; 3.两套或三套IGBT水冷技术的主牵引套件; 4.四台或六台异步牵引电机,底架悬挂,最大设计负载550kW(轮缘处功率)。由于每台电机是由一个独立的牵引逆变器驱动的,在同一车辆内轮对间轮径差最大为15mm的情况下,无需减小负载。每节动车装有两台牵引电机。 正常情况下,两个牵引系统均工作,当一个牵引系统发生故障时,可以自动切断故障源,继续运行。 (二)图4-3为第一牵引单元原理示意图,4-4为第二牵引单元原理示意图,第二牵引单元与第一牵引单元及其相似,唯一的区别是仅配备一个辅助变流器(在正常运行条件下,对于整列车来说仅需要两个辅助变流器,第三个仅作备用,随时替换出现故障的辅助变流器)。 图4-3 第一动力牵引系统电路示意图

动车组牵引与传动

一、填空题 1.直流电机由定子与转子两大部分构成,两者之间存在气隙。 2.电枢是直流电机的电路部分,亦是实现机电能量转换的枢纽。 3.单迭绕组的连接规律是,所有相邻的元件依次串联,同时每个元件的出线端依次连接到相邻的换向片上,最后形成一个闭合回路。 4.电枢磁动势对励磁磁场的产生的影响称为电枢反应。 5. 表征电动机输出机械性能的主要数据是转矩和转速。 6.对电动机启动的基本要求是:启动转矩要大,启动电流要小,启动设备简单、经济、可靠。 7.容许输出是指电动机在某一转速下长期可靠工作时所能输出的最大转矩和功率。 8.电枢串电阻调速和降压调速方式属于恒转矩调速,弱磁调速属于恒功率调速方式。 9.直流电动机的制动方式有:能耗制动、反接制动、再生制动。 10.三相异步电动机转动的一般原理是基于法拉第电磁感应定律和载流导体在磁场中受到电磁力的作用这两个基本因素。 二、判断题 1.在实际应用的异步电动机中,是使用一个旋转的永久磁铁来产生旋转磁场的。(×) 2.异步电动机的转速低于旋转磁场的转速(√) 3.从三相异步电动机的工作原理可知,定子三相绕组是建立旋转磁场,进行能量转换的核心部件。(√) 4.异步电动机通过电磁感应把原边的电功率转换成副边的机械功率。(×) 5.由于旋转磁场是旋转的,对于转子上的每相绕组的导体来说,旋转磁场的北极和南极都能扫过他们,所以在绕组上产生的感应电动势应当是直流电动

势。(√) 6.随着负载的增加,转速下降,转子电流增大,定子电流减小。(×) 7.三相异步电动机的效率曲线和功率曲线都是在额定负载附近达到最高,选用电动机容量时,应注意与负载相匹配。(√) 8.当异步电动机启动时,转子绕组感应电动势最低,因而产生的感应电流也是最小的。(×) 9.直接启动的优点是操作简单,无需很多的附属设备;主要缺点是启动电流较大。(√) 10.三相异步电动机的转子回路中并入启动电阻后获得了比较大的启动转矩,但电动机的机械特性也变“软”了。(√) 三、简答题 1、直流电机由哪些主要部件组成?其作用如何? 答:直流电机由定子与转子两大部分构成,两者之间存在气隙。定子主要用来建立主磁场,并作为电机的机械支撑,包括主磁极、换向极、机座(磁轭)、端盖和电刷装置等部件。 转子主要包括电枢铁芯、电枢绕组和换向器等部件,用来产生感应电动势、流通电流、产生电磁转矩,从而实现机电能量转换。 2、换向元件在换向过程中可能出现哪些电动势?是什么原因引起的?对换向各有什么影响? 答:电抗电动势re:它是由于换向元件中电流变化时,由自感与互感作用所引起的感应电动势。它起阻碍换向的作用。电枢反应电动势ae:它是由于换向元件切割电枢磁场,而在其中产生一种旋转电动势,它也起着阻碍换向的作用。 3、造成换向不良的主要电磁原因是什么?采取什么措施来改善换向? 答:直流电机产生换向火花的主要原因是;一、不在中性线上,二是、整流子磨损,云母高于整流子产生火花,三、电枢电流过大,四、励磁过校改善直流电机的换向;主要是将云母控制在规定范围内。二是调好中性,调好电枢电流和励磁电流。 4、比较鼠笼式电动机与绕线型电动机的特点? 答:鼠笼型电机和绕线型电机的区别: 1.鼠笼式电机:转子绕组不是由绝缘导线绕制而成,而是铝条或铜条与短路环焊接而成或铸造而成。 2.绕线型电机:转子是铜线绕制的线圈,线圈末端是通过滑环引到启动控制设备上,因此绕线型电机具有启动电流小、并可以控制,启动转矩大等特性。 鼠笼型电机和绕线型电机的优缺点如下:

相关文档
最新文档