阴阳离子交换计算
离子交换器的设计计算公式

离子交换器的设计计算
1、交换器直径:
F=Q/T×N×V
F---交换器截面积(m2);Q---产水量(T/D);T---工作时间(H/D)N---交换器台数;V---交换流速(M/H).
2、交换器高度:
H=Hp+Hr+Hs+Ht(米)
Hp---交换器下部排水高度,一般为0.3—0.7m;
Hr---交换剂层高度,一般在1.0—2.0之间选择。
Hs---反洗膨胀高度。
Ht---顶部封头高度。
3、交换器连续工作时间:
t=Vr×Eg/q×(H1-H2) (小时)
Vr---交换剂体积;q---交换器流量;
Eg---交换剂的工作交换容量,一般阳树脂取1000mol/m3。
H1---原水中硬度,mmol/L. H2---出水残留硬度,mmol/L.
4、再生剂用量:
Gz=Vr×Eg×Bz/1000×ε(kg)
Gz---再生剂用量;Bz---再生剂实际耗率,g/mol.
ε---再生剂纯度,对NaCL,可取0.95。
常用再生剂的实际耗率
顺流再生逆流再生
再生剂:NaCL HCL NaCL HCL 耗率:120-150 60-90 70-90 30-60。
阳离子交换量

土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。
它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。
其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。
阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。
测量土壤阳离子交换量的方法有若干种,这里只介绍一种不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的EDTA—铵盐快速法。
方法原理采用0.005mol/LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。
同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。
对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。
主要仪器架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。
试剂(1)0.005mol/LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵77.09克及EDTA1.461克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至7.0或pH8.5,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。
其中pH7.0的混合液用于中性和酸性土壤的提取,pH8.5的混合液仅适用于石灰性土壤的提取用。
食品级阳离子交换树脂的交换容量与计算

食品级阳离子交换树脂的交换容量与计算食品级阳离子交换树脂的交换容量与计算1.PH范围:1142.高使用温度:氢型≤100℃,钠型≤120℃,3.转型膨胀率:(Na+→H+)8104.工业用树脂层高度:1.5m以上。
5.再生液浓度 NaCl:810,HCl:456.再生液用量:NaCl(810)体积:树脂体积=1.52:1HCl(45)体积:树脂体积=23:17.再生液流速: 58 m/h8.再生接触时间: 4560 min9.正洗流速: 1020 m/h10.正洗时间:约30 min11.运行流速: 1530 m/h12.工作交换容量:≥1000mol/m3六、用途主要用于水的处理(包括硬水软化、高压炉水、无离子水、注射水、海水淡化等),废水中贵金属的回收,抗生素的提纯,代替人体内肾脏的作用。
七、包装及贮运本产品用内衬塑料袋的编织袋包装,每袋25kg,也可根据需求用塑料桶或其它容器包装,本品为非危险品。
贮运温度540℃,严禁脱水、曝晒。
一、树脂的运输和贮存:离子交换树脂内含有一定量的水份,在运输及贮存过程中应尽量保持这部分水份。
如果贮存过程中树脂脱了水,应先用浓食盐水(810)浸泡12小时,再逐渐稀释,不得直接放于水中,以免树脂急剧膨胀而破碎。
树脂在贮存或运输过程中,应保持在540℃的温度环境中,避免过冷或过热,影响质量。
若冬季没有保温设备时,可将树脂贮存在食盐水中,食盐水的温度可根据气温而定。
二、新树脂的予处理:新树脂常含有溶剂、未参加聚合反应的物质和少量低聚合物,还可能吸着铁、铝、铜等重金属离子。
当树脂与水、酸、碱或其它溶液相接触时,上述可溶性杂质就会转入溶液中,在使用初期污染出水水质。
所以,新树脂在投运前要进行预处理。
1、阳树脂的预处理阳树脂的预处理步骤如下:首先使用饱和食盐水,取其量约等于被处理树脂体积的两倍,将树脂置于食盐溶液中浸泡1820小时,然后放尽食盐水,用清水漂洗净,使排出水不带黄色;其次再用24NaOH溶液,其量与上相同,在其中浸泡24小时(或小流量清洗),放尽碱液后,冲洗树脂直至排出水接近中性为止;后用5HCL溶液,其量亦与上述相同,浸泡48小时,放尽酸液,用清水漂流至中性待用。
阴阳、混床离子交换系统计算

序号项目结果单位1原水阳离子总数 3.064658328mmol/l 原水原水阴离子总数 1.893857743mmol/l SiO20.138333333mmol/l2出水水质产水含盐量电导率SiO2Na+3设计出力Q250m3/h 周期运行周期T20h 再生时间t4h4进入阴床阴离子总数A1 1.273982143mmol/l 出力系统自用除盐水率η1 1.85%系统自用清水率η25%弱酸阳树脂交换容量E11600mol/m3强酸阳树脂交换容量E2900mol/m3弱碱阴树脂交换容量E3600mol/m3强碱阴树脂交换容量E4250mol/m3阴床出力Qa254.625m3/h5阳床运行流量Qk254.625m3/h 阳床同时运行台数Nk1台阳床直径Dk 3.2m阳床截面积Fk8.0384m2阳床运行流速31.67607982m/h计算弱酸树脂装填量7.877630545m3/台计算弱酸树脂层高度0.979999819m设计选取弱酸树脂层高度 1.6m实际弱酸树脂装填量12.86144m3计算强酸树脂装填量 5.679166664m3计算强酸树脂装高度0.706504611m设计选取强酸树脂层高度 1.2m实际强酸树脂装填量9.64608m3实际运行周期(弱酸)37.55102735实际运行周期(强酸)37.367059746阴床运行流量Qa'254.625m3/h 阴床同时运行台数Na1台阴床直径Da 3.2m阴床截面积Fa8.0384m2进入阴床强酸离子总数A20.988407673mmol/l阴床运行流速31.67607982m/h计算弱碱树脂装填量9.647476642m3/台计算弱碱树脂装填高度 1.200173746m设计选取弱碱树脂层高度 1.8m实际弱碱树脂装填量14.46912m3计算强碱阴树脂装填量Va20.334486238m3计算强碱阴树脂装填高度0.041611047m设计选取强碱树脂层高度 1.2m实际强碱树脂装填量9.64608m3实际运行周期 弱碱34.49500552强碱33.164270327进水中的CO2含量A138.59484759mg/l 脱碳器出水中的CO2含量A25mg/l 填料淋水密度ω80m3/m2.h除碳器面积Fdc 3.1828125m2选取除碳器直径Ddc 2.5m实际除碳器截面积Fdc' 4.90625m2实际淋水密度ωs51.89808917m3/m2.h填料高度Hd 1.6704m设计选用填料高度Hds 1.8m填料体积Vq8.83125m3填料堆积密度s11500个/m3填料总数Sm101559.375风机8再生剂种类阳床再生再生剂药耗Lk50g/mol 1台阳床再生需100%酸 Gk696.6613333kg折31%浓度盐酸Gk'2247.294624kg再生液浓度Ck4%再生液比重p 1.018一次再生液体积Qk117.10857891m3配酸稀释水量Vh15.1527089230%盐酸比重 1.149再生流速 Vhzs5m/h进再生液时间 tk125.54027505min置换时间tk245min置换流速Vkzh5m/h置换水量Q230.144m3正洗时间tk315min正洗流速Vkzx10m/h正洗水量Qk320.096阳床再生一次废水量Qkfs67.348578919再生剂种类阴床再生再生剂药耗La60g/mol 1台阴床再生需100%碱 Ga1012.8384kg折40%浓度碱Ga'2532.096kg再生液浓度Ca3%再生液比重pj 1.023一次再生液体积Qa133.00222874m3配酸稀释水量Va31.25475048m340%盐酸比重 1.449再生流速 Vazs5m/h进再生液时间 ta149.26686217min置换时间ta230min置换流速Vazh5m/h置换水量Qa220.096m3正洗时间ta315min正洗流速Vazx10m/h正洗水量Qa320.096m3阴床再生一次废水量Qafy73.19422874m3 10单元一次再生排出液 Qfy140.5428077m3废水量酸碱废液Qsj50.11080765m3同时运行单元数n3一天排废液总量Qzfy421.628423m3一天排酸碱废液总量Qzsj150.332423m3 11一级脱盐设备单元数N3树脂总量强酸树脂总量Vqs28.93824m3弱酸树脂总量Vrs38.58432m3强碱树脂总量Vqj28.93824m3弱碱树脂总量Vrj43.40736m3塑料空心球d50 Vsq26.49375m3塑料空心球数量Nsq304678.125m3。
逆流再生阴阳离子交换器说明书

逆流再生阴阳离子交换器说明书-CAL-FENGHAI.-(YICAI)-Company One1逆流再生(阴/阳)离子交换器使用说明书南京南自科林系统工程有限公司地址:南京浦口高新区星火路8号一、工艺原理:逆流再生离子交换器(分阳床、阴床、钠床亦称软化器)为无顶压逆流再生固定床,用于软化水、除盐水的制备;在制水工艺上采用逆流制水。
当离子交换器出水再生工艺采用无顶压逆流再生,具有操作简单、外部管系简单、不需要任何顶压设施,投资省的优点。
再生时,稀释好的再生剂由下向上逆向流经树脂层,将从下到上依再生不同层态的树脂,这种方式可以使树脂层获得较好的再生效果,再生剂可以得到较高的利用率,其次,具有废液排放量少,自用水率低等优点。
二、技术参数:1.进水浊度: < 1-2 NTU2.出水水质强酸阳床:钠泄漏不大于100ug/l,一般在20-30ug/l强碱阴床:SiO2泄漏不大于100ug/l,一般在20-50ug/l,出水电导率< 2us/cm。
3.工作压力: <4.工作温度: 5-45℃5.运行流速: 20-30m/h6.水反洗强度: 阳树脂10-15m/h 阴树脂8-10m/h7.再生流速: 5m/h8.再生液浓度: 1-3%9.设备直径: DN125010.填料高度: 阳床1300mm(压脂层200mm)11.阴床2500mm(压脂层200mm)三、结构形式:设备本体是带上下椭圆封头的圆柱形钢结构,内壁衬耐酸耐碱硬橡胶防腐;进水装置为母支管T形绕丝式,中间排水装置为母支管T形绕丝式。
下部为多孔板+水帽集水装置。
设备的本体外部装配有各种控制阀门并留有各种仪表接口,便于用户现场装接或实现水站正常运行。
四. 设备的安装1)安装前检查土建基础是否按设计要求施工。
2)设备按设计图纸进行就位,调整支腿垫铁并检查进出口法兰的水平度和垂直度。
3)将设备和基础预埋铁板焊接固定,固定后再次校验进出口法兰的水平度和垂直度。
阳离子交换量及其测定方法

阳离子交换量及其测定方法(CEC:Cation Exchange capacity)在一定pH值(=7)时,每千克土壤中所含有的全部交换性阳离子(K+、Na+、Ca2+、Mg2+、NH4+、H+、Al3+等)的厘摩尔数(potential CEC)。
常用单位:cmol(+)/kg ,国际单位:mmol/kgCEC的大小,基本上代表了土壤可能保持的养分数量,即保肥性的高低。
阳离子交换量的大小,可作为评价土壤保肥能力的指标。
阳离子交换量是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。
不同土壤的阳离子交换量不同,主要影响因素:a,土壤胶体类型,不同类型的土壤胶体其阳离子交换量差异较大,例如,有机胶体>蒙脱石>水化云母>高岭石>含水氧化铁、铝。
b,土壤质地越细,其阳离子交换量越高。
c,对于实际的土壤而言,土壤黏土矿物的SiO2/R2O3比率越高,其交换量就越大。
d,土壤溶液pH值,因为土壤胶体微粒表面的羟基(OH)的解离受介质pH值的影响,当介质pH值降低时,土壤胶体微粒表面所负电荷也减少,其阳离子交换量也降低;反之就增大。
土壤阳离子交换量是影响土壤缓冲能力高低,也是评价土壤保肥能力、改良土壤和合理施肥的重要依据。
测定方法:土壤阳离子交换量的测定受多种因素的影响,如交换剂的性质、盐溶液浓度和pH、淋洗方法等,必须严格掌握操作技术才能获得可靠的结果。
联合国粮农组织规定用于土壤分类的土壤分析中使用经典的中性乙酸铵法或乙酸钠法。
中性乙酸铵法也是我国土壤和农化实验室所采用的常规分析方法,适于酸性和中性土壤。
最近的土壤化学研究表明,对于热带和亚热带的酸性、微酸性土壤,常规方法由于浸提液pH值和离子强度太高,与实际情况相差较大,所得结果较实际情况偏高很多。
新方法是将土壤用BaCl2 饱和,然后用相当于土壤溶液中离子强度那样浓度的BaCl2溶液平衡土壤,继而用MgSO4交换Ba测定酸性土壤阳离子交换量。
水的离子交换除盐以及阴、阳、混床的基础知识
水的离子交换除盐以及阴、阳、混床的基础知识离子交换的基本知识为了除去水中离子态杂质,现在采用最普遍的方法是离子交换。
这种方法可以将水中离子态杂质请出得比较彻底,因而能制得很纯的水。
所以,在热力发电厂锅炉用水的制备工艺中,它是一个必要的步骤。
离子交换处理,必须用一种称作离子交换剂的物质(简称交换剂)来进行。
这种物质遇水时,可以将其本身所具有的某种离子和水中同符号的离子相互交换,如Na型离子交换剂遇到含有Ca2+的水时,就发生如式(4-1)的交换反应:2RNa+Ca2+→R2Ca+2Na+(注:R表示离子交换剂机构中不可交换的部分)反应结果,水中Ca2+被吸着在交换剂上,交换剂转变成Ca型,而交换剂上原有的Na+跑入水中,这样水中的Ca2+就被除去了。
转变成Ca型的交换剂,可以用钠盐溶液通过的办法,使其再变成Na型的交换剂,以便重新使用。
离子交换剂的种类很多,有天然和人造、有机和无机、阳离子型和阴离子型等之分,此外,按结构特征来分,还有大孔型和凝胶型等。
现在普遍使用人工合成的离子交换树脂。
一、离子交换树脂的结构离子交换树脂属于高分子化合物,结构比较复杂,离子交换剂的结构可以被区分为两个部分:一部分具有高分子的结构形式,称为离子交换剂的骨架;另一部分是带有可交换离子的基团(称为活性基因),它们化合在高分子骨架。
所谓“骨架”,是因为它具有庞大的空间结构,支持着整个化合物,像动物的骨架支持着肌体一样,从化学的观点来说,它是一种不溶于水的高分子化合物。
高分子化合物一般是由许多低分子化合物头尾相结合、连成一大串而形成的。
这些低分子化合物称为单体,此化合过程称为聚合或缩合。
离子交换树脂,根据其单体的种类,可分为苯乙烯系、酚醛系和丙烯酸系等。
苯乙烯系是现在我国电厂有得最广泛的一种,我公司使用的也是苯乙烯系离子交换树脂。
二、离子交换树脂的性能1、物理性能(1)外观1)颜色。
离子交换树脂是一种透明或半透明的物质,依其组成的不同,呈现的颜色也各异:苯乙烯系呈黄色,其他也有黑及赤褐色的。
阴阳离子交换器使用说明书
阴阳离子交换器使用说明书本使用说明书适用于逆流再生的阴、阳离子交换器一、设备的安装:设备应安装垂直。
外壁垂直误差应小于其高度的0.25%。
二、树脂的装填:当阳、阴离子交换器均需要装填树脂时,先把阴树脂装填到阴离子交换器内,后把阳树脂装填到阳离子交换器内,以防止阳树脂夹带到阴离子交换器内而影响到阴离子交换器的出水水质。
树脂装填到上部视镜的中部即可。
三、阳、阴树脂的预处理阳树脂及阴树脂装填完毕后,用10%的氧气钠(NaC1)溶液加1%的氢氧化钠(Na(OH))溶液对树脂浸泡12-24小时。
溶液的总量约等于阴、阳树脂的体积。
然后用水冲洗到PH值在8-9之间即可。
用PH试纸检测。
四、阳、阴树脂的第一次再生(1)阳床第一次再生1. 阳树脂再生用3-5%的盐酸(HC1)溶液对阳树脂进行再生。
2. 阳树脂正洗用前级水(清水、RO装置的出水、或电渗析出水)正洗阳树脂至出水PH值为5-6之间,用PH试纸测试。
(2)阴床第一次再生1. 阴树脂再生用2-4%的氢氧钠(Na(OH))溶液对阴树脂进行再生。
2. 阴树脂正洗再生完毕后,用阳离子交换器出水正洗阴树脂,直至出水水质符合要求。
当正洗出水达到需求时,阴离子交换器打开出水阁,关下排阀。
投入正常运行。
注:阳离子交换器及阴离子交换器的第一次再生及投入运行,由我厂调试人员完成。
五、阳阴离子交换器再生的7个基本过程阳、阴离子交换器再生有7个基本过程,即:1,工作。
2,反洗分层。
3,阴树脂吸药水(氢氧化钠)。
4,阳树脂吸药水(盐酸)。
5,清洗阴树脂。
6,清洗阳树脂。
7,混合树脂。
现把操作程序叙述如下:1,工作。
水路流程图见图1,反渗透水经过树脂混合床由上进,自下出,生产去离子超纯水。
2,反洗分层。
反洗水路流程图见图2,由于树脂长期工作,失效。
需要进行再生,分层是再生的第一步。
是水从下进,进入交换器。
从交换器上排排出,反洗至出水澄清,一般需10-15分钟放水打开中排阀门、使阴阳树脂分层,利于再生。
离子交换设计计算书
Va1=Π/4×D2×h 弱碱=3.14/4*32* h 弱碱=11.138m3 h 弱酸=1.568m 取 1600mm
2.强碱阴树脂量计算 Va2=
S2 Q T 0.086 330 120 ×k2= ×1.10=9.372m3 E2 400
Va2=Π/4×D2×h 弱碱=3.14/4*32* h 弱碱=9.372m3 h 弱酸=1.309m 3.阴床再生用碱量 G2=(Va1*E1+Va2*E2)*q*10-3 =(11.138×850+9.372×400)×60×10-3 =793Kg 取 1300mm
6
19.离子交换器酸废水排放量 G1`=V*E(N-N1)*10-3=2.154×550×(150-36.5)×10-3=134.5Kg/周期 20.离子交换器碱废水排放量 G2`=V*E(N-N1)*10-3=4.038×250×(250-40)×10-3=212Kg/周期 21.废碱液中能被废酸液中和的部分的酸量 G3=
G 4 64.6 = =0.518g/l Q 124.7
24.排放碱性废水 PH 值 PH=14-lg
A1 0.518 =14- lg =12.11 40 40
25.体外管系接口规范 进、出水口管径计算 Q=u*Π/4×D2=2×3600×3.14×D2/4=330 D=242mm 取 250mm
反洗进水、排水管管径计算 Q=10Π/4×2.82=u*Π/4×D2=1.5×3600×3.14/4×D2 D=121mm 进碱管管径计算 Q=5Π/4×2.82=u*Π/4×D2=1.5×3600×3.14/4×D2 D=85mm 进水管: 出水管:
设计进水水质及出水水质
1 进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为: 分析项目 PH 值 SO42CLNO3CO32HCO3游离 CO2 硅酸根(SiO2 计) Ca2+ Mg2+ 总铁 总硬度 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg N/L mg N/L mg N/L mg N/L 单位 分析结果 6.98~7.58 1.8~3.51 2.87~14.85 0.42~1.28 0 20~42.1 1.01~3.02 12.48~14.48 0.06~0.09 0.09~0.17 0.015~0.14 0.13~0.25
阴阳离子交换计算
第一步,计算原水的总离子浓度C,并转换成meq/L单位
1.把原水中各种离子的含量输入RO计算软件,自动得出总的离子浓度。
如下:
2.直接计算,公式如下:
单一离子浓度的公式:离子浓度(meq/L)= [离子浓度(ppm或mg/L)÷原/分子量]×化合价
如:Ca浓度(meq/L)= 70÷40×2 = 3.5,Na浓度(meq/L)= 52÷23×1 = 2.26
SO4浓度(meq/L)= 127÷96×2 = 2.65,Cl浓度(meq/L)= 104÷35.5×1 = 2.93
阳离子的总浓度C A(meq/L= eq/m3)为各种阳离子浓度之和;
阴离子的总浓度C C(meq/L= eq/m3)为各种阴离子浓度之和。
第二步,计算树脂的总交换当量Q
一般,阳树脂的实际交换当量以900 meq/L,即900 eq/m3为准;
阴树脂的实际交换当量以350 meq/L,即350 eq/m3为准。
根据树脂的体积即可计算出阳树脂的总交换当量Q A(eq)和阴树脂的总交换当量Q C(eq)。
第三步,计算树脂的再生周期T
对阳树脂和阴树脂的再生周期分别计算:
阳树脂再生周期:T A = Q A÷(C A×F)
阴树脂再生周期:T C = Q C÷(C C×F)
式中,T A和T C的单位为小时(h);Q A和Q C的单位为eq;C A和C C的单位为eq/m3;F为离子交换柱每小时的处理水量,单位为m3/h。
经过计算后,在T A和T C中选择一个小的数值作为树脂再生的周期,一般T C的数值比较小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一步,计算原水的总离子浓度C,并转换成meq/L单位
1.把原水中各种离子的含量输入RO计算软件,自动得出总的离子浓度。
如下:
2.直接计算,公式如下:
单一离子浓度的公式:离子浓度(meq/L)= [离子浓度(ppm或mg/L)÷原/分子量]×化合价
如:Ca浓度(meq/L)= 70÷40×2 = 3.5,Na浓度(meq/L)= 52÷23×1 = 2.26
SO
4
浓度(meq/L)= 127÷96×2 = 2.65,Cl浓度(meq/L)= 104÷35.5×1 = 2.93
阳离子的总浓度C
A
(meq/L= eq/m3)为各种阳离子浓度之和;
阴离子的总浓度C
C
(meq/L= eq/m3)为各种阴离子浓度之和。
第二步,计算树脂的总交换当量Q
一般,阳树脂的实际交换当量以900 meq/L,即900 eq/m3为准;
阴树脂的实际交换当量以350 meq/L,即350 eq/m3为准。
根据树脂的体积即可计算出阳树脂的总交换当量Q
A
(eq)和阴树脂的总交换当
量Q
C
(eq)。
第三步,计算树脂的再生周期T
对阳树脂和阴树脂的再生周期分别计算:
阳树脂再生周期:T
A = Q
A
÷(C
A
× F)
阴树脂再生周期:T
C = Q
C
÷(C
C
× F)
式中,T
A 和T
C
的单位为小时(h);Q
A
和Q
C
的单位为eq;C
A
和C
C
的单位为eq/m3;
F为离子交换柱每小时的处理水量,单位为m3/h。
经过计算后,在T
A 和T
C
中选择一个小的数值作为树脂再生的周期,一般T
C
的数
值比较小。