特殊四边形存在性问题

合集下载

中考数学考点复习 类型五 特殊四边形存在性问题 课件(共33张PPT)

中考数学考点复习 类型五 特殊四边形存在性问题 课件(共33张PPT)

第2题图
类型五 特殊四边形存在性问题 3.如图,在平面直角坐标系中,点A(-1,0),M(1,4),直线AM交y轴 于点N.点P是y轴上一动点,点Q是平面内任意一点,若以A、P、M、Q 为顶点的四边形是矩形,求点Q的坐标.
第3题图
类型五 特殊四边形存在性问题
解:①当 AM 为矩形的对角线时,如解图①, ∵A(-1,0),M(1,4), ∴AM 的中点坐标为(0,2), 易知点 N 为 AM 的中点,则 N(0,2), ∴MN= (1-0)2+(4-2)2= 5. ∴NQ1=NQ2= 5, ∴Q1(0,2+ 5),Q2(0,2- 5);
图⑤
图⑥
类型五 特殊四边形存在性问题 满分技法
②AB 为对角线时:如图⑦,作 AB 的垂直平分线;
图⑦
类型五 特殊四边形存在性问题 满分技法
(4)求作正方形 ①AB 为边时:如图⑧,过点 A,B 分别作垂直于 AB 的直线;
图⑧
类型五 特殊四边形存在性问题
当 AB 为平行四边形的对角线时,如解图②,
y
则4-1=xP3+0,2-3=0+yQ3,
2
2
2
2
A
∴xP3=3,yQ3=-1,即 P3(3,0),Q3(0,-1).
QO3
P3 x
综上所述,点 P 的坐标为(-5,0)或(5,0)或(3,0),
B 对应的点 Q 的坐标为(0,5)或(0,-5)或(0,-1).
P1
P2
P3
第1题图
类型五 特殊四边形存在性问题 2.如图,在平面直角坐标系中,已知点A(4,2),B(-1,-3),P是x轴 上的一点,Q是y轴上的一点.若以点A,B,P,Q四点为顶点的四边形 是平行四边形,求点P和点Q的坐标.

二次函数专题提优》。特殊四边形存在性问题

二次函数专题提优》。特殊四边形存在性问题

二次函数专题提优》。

特殊四边形存在性问题二次函数专题提优:特殊四边形存在性问题一、平行四边形存在性原理:1.实验与探究:给出平行四边形ABCD的顶点A、B、C、D的坐标,并归纳发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则四个顶点的横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为(不必证明)。

2.运用与推广:在同一直角坐标系中有抛物线和三个点G,S,H,且c>0.求当c为何值时,该抛物线上存在点P,使得以G,S,H,P为顶点的四边形是平行四边形,并求出所有符合条件的P点坐标。

二、平行四边形的存在性问题:1.已知抛物线y=ax²+bx+c的对称轴是x=1,经过(-2,-5)和(5,-12)两点。

1)求此抛物线的解析式。

2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是线段BC上一点(不与点B、C 重合)。

若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标。

3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请直接写出点M的坐标。

2.如图,抛物线y=ax²+bx+c交x轴于点A(-3,0)、点B(1,0),交y轴于点E(0,-3),点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行,直线y=-x+m过点C,交y轴于点D。

1)求抛物线的函数表达式。

2)点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值。

3、在直线l上取点M,在抛物线上取点N,使得以点A、C、M、N为顶点的四边形是平行四边形。

求点N的坐标。

解析:根据题意,可以得到以下条件:1.点A在抛物线上,坐标为(0,c);2.点C在直线l上,坐标为(0,b);3.点M在直线l上,坐标为(x,kx+b);4.点N在抛物线上,坐标为(y,ay^2+by+c)。

《二次函数专题提优》 :特殊四边形存在性问题

《二次函数专题提优》 :特殊四边形存在性问题

《二次函数专题提优》:特殊四边形存在性问题(一)、平行四边形存在性原理:1、实验与探究:(1)、在图1,2,3中,给出平行四边形ABCD的顶点A B D,,的坐标(如图所示),写出图1,2,3中的顶点C的坐标,它们分别是(52),,,;(2)、在图4中,给出平行四边形ABCD的顶点A B D,,的坐标(如图所示),求出顶点C的坐标(C点坐标用含a b c d e f,,,,,的代数式表示);归纳与发现:(3)、通过对图1,2,3,4的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a bB c dC m nD e f,,,,,,,(如图4)时,则四个顶点的横坐标a c m e,,,之间的等量关系为;纵坐标b d n f,,,之间的等量关系为(不必证明);运用与推广:(4)、在同一直角坐标系中有抛物线2(53)y x c x c=---和三个点15192222G c c S c c⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c,(其中0c>).问当c为何值时,该抛物线上存在点P,使得以G S H P,,,为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标.图1图2图3图4(二)、平行四边形的存在性问题:2、在平面直角坐标系xOy 中,已知抛物线cbxaxy ++=2的对称轴是x=1,并且经过(−2,−5)和(5,−12)两点。

(1)、求此抛物线的解析式;(2)、设此抛物线与x轴交于A. B 两点(点A 在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B. C重合),若以B. O、D为顶点的三角形与△BAC相似,求点D的坐标;(3)、点P在y轴上,点M在此抛物线上,若要使以点P、M、A. B为顶点的四边形是平行四边形,请你直接写出点M的坐标3、如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3),点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行,直线y=-x+m过点C,交y轴于点D. (1)、求抛物线的函数表达式;(2)、点K为线段AB上一动点,过点K作x轴的垂线与直线CD交于点H,与抛物线交于点G,求线段HG长度的最大值;(3)、在直线l上取点M,在抛物线上取点N,使以点A,C,M,N为顶点的四边形是平行四边形,求点N的坐标.A xB CDHEFGKO xylA B CDHEFGKOyl备用图图①4、如图,抛物线c bx ax y ++=2与直线y=21x −3交于A. B 两点,其中点A 在y 轴上,点B 坐标为(−4,−5),点P 为y 轴左侧的抛物线上一动点,过点P 作PC ⊥x 轴于点C ,交AB 于点D. (1)、求抛物线的解析式;(2)、以O ,A ,P ,D 为顶点的平行四边形是否存在?如存在,求点P 的坐标;若不存在,说明理由。

特殊四边形存在性问题-二次函数特殊四边形存在性问题

特殊四边形存在性问题-二次函数特殊四边形存在性问题

特殊四边形存在性问题平行四边形:如果已知三个定点,则形成三条定线段,把每条定线段看成对角线,利用对角形互相平分解决。

如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.菱形:通常转化为等腰三角形存在问题。

矩形:通常转化为直角三角形存在问题。

正方形:通常转化为等腰直角三角形存在问题。

针对训练1.如图,已知抛物线y =-x 2-2x +3与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为P .若以A 、C 、P 、M 为顶点的四边形是平行四边形,求点M 的坐标.2.如图,在平面直角坐标系xOy 中,已知抛物线y =-x 2+2x +3与x 轴交于A 、B 两点,点M 在这条抛物线上,点P 在y 轴上,如果以点P 、M 、A 、B 为顶点的四边形是平行四边形,求点M 的坐标.3.如图(1),抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(﹣2,0).(1)求此抛物线的解析式;(2)①若点D 是第一象限内抛物线上的一个动点,过点D 作DE ⊥x 轴于E ,连接CD ,以OE 为直径作⊙M ,如图(2),试求当CD 与⊙M 相切时D 点的坐标;②点F 是x 轴上的动点,在抛物线上是否存在一点G ,使A 、C 、G 、F 四点为顶点的四边形是平行四边形?若存在,求出点G 的坐标;若不存在,请说明理由.21y x x c 4=-++4.如图1,在平面直角坐标系中,抛物线y =ax 2+bx -3a 经过A (-1,0)、B (0,3)两点,与x 轴交于另一点C ,顶点为D .(1)求该抛物线的解析式及点C 、D 的坐标;(2)经过点B 、D 两点的直线与x 轴交于点E ,若点F 是抛物线上一点,以A 、B 、E 、F 为顶点的四边形是平行四边形,求点F 的坐标;(3)如图2,P (2,3)是抛物线上的点,Q 是直线AP 上方的抛物线上一动点,求△APQ 的最大面积和此时Q 点的坐标.5.如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A ,B ,直线CD 与x 轴、y 轴分别交于点C ,D ,AB 与CD 相交于点E ,线段OA ,OC 的长是一元二次方程x 2﹣18x+72=0的两根(OA >OC ),BE=5,tan ∠ABO=.(1)求点A ,C 的坐标;(2)若反比例函数y=的图象经过点E ,求k 的值; (3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.43kx6.将抛物线c 1:2y =x 轴翻折,得到抛物线c 2,如图所示.现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.7.已知平面直角坐标系xOy (如图),一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长; (2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.8.如图,直线y=x ﹣4与x 轴、y 轴分别交于A 、B 两点,抛物线经过A 、B 两点,与x 轴的另一个交点为C ,连接BC .(1)求抛物线的解析式及点C 的坐标; (2)点M 在抛物线上,连接MB ,当∠MBA+∠CBO=45°时,求点M 的坐标;(3)点P 从点C 出发,沿线段CA 由C 向A 运动,同时点Q 从点B 出发,沿线段BC 由B 向C 运动,P 、Q 的运动速度都是每秒1个单位长度,当Q 点到达C 点时,P 、Q 同时停止运动,试问在坐标平面内是否存在点D ,使P 、Q 运动过程中的某一时刻,以C 、D 、P 、Q 为顶点的四边形为菱形?若存在,直接写出点D 的坐标;若不存在,说明理由.9.已知抛物线2(2)y a x b =-+ (0)ab <的顶点为A ,与x 轴的交点为B ,C (点B 在点C 的左侧).(1)直接写出抛物线对称轴方程;(2)若抛物线经过原点,且△ABC 为直角三角形,求a ,b 的值;(3)若D 为抛物线对称轴上一点,则以A 、B 、C 、D 为顶点的四边形能否为正方形?若能,请求出a ,b 满足的关系式;若不能,说明理由.21y x bx c 3=++10.如图,已知双曲线6yx与直线AB交于A、B两点,与直线CD交于C、D两点.(1)求证四边形ACBD是平行四边形;(2)四边形ACBD可能是矩形吗?可能是正方形吗?(3)如果点A的横坐标为3,点C的横坐标为m(m>0),四边形ACBD的面积为S,求S与m的之间的关系式.。

中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析

中考数学“特殊四边形的存在性问题”题型解析由抛物线上的点构成特殊四边形的问题,需要根据特殊四边形的性质与判定去确定点的坐标,然后求解 . 具体而言,解该类题时,我们要根据题目中的条件,科学地进行分类,然后画出图形,再根据这个四边形的性质或判定求出这点的坐标,若这一点是根据特殊四边形的特性得到的坐标,我们还应将这一点代入到抛物线的解析式中去验证是否是抛物线上的点 .本节主要来讨论下特殊四边形:平行四边形、菱形、矩形的存在性问题 .类型一:平行四边形问题【例题1】如图,抛物线y = 1/2 x^2 + bx + c 经过点A(-1,0)和点B(3,0),同时交y 轴于点C .(1)求抛物线的解析式;(2)若点Q 在y 轴上,点P 在抛物线上,且以A , B , Q , P 为顶点的四边形是平行四边形,求满足条件的点P 的坐标 .【分析】(1)根据抛物线经过A , B 两点即可求得b , c 的值,可解题;(2)以A , B , Q , P 为顶点的四边形是平行四边形,则点P 横坐标为4 或- 4,将x = 4 或- 4 代入抛物线解析式即可求得y 的值,即可解题 .【解析】(1)把A(-1,0),B(3,0)代入y = 1/2 x^2 + bx + c 中,∴抛物线的解析式是y = 1/2 x^2 - x - 3/2 .(2)①当AB 为边时,只要PQ∥AB 且PQ = AB = 4 即可 .又知点Q 在y 轴上,∴点P 的横坐标为4 或- 4 ,这时符合条件的点P 有两个,分别记为P1 , P2,把x = 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 5/2 ,把x = - 4 代入y = 1/2 x^2 - x - 3/2 ,得y = 21/2 ,此时P1(4 , 5/2),P2(- 4 , 21/2);②当AB 为对角线时,只要线段PQ 与线段AB 互相平分即可 .又知点Q 在y 轴上,且线段AB 中点的横坐标为1,∴点P 的横坐标为2,这时符合条件的P 只有一个记为P3 ,而且当x = 2 时,y = - 3/2 ,此时P3(2,- 3/2),综上,满足条件的P 为P1(4 , 5/2),P2(- 4 , 21/2),P3(2,-3/2).类型二:菱形问题【例题2】如图,在平面直角坐标系中,点O 为坐标原点,直线y = -x + b 与坐标轴交于C,D 两点,直线AB 与坐标轴交于A , B 两点,线段OA , OC 的长是方程x^2 - 3x + 2 = 0 的两个根(OA > OC).(1)求点A , C 的坐标;(2)直线AB 与直线CD 交于点E,若点E 是线段AB 的中点,反比例函数y = k/x (k ≠0 )的图象的一个分支经过点E,求k 的值;(3)在(2)的条件下,点M 在直线CD 上,坐标平面内是否存在点N,使以点B , E , M , N 为顶点的四边形是菱形?若存在,请直接写出满足条件的点N 的坐标;若不存在,请说明理由 .【分析】(1)利用分解因式法解一元二次方程x^2 - 3x + 2 = 0 即可得出OA , OC 的值,再根据点所在的位置即可得出A , C 的坐标;(2)根据点C 的坐标利用待定系数法即可求出直线CD 的解析式,根据点A , B 的横坐标结合点E 为线段AB 的中点即可得出点E 的横坐标,将其代入直线CD 的解析式中即可求出点E 的坐标,再利用待定系数法即可求出k 的值;(3)假设存在,设点M 的坐标为(m , - m + 1), 分别以BE 为边、BE 为对角线来考虑 .根据菱形的性质找出关于m 的方程,解方程即可得出点M 的坐标,再结合点B , E 的坐标即可得出点N 的坐标 .【解析】(1)x^2 - 3x + 2 = (x - 1)(x - 2)= 0 ,∴x1 = 1 , x2 = 2 ,∵OA > OC ,∴OA = 2 , OC = 1 ,∴A(-2,0),C(1,0);(2)将C(1,0)代入y = - x + b 中,得0 = - 1 + b , 解得b = 1 ,∴直线CD 的解析式为y = - x + 1 .∵点E 为线段AB 的中点,A(-2,0),B 的横坐标为0 ,∴点E 的横坐标为- 1 .∵点E 为直线CD 上一点,∴E(-1,2).将点E(-1,2)代入y = k/x (k ≠0 )中,得2 = k / -1 , 解得k = -2 ;(3)假设存在,设点M 的坐标为(m , - m + 1),以点B , E , M , N 为顶点的四边形是菱形分两种情况(如上图所示)类型三:矩形问题【例题3】【解题策略】这三道例题分别呈现了运动变化过程中的平行四边形、菱形、矩形的存在性问题,三道例题的思路都是要依据特殊四边形的性质构图并建立方程求点的坐标 .特别地,由于菱形任意三个顶点组成的三角形都是等腰三角形,因此可将菱形问题转化为等腰三角形的存在性问题;而矩形问题则可转化为直角三角形的问题,要注意体会相关知识之间的联系 .。

专题08 二次函数中特殊四边形存在性问题的四种考法(解析版)-2024年常考压轴题攻略(9上人教版)

专题08 二次函数中特殊四边形存在性问题的四种考法(解析版)-2024年常考压轴题攻略(9上人教版)

专题08二次函数中特殊四边形存在性问题的四种考法类型一、平行四边形存在性问题(1)求抛物线的表达式;(2)如图1,连接BC ,PB ,PC ,设PBC 的面积为①求S 关于t 的函数表达式;②求P 点到直线BC 的距离的最大值,并求出此时点(3)如图2,设抛物线的对称轴为l ,l 与x 轴的交点为边形CDPM 是平行四边形?若存在,直接写出点【答案】(1)22y x=-(2)①23922S t t =-+;②点P 到直线BC 的距离的最大值为(3)存在,()1,6M 【分析】(1)待定系数法求解析式即可求解;(2)①在图1中,过点P 作PF y ∥轴,交BC 于点P 的坐标为()2,23t t t -++,则点F 的坐标为(t 2139222S PF OB t t =⋅=-+;②根据二次函数的性质得出当32t =时,S 取最大值,最大值为面积法求得点P 到直线BC 的距离,进而得出P (3)如图2,连接PC ,交抛物线对称轴l 于点设直线BC 的解析式为将()3,0B 、()0,3C 代入30,3m n n +=⎧⎨=⎩,解得:∴直线BC 的解析式为∵点P 的坐标为(,t t -∴点F 的坐标为(,t -∴(223PF t t =-++-∴1322S PF OB =⋅=-②12S PF OB =⋅=-∵302-<,∴当32t =时,S 取最大值,最大值为抛物线2y x bx =-++∴抛物线的对称轴为直线 1D C x x -=,∴1P M x x -=,∴2P x =,()2,3P ∴,在223y x x =-++中,当()0,3C ∴,∴3C D y y -=,∴3M P y y -=,∴6M y =,∴点M 的坐标为()1,6;当2P x ¹时,不存在,理由如下,若四边形CDPM 是平行四边形,则 点C 的横坐标为0,点∴点P 的横坐标12t =⨯又 2P x ¹,(1)求点C 的坐标;(2)点P 为直线AC 下方抛物线上一点,过点此时点P 的坐标;(3)抛物线顶点为M ,在平面内是否存在点若存在请求出N 点坐标并在备用图中画出图形;若不存在,请说明理由.【答案】(1)()4,5C (2)315,24P ⎛⎫- ⎪⎝⎭(3)存在,点N 的坐标为:()154N -,,【详解】(1)解:在2=23y x x --中,令解得:11x =-,23x =,()()1,0,3,0A B ∴-,直线y x m =+经过点()1,0A -,∴01m =-+,解得:1m =,∴直线AC 的解析式为1y x =+,联立方程组,得2123y x y x x =+⎧⎨=--⎩,解得:1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩()4,5C ∴;(2)如图1,设点2(,23)P n n n --,则点∴2212334()PE n n n n n =+---=-++ 10-<,∴当32n =时,PE 取得最大值254,此时,(3) 2223(1)4y x x x =--=--,∴抛物线顶点为()14M -,,如图2,点,,,A B M N 为顶点的四边形是平行四边形时,设①BM 为对角线时,AN 的中点与BM ∴(1)3122m +-+=,04022n +-+=,解得:∴()154N -,,②AM 为对角线时,BN 的中点与AM ∴31122m +-+=,04022n +-+=,解得:(1)求此拋物线的解析式;(2)在抛物线的对称轴上有一点P ,使得PA PC +值最小,求最小值;(3)点M 为x 轴上一动点,在拋物线上是否存在一点N ,使以边形为平行四边形?若存在,直接写出点N 的坐标;若不存在,请说明理由.【答案】(1)215222y x x =--(2)552(3)54,2⎛⎫- ⎪⎝⎭,5214,2⎛⎫+ ⎪⎝⎭,5214,2⎛⎫- ⎪⎝⎭【分析】(1)把()1,0A -,()5,0B 两点代入求出a 、b 的值即可;(2)因为点A 关于对称轴对称的点B 的坐标为()5,0,连接BC 点坐标即可;(3)分点N 在x 轴下方或上方两种情况进行讨论.拋物线的解析式为212y x =-∴其对称轴为直线2b x a =-=-当0x =时,52y =-,50,2C ⎛⎫∴- ⎪⎝⎭,又()5,0B ,∴设BC 的解析式为(y kx b =+5052k b b +=⎧⎪∴⎨=-⎪⎩,解得:12k =,52b =-,∴BC 的解析式为1522y x =-,当2x =时,1532222y =⨯-=-,①当点N 在x 轴下方时,抛物线的对称轴为2x =,0,C ⎛- ⎝154,2N ⎛⎫∴- ⎪⎝⎭,②当点N 在x 轴上方时,如图,过点在2AN D △和2M CO △中,22N AD AN N DA ∠⎧⎪⎨⎪∠⎩252N D OC ∴==,即2N 点的纵坐标为21552222x x ∴--=,解得:2x =+25214,2N ⎛⎫∴+ ⎪⎝⎭,35214,2N ⎛⎫- ⎪⎝⎭综上所述符合条件的N 的坐标有⎛ ⎝【点睛】本题考查的是二次函数综合题,式、平行四边的判定与性质、全等三角形等知识,两点间距离的求解,在解答(意进行分类讨论.(1)求抛物线的解析式:(2)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为腰的等腰三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)点E 在x 轴上运动,点F 在抛物线上运动,当以点B ,C ,E ,F 为顶点的四边形是平行四边形,直接写出点E 的坐标.【答案】(1)213222y x x =-++(2)存在,3,42⎛⎫ ⎪⎝⎭或35,22⎛⎫ ⎪⎝⎭或35,22⎛⎫- ⎪⎝⎭(3)541,02⎛⎫-+ ⎪ ⎪⎝⎭或541,02⎛⎫-- ⎪ ⎪⎝⎭或(7,0)或(1,0)【分析】(1)用待定系数法即可求解;(2)分两种情况:以C 为顶点,即CP CD =;以D 为顶点,即CD =等腰三角形的定义建立方程即可完成;(3)分三种情况:当BC 是对角线时;当BE 是对角线时;当BF 是对角线时;分别设点与F 的坐标,利用中点坐标公式即可求解.【详解】(1)解:∵点B 的坐标是(40),,点C 的坐标是(02),,∴16602a c c ++=⎧⎨=⎩,解得:122a c ⎧=-⎪⎨⎪=⎩,∴所求抛物线解析式为213222y x x =-++;(2)解:存在(1)求抛物线的表达式;(2)若点E 在第一象限内对称右侧的抛物线上,四边形ODEB 的面积为(3)在(2)的条件下,若点F 是对称轴上一点,点H 是坐标平面内一点,在对称轴右侧的抛物线上是否存在点G ,使以E ,F ,G ,H 为顶点的四边形是菱形,且存在,请直接写出点G 的坐标;如果不存在,请说明理由.【答案】(1)232333y x x =-++(2)()2,33E 2039⎫⎪⎭或532,339⎛⎫⎪⎝⎭)根据待定系数法求解即可;∵232333y x x =-++()23143x =--+,∴()1,43D .令232333y x x =-++中0y =,则解得=1x -或3x =,抛物线的对称轴与x轴交于点M,过点∵四边形EFGH 是菱形,EFG ∠∴EF FG GH EG ===,∵60EFG ∠=︒,∴EFG 是等边三角形.∴60FEG EF FG ∠=︒=,,∵()2,33E ,()0,33C ,(1,4D ∴2CE CD ==,()24333-+同理可证: EFG 是等边三角形,∵CF FE =,=GE FE ,∴DG ∴CDG CEG ∆∆≌.∴DCG ∠=∴直线CG 的表达式为:33y =与抛物线表达式联立得33y y ⎧=⎪⎨⎪=-(1)求抛物线的表达式;(2)若点D 是直线AC 上方拋物线上一动点,连接BC ,AD ADM △的面积为1S ,BCM 的面积为2S ,当121S S -=时,求点(3)如图2,若点P 是抛物线上一动点,过点P 作PQ x ⊥轴交直线上是否存在点E ,使以P ,Q ,E ,C 为顶点的四边形是菱形,若存在,请直接写出点坐标;若不存在,请说明理由【答案】(1)223y x x =-++(2)271,22⎛⎫+ ⎪ ⎪⎝⎭或271,22⎛⎫- ⎪ ⎪⎝⎭.(3)符合条件的点E 有三个,坐标为:()0,1E ,(10,132E -【分析】(1)把点()30A ,和()10B -,代入解析式求解即可;(2)由121S S -=得121S S =+从而121ABM ABM S S S S +=++ 程求解即可;(3)分类当CQ 为对角线和菱形边时,利用直线AC 与x 轴成标的方程,进而求出点的坐标.【详解】(1)把点()3,0A 和()1,0B -代入得:93330a b a b ++=⎧⎨-+=⎩解得:12a b =-⎧⎨=⎩,∴抛物线的解析式为223y x x =-++;(2)设(),D x y ,对于抛物线223y x x =-++,令0x =,则()0,3C ∴.121S S -= ,121S S ∴=+.∵()30A ,,()0,3C ,∴3OA OB ==,45OCA ∴∠=︒,此时四边形CEQP 是正方形.PQ EQ ∴=.设()2,23P m m m -++,则23PQ m m =-+,23m m m ∴-+=,解得m =此时32OE OC m =-=-=②当CQ 为菱形的边时,如图设()2,23P m m m -++,则∴HQ m =,2PQ m =-+作QH OC ⊥于点H ,45OCA ∠︒= ,∴22CQ HQ m ==.∴23CE PQ m m ==-+=解得:132m =-,23m =()323213OE =+-=+()10,132E ∴-,(20,1E +综上所述,符合条件的点【点睛】本题考查待定系数法求函数的解析式,二次函数的性质,二次函数与几何综合,数形结合是解题的关键.【变式训练2】如图1,在平面直角坐标系中,点(点A 在点B 左侧),与(1)求ABC 的面积;(3)解:∵抛物线212y x x =--∴()211942212y x x x =--+=-2++∵将抛物线2142y x x =--+沿着水平方向向右平移∴新抛物线为:()112y x =--2+∴原抛物线与新抛物线的交点,∴()()1111992222x x -=--22+++,∴解得:0x =,【点睛】本题考查了二次函数的图象及性质,二次函数与特殊图形,二次函数的平移规律,掌握二次函数与特殊图形的位置关系是解题的关键.类型三、矩形存在性问题(1)求抛物线的解析式;(2)如图,点P 是抛物线上位于直线直线AC 于点D ,交x 轴于点E ,(3)在抛物线上是否存在点M ,对于平面内任意点一条边的四边形为矩形,若存在,请直接写出【答案】(1)2142y x x =--(2)335,28P ⎛⎫- ⎪⎝⎭;254(3)()4,8M -、()8,4N -【分析】(1)把点()4,0A 和点B a 、b 的值;(2)先用待定系数法求出直线2211,422D t t t t ⎛⎫--- ⎪⎝⎭,然后求出最大值时t 的值,即可求出点P (3)假设抛物线上是存在点M ,一条边的四边形为矩形,过点O 点A 且与OH 平行的直线解析式,经计算验证可得过点立方程可求得M 的坐标,通过平移即可求得点【详解】(1)解:把点()4,0A 和点∵()4,0A ,()0,4C -,∴OAC 为等腰直角三角形,∴点H 为AC 的中点,即(H 则OH 所在的直线方程为y =∵四边形AMNC 为矩形,∴过A 与直线AC 相垂直的直线函数解析式中的∴设AM 所在的直线解析式为∵点A 在直线AM 上,(1)求点A 、B 、C 的坐标;(2)将抛物线L 向右平移1个单位,得到新抛物线对称轴l 上是否存在点D ,使得以点D 的坐标;若不存在,请说明理由.【答案】(1)()1,0A -,()3,0B (2)存在,点D 的坐标为()2,1或【分析】(1)分别令0y =和x (2)先求得平移后的抛物线L 角线时,根据矩形的性质求解即可.【详解】(1)解:令0y =,则解得11x =-,23x =,当AD 为对角线时,连接AC ,过点 ()1,0A -,()0,1C -,∴1OA OC ==,∴45OCA ∠=︒∴45OCG ∠=︒∴1OG OC ==,∴()1,0G .设CG 所在直线解析式为y kx =+将()0,1C -,()1,0G 代入得,⎧⎨⎩解得11k b =⎧⎨=-⎩,∴CG 所在直线解析式为1y x =-当2x =时,1211y x =-=-=.∴()2,1D .当AD 为边时,同理过点A 作AC 易得AH 所在直线解析式为y =当AC 为对角线时,DE 也为对角线,∴此种情况不存在.(1)求抛物线的表达式;(2)若点P 为第一象限内抛物线上的一点,设PBC 的面积为S ,求S 坐标;(3)已知M 是抛物线对称轴上一点,在平面内是否存在点N ,使以B 的四边形是矩形?若存在,直接写出N 点坐标;若不存在,请说明理由.【答案】(1)22+3y x x =-+(2)S 最大值为278,315(,)24P (3)存在,点1(2,(317))2N +或1(2,(317))2-或(2,1)-或(4,1).【分析】(1)运用抛物线交点式解析式求解,设抛物线(1)(y a x x =+解;(2)如图,过点P 作PD AC ⊥,垂足为点D ,交BC 于点E ,设(,P m 的解析式3y x =-+,于是23PE m m =-+,从而13(22S PE OC m ==- 时,S 最大值为278,进而求得315(,)24P ;设2(,23)P m m m -++设直线BC 的解析式为y kx =033k hh =+⎧⎨=⎩,解得13k h =-⎧⎨=⎩∴3y x =-+则点(,3)E m m -+,2PE m =-∴2113(22S PE OC m ==´-+ ∴当32m =时,S 最大值为2782915233344m m -++=-++=∴315(,)24P ;(3)存在.设(1,)M p ,如图,223BC =222(13)(0)CM p p =-+-=如图,当BM 为对角线时,∠222BM CM BC =+,即26p p -+01330n p q +=+⎧⎨+=+⎩解得21n q =-⎧⎨=⎩∴点(2,1)N -如图,当CM 为对角线时,MBC ∠222BM BC CM +=,即26p p -+(1)求抛物线的对称轴方程;(2)若点P 满足PAB PBA ∠=∠,求点P 的坐标;(3)设M 是抛物线的对称轴上一点,N 是坐标平面内一点,正方形的面积.【答案】(1)32x =-(2)()51,51P --+(3)正方形AMPN 的面积为172或372【分析】(1)由4y x =+可知()4,0A -,()0,4B ,进而求得抛物线解析式为即可得抛物线的对称轴方程;(2)由题意可知PAB PBA ∠=∠,可知PA PB =,进而值OP 其与AB 交于点Q ,可得()2,2Q -,可求得OP 的解析式为则90PDM ACM ∠=∠=︒∴DPM PMD PMD ∠+∠=∠∴(AAS PDM MCA △≌△∴PD MC =,MD AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422MD AC ==-=,则90PEM ACM ∠=∠=︒∴EPM PME PME ∠+∠=∠∴(AAS PEM MCA △≌△∴PE MC =,ME AC =,∵()4,0A -,3,02C ⎛⎫- ⎪⎝⎭,∴35422ME AC ==-=,则P y CE MC ME ==+=即:32P x m =-,P y m =-(1)求A ,B ,C 三点的坐标,并直接写出直线(2)在点P 的运动过程中,求使四边形(3)点N 为平面内任意一点,在(2N 为顶点的四边形是正方形?若存在,请直接写出点【答案】(1)()1,0A -,()3,0B ,C (2)32m =-(3)()1221,2Q +,2252,2Q ⎛+ ⎝【分析】(1)分别令0y =,0x =,可求出点∵()3,0B ,()0,3C ,∴3OB OC ==,∴BOC 是等腰直角三角形,∴点()221,2Q +,∴()22132322EQ =+--=-∴PE EQ =,此时点()221,2Q +使得以P ,E 如图,过点E 作EQ PM ⊥于点Q ,过点由(2)得:45BED ∠=︒,∵PM BC ∥,∴45BED DPQ ∠=∠=︒,∴PEQ ,PSQ 是等腰直角三角形,∴此时点Q 使得以P ,E ,Q ,N 为顶点的四边形是正方形;∴132222PS SE PE -===,∴点5232,12S ⎛⎫-- ⎪ ⎪⎝⎭,对于321y x =-++,当5212y =-时,222x =+,(1)求抛物线的解析式;(2)点E 在第一象限内,过点E 作EF y ∥轴,交BC 于点F ,作EH 点H 在点E 的左侧,以线段,EF EH 为邻边作矩形EFGH ,当矩形求线段EH 的长;(3)点M 在直线AC 上,点N 在平面内,当四边形OENM 是正方形时,请直接写出点标.【答案】(1)抛物线的解析式为2142y x x =-++;(2)4EH =;(3)点N 的坐标为()44,或7322⎛⎫- ⎪⎝⎭,.【分析】(1)利用待定系数法即可求解;(2)先求得直线BC 的解析式为4y x =-+,设2142x E x x ⎛ ⎝-++,对称性质求得21422H x x x ⎛⎫- ⎪+⎝-+⎭,,推出2122GH EF x -=-+矩形周长公式列一元二次方程计算即可求解;(3)先求得直线AC 的解析式为24y x =+,分别过点M 、E 作90OPE MQO ∠=∠=︒,90OEP ∠=︒∴OEP MOQ ≌△△,∴PE OQ =,PO MQ =,设2142m E m m ⎛⎫ ⎪⎝-++⎭,,∴PE OQ m ==-,12P m O M Q ==-∵点M 在直线AC 上,∴244212m m m -⎛⎫=+ ⎪⎝⎭-,解得m =当4m =时,()04M ,,()40E ,,即点M 与点C 重合,点E 与点B 重合时,四边形当1m =-时,512M ⎛⎫-- ⎪⎝⎭,,512E ⎛- ⎝,点O 向左平移52个单位,再向下平移则点E 向左平移52个单位,再向下平移∴551122N ⎛⎫--- ⎪⎝⎭,,即7322N ⎛⎫- ⎪⎝⎭,.课后训练(1)求抛物线的解析式;(2)如图2,点P 、Q 为直线BC 下方抛物线上的两点,点Q 的横坐标比点过点P 作PM y ∥轴交BC 于点M ,过点Q 作QN y ∥轴交BC 于点N ,求值及此时点Q 的坐标;(3)如图3,将抛物线()230y ax bx a =+-≠先向右平移1个单位长度,再向下平移长度得到新的抛物线y ',在y '的对称轴上有一点D ,坐标平面内有一点E D 、E 为顶点的四边形是矩形,请直接写出所有满足条件的点E 的坐标.【答案】(1)抛物线的解析式为2=23y x x --(2)当1a =时,max ()4PM QN +=,()2,3Q -(3)()1,2E --或()5,2-或3171,2⎛⎫-- ⎪ ⎪⎝⎭或3171,2⎛⎫-+ ⎪ ⎪⎝⎭【分析】(1)直接运用待定系数法即可解答;(2)设()2,23P a a a --,则()21,4Q a a +-,进而得到(),3M a a -,(N 出222422(1)4PM QN a a a +=-++=--+,最后根据二次函数的性质即可解答;(3)分以BC 为矩形一边和对角线两种情况,分别根据等腰直角三角形的性质、平移和矩形的判定定理解答即可.【详解】(1)解:把()1,0A -和()3,0B 代入()230y ax bx a =+-≠,得309330a b a b --=⎧⎨+-=⎩,解得1a =,2b =-∴222422(1)4PM QN a a a +=-++=--+∴当1a =时,max ()4PM QN +=∴()2,3Q -.(3)解:由题意可得:()()()222=1213152x y x x x x --'---=---=-,∴y '的对称轴为2x =∵抛物线()230y ax bx a =+-≠与y 轴交于点C .∴()0,3C -,∵()3,0B ,∴3OC OB ==,45BCO CBO ∠=∠=︒;如图:当BC 为矩形一边时,且点D 在x 轴的下方,过D 作DF y ⊥轴,∵D 在y '的对称轴为2x =,∴2FD =,∴2CF FD ==,325OF =+=,即点()2,5D -,∴点C 向右平移2个单位、向下平移3个单位可得到点D ,则点B 向右平移2个单位、向下平移3个单位可得到()5,3E -;如图:当BC 为矩形一边时,且点D 在x 轴的上方,y '的对称轴为2x =与x 轴交于F ,∵D 在y '的对称轴为2x =,∴2FO =,∴321BF =-=,∵45CBO ∠=︒,即45DBO ∠=︒,∴321BF FD ==-=,即点()2,1D ,∴点B 向左平移1个单位、向上平移1个单位可得到点D ,则点C 向左平移1个单位、向上平移1个单位可得到点()1,2E --;如图:当BC 为矩形对角线时,设∴BC 的中点F 的坐标为32⎛ ⎝∴2322322m d n +⎧=⎪⎪⎨+⎪=⎪⎩,解得:m d =⎧⎨+⎩又∵DE BC =,∴()()22222133d n -+-=+联立173d n d n ⎧-=±⎪⎨+=⎪⎩,解得:∴点E 的坐标为3171,2⎛-- ⎝综上,存在()1,2E --或(5,的四边形是矩形.【点睛】本题主要考查了运用待定系数法求解析式、与几何的综合等知识点,掌握二次函数的性质和矩形的判定定理是解答本题的关键.2.如图,在平面直角坐标系中,抛物线与y 轴交于点C ,点P 为抛物线上的动点.(1)求该抛物线的函数表达式;(2)点D 为直线y x =上的动点,当点P 在第四象限时,求四边形PBDC 面积的最大值及此时点P 的坐标;(3)已知点E 为x 轴上一动点,点Q 为平面内任意一点,是否存在以点P ,C ,E ,Q 为顶点的四边形是以PC 为对角线的正方形,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.【答案】(1)2=23y x x --(2)278,315,24P ⎛⎫- ⎪⎝⎭(3)3333,2⎛⎫+- ⎪ ⎪⎝⎭;3333,2⎛⎫-- ⎪ ⎪⎝⎭;(3,3)-;(3,2)【分析】(1)用待定系数法求函数的解析式即可;(2)作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设()2,23P m m m --,则(,3)H m m -,23PH m m =-+,则2139()228BPC S t ∆=--+,当32t =时,BPC △的面积最大值为从而求出此时四边形PBDC 面积的最大值,P 点坐标;(3)设()2,23P m m m --,(,0)E n ,分四种情况画出图形,利用正方形性质求解即可.【详解】(1)解:将(1,0)A -,(3,0)B 代入23y ax bx =+-中,得309330a b a b --=⎧⎨+--⎩,解得12a b =⎧⎨=-⎩.∴该抛物线的函数表达式为2=23y x x --.(2)解:作直线BC ,过P 作PH x ⊥轴于点G ,交BC 于点H .设直线BC 的表达式为:y kx =+得303k n n +=⎧⎨=-⎩,解得13k n =⎧⎨=-⎩,3y x ∴=-.设()2,23P m m m --,则(,H m m ∵BPC CPH BPHS S S =+△△△∴1122BPC S PH OG PH BG =⋅+⋅△∴(21322BPC S PH OB m =⨯=-+△∴28323272BPC S m ⎛⎫=-+ ⎪⎝-⎭△,∴当32m =时,BPC △面积的最大值为BC 与直线y x =平行,1122DBC OBC S S OB OC ∴==⋅=△△∴四边形PBDC 面积的最大值为当32m =时,2332322y ⎛⎫-⨯- ⎪⎝⎭=315,24P ⎛⎫∴- ⎪⎝⎭(3)解:设()2,23P m m m --,I.如图,当点E 在原点时,即点∵四边形PECQ 为正方形,∴点3(3,)Q -,II.如解图3-2,当四边形PECQ 作PI x ⊥轴,垂足为I ,作QH ⊥又∵90CEO OCE ∠+∠=︒,∴OCE PEO ∠=∠,∴(ASA)OCE PEI ≅ △∴3CO IE ==,22EO IP m ==-同理可得:3QH CO IE ===,∴3OE OI IE m =+=+,HO IO=∴2323m m m +=--,解得:m ∴3332HO IO +==,∴点)33(3,32Q +-,同理可得:PI OE CH ==,IE QH =∴3OE IE IO m =-=+,∴2233m m m =---,解得:m =∴3332HO IO -+==,∴点3,(Q -IV.如解图3-4,当四边形PECQ 为正方形时,同理可得:PI OE CH ==,EI HQ =∴2323m m m -=--,解得:m =∴2HO IO ==,∴点(3,2)Q ,综上所述:点Q 坐标为3333,2⎛+- ⎝【点睛】此题重点考查二次函数的图象与性质、数解析式、正方形性质、全等三角形的判定与性质、一元二次方程的解法、数形结合与分类讨论数学思想的运用等知识与方法,此题综合性强,难度较大,属于考试压轴题.3.如图,抛物线212y x bx c =++与物线交于A 、D 两点,与y 轴交于点综上所述,341,22N ⎛⎫+ ⎪ ⎪⎝⎭或341,22N ⎛- ⎝【点睛】本题考查了待定系数法求解析式,面积问题,平行四边形的性质,熟练掌握是二次函数的性质解题的关键.4.在平面直角坐标系中,抛物线2y ax =(1)求抛物线的表达式;(2)若直线x m =与x 轴交于点求出抛物线上点M 的坐标;(3)若点P 为抛物线y ax =位长度后,Q 为平移后抛物线上一动点,在(构成平行四边形?若能构成,求出【答案】(1)223y x x =-++(2)315,24⎛⎫ ⎪⎝⎭(3)1(2-,15)4或3(2-,7)4或【分析】(1)利用待定系数法,即可求出抛物线的表达式;(2)由“直线x m =与x 轴交于点的坐标,进而可得出AN 再利用二次函数的性质,即可求出(3)利用平移的性质,可得出平移后抛物线的表达式为点的坐标特征,可求出点点P 的坐标为(1,)m ,点Q 线三种情况考虑,由平行四边形的对角线互相平分,可得出关于得出n 值,再将其代入点【详解】(1)解:将(1,0)-09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:∴抛物线的表达式为y =-(2) 直线x m =与x 轴交于点∴点M 的坐标为2(,m m -。

二次函数与几何综合专题 特殊四边形存在性问题

二次函数与几何综合专题  特殊四边形存在性问题
(8)在对称轴上有一点Q,在抛物线上有一点P,若以C、D、P、Q为顶点的四边形是菱形,求点Q的坐标.
(9)在y轴上有一点M,在坐标平面内有一点N,若以A、C、M、N为顶点的四边形是正方形,求点N的坐标.
【答案】(1) ,对称轴为:直线x=-1,顶点坐标为:D(-1,-4);(2)N点坐标为:(-4,-3)或(-2,3)或(2,-3);(3)P点坐标为: , ;(4)N点坐标为:(-1,-4)或(3,12)或(-5,12);(5)P点坐标为:(-2,-3);或( ,3)或( ,3);(6)N点坐标为:(-2,-3)或(2,5)或(-4,5);(7)点M坐标为(2,-1)或(-4,-1)或 或 ;(8)以C、D、P、Q为顶点的四边形是菱形,点Q的坐标为(-1,-2);(9)点N坐标为(-3,-3)或(3,0)
(5)在x轴上有一点Q,在抛物线上有一点P,若以A、C、P、Q为顶点的四边形是平行四边形,求点P的坐标.
(6)在对称轴上有一点Q,在抛物线上有一点P,若以A、C、P、Q为顶点的四边形是平行四边形,求点P的坐标.
(7)在对称轴上有一点N,在平面内存在点M,若以A、C、M、N为顶点的四边形是矩形,求点M的坐标.
∴ ,
∵点C坐标为(0,-3),以O、C、P、Q为顶点的四边形是平行四边形,
∴ ,
即: ,
解得: , ,
当 时, 此时P点坐标为: , .
(4)解:设点Q的坐标为 ,P点坐标为 ,
∵点A坐标为(-3,0),点B坐标为(1,0),
以A、B、P、Q为顶点的四边形是平行四边形,
I、当AB、PQ为对角线时,
(1)求抛物线的解析式、对称轴及顶点D的坐标.
(2)在坐标平面内有一点N,若以A、B、C、N为顶点的四边形是平行四边形,求点N的坐标.

专题:二次函数背景下的特殊四边形存在性问题(学生版)

专题:二次函数背景下的特殊四边形存在性问题(学生版)

专题:二次函数背景下的特殊四边形存在性问题一、知识储备二、方法归纳1.平行四边形的存在性问题:①从边的关系出发,对边平行且相等可转化为:可以理解为点B 移动到点A ,点C 移动到点D ,移动路径完全相同.②从对角线关系出发,对角线互相平分转化为:可以理解为AC 的中点也是BD 的中点.图1图2图1可表示为⎩⎨⎧-=--=-C D B A C D B A y y y y x x x x ,图2可表示为 ⎪⎪⎩⎪⎪⎨⎧+=++=+2222D B C A DB C A y y y y x x x x 。

二者均可可以化为统一,以AC 、BD 为对角线时,可得:⎩⎨⎧+=++=+D B C ADB C A y y y y x x x x .2. 菱形的存在性问题:转化为平行四边形+等腰三角形(两点间的距离公式、两圆一线作等腰);3. 矩形的存在性问题:转化为平行四边形+直角三角形(勾股定理、Rt 斜中、隐形圆、构造K 型相似);4. 正方形的存在性问题:转化为平行四边形+等腰直角三角形(构造K 型全等)。

解题策略:一般情况下构成四边形的四个点中,有两个点是定点两个点是动点,我们常设一个动点(非二次函数上),利用图形位置与数量关系,表示出另一个动点(二次函数上),再将表示的点代入点的函数解析式求解即可。

三、典例分析例1:如图,已知直角坐标系中,抛物线与轴交于,两点,与轴交于点,点的坐标为,点的坐标分别为.(1)求抛物线的解析式;(2)有一动点从C 点出发,个单位的速度向点运动,过点作轴的垂线,交抛物线于点,交轴于点,连接、,设点运动的时间为秒. ①求出点的坐标(用表示);②当四边形为平行四边形时,求出的值;(3)点是抛物线对称轴上的一个动点,点是坐标平面内的一点,是否存在这样的点,,使得以、、、四点组成的四边形是矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.2.如图,已知抛物线2y x bx c =++与x 轴相交于(1,0)A -,(,0)B m 两点,与y 轴相交于点(0,3)C -,抛物线的顶点为D . (1)求B 、D 两点的坐标;(2)若P 是直线BC 下方抛物线上任意一点,过点P 作PH x ⊥轴于点H ,与BC 交于点M ,设F 为y 轴一动点,当线段PM 长度最大时,求12PH HF CF ++的最小值;(3)在第(2)问中,当12PH HF CF ++取得最小值时,将OHF ∆绕点O 顺时针旋转60︒后得到△OH F '',过点F '作OF '的垂线与x 轴交于点Q ,点R 为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S ,使得点D 、Q 、R 、S 为顶点的四边形为菱形,若存在,请直接写出点S 的坐标,若不存在,请说明理由.24y ax bx =++x A B y C A (2,0)-B (8,0)D B Dx E x F CE OD D (04)t t <<D t DOCE t P Q P Q P Q B C Q四、课后练习1.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -. (1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系中,二次函数的图象与一次函数的图象相交于、两点,与轴的负半轴交于点,交轴于点,,点坐标为. (1)求该二次函数的函数表达式;(2)为线段上一动点,将以所在直线为轴翻折,点的对称点为点,若有一个顶点在轴上,求点的坐标;(3)设点在抛物线的对称轴上,点在直线上,问是否存在这样的点、,使得以、、、为顶点的四边形是平行四边形?若存在,请直接写出点、的坐标;若不存在,请说明理由.3.如图1,抛物线与轴交于,两点(点在点的左侧),与轴交于点,直线与抛物线相交于另一点,点为抛物线的顶点.(1)求直线的解析式及点的坐标; (2)如图2,直线上方的抛物线上有一点,过点作于点,过点作平行于轴的直线交直线于点,当周长最大时,在轴上找一点,在上找一点,使得值最小,请求出此时点的坐标及的最小值;(3)在第(2)问的条件下,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使以点,,,为顶点的四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.20)y ax bx a =++≠(0)y ax a a =-≠A B x C AB y D :1:2BD AD =B (1,0)M CB ACM ∆AM C N AMN ∆y N E F AB E F A C E F EF 2y x =-x A B A B yC :AE y ED BCE AE P P PF BC ⊥F P y BCG PFG ∆yM AE N 12PM MN NE ++N 12PM MN NE ++R S N E R SS。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探究特殊四边形存在性问题
1.如图,抛物线y =x 2-2x -3经过点A (2,-3),与x 轴负半轴交于点B ,与y 轴交于点C ,且OC =3OB .
(1)求点B ,C 的坐标;
(2)若点D 在y 轴上,且∠BDO =∠BAC ,求点D 的坐标;
(3)若点M 为抛物线上一点,点N 在抛物线的对称轴上,是否存在以点A 、B 、M 、N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M 的坐标,若不存在,请说明理由.
第1题图
解:(1)令x =0得y =-3,
∴C (0,-3),
∴OC =3,
∵OC =3OB ,
∴OB =1,
∴B (-1,0),
把A (2,-3),B (-1,0)分别代入y =ax 2+bx -3得:
⎩⎪⎨⎪⎧a -b -3=04a +2b -3=-3,解得⎩
⎪⎨⎪⎧a =1b =-2, ∴抛物线的解析式为y =x 2-2x -3;
(2)如解图①,过点B 作BE ⊥ AC ,交AC 延长线于点E .
第1题解图①
∵C (0,-3),A (2,-3),
∴AC ∥x 轴,
∴BE =3,
又∵OB=1,
∴AE=3,∴AE=BE,
∴∠BAE=45°,
∵∠BDO=∠BAC=45°,
∴OB=OD,
∴D点的坐标为(0,1)或(0,-1),
(3)存在.如解图②.
第2题解图②
当AB∥MN时,由AB=MN=32,可知点M与对称轴的距离为3,由y=x2-2x-3可得对称轴为直线x=1,
∴点M的横坐标为4或-2,把x=4和-2分别代入y=x2-2x-3可得点M坐标,
把x=-2代入y=x2-2x-3得y=4+4-3=5,
∴M1(-2,5).
把x=4代入y=x2-2x-3得y=16-8-3=5,
∴M2(4,5),
当MN与AB互相平分时,四边形AMBN是平行四边形,由AC=BN=2,可知点M与点C重合,∴点M3坐标为(0,-3),
∴M的坐标为(-2,5)或(0,-3)或(4,5).
2.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.
(1)求抛物线的解析式;
(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标;
(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E,是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.
第2题图
解:(1)设抛物线解析式为:y=a(x-1)2+4(a≠0).
∵抛物线过点C (0,3),
∴a +4=3,∴a =-1.
∴y =-(x -1)2+4=-x 2+2x +3;
(2)由(1)得,抛物线的解析式为y =-x 2+2x +3,
令y =0,解得x 1=-1,x 2=3,
∴A (-1,0),B (3,0),
∵C (0,3),∴直线BC 的解析式为y =-x +3,
∵S △BCP =S △BCQ ,
∴点P 、Q 到BC 的距离相等.
①当点P 、Q 位于BC 的同侧时,如解图①,过点P 作PQ ∥BC 交抛物线于Q ,
又∵P (1,4),
∴直线PQ 的解析式为y =-x +5,
联立⎩
⎪⎨⎪⎧y =-x +5,y =-x 2+2x +3. 解得⎩⎪⎨⎪⎧x 1=1y 1=4(舍去),⎩
⎪⎨⎪⎧x 2=2y 2=3, ∴Q 1(2,3).
第2题解图①
②当点P 、Q 位于BC 的异侧时,设抛物线的对称轴交BC 于点G ,交x 轴于点H ,∴G (1,2), ∵此时点P 、H 到BC 的距离相等,∴H (1,0),
∴PG =GH =2,
如解图①,过点H 作Q 2Q 3∥BC 交抛物线于点Q 2,Q 3.
直线Q 2Q 3的解析式为
y =-x +1,
联立⎩
⎪⎨⎪⎧y =-x +1,y =-x 2+2x +3. 解得⎩⎪⎨⎪⎧x 1=3+172y 1=-1-172,⎩⎪⎨⎪⎧x 2=3-172y 2=-1+172,
∴Q 2(3-172,-1+172),Q 3(3+172,-1-172
). 综上所述,满足条件的点Q 的坐标为(2,3)或(3-172,-1+172)或(3+172,-1-172
);
第2题解图②
(3)存在满足条件的M ,N .
如解图②,过点M 作MF ∥y 轴,过点N 作NF ∥x 轴交MF 于点F ,过点N 作NH ∥y 轴交BC 于点H .则△MNF 与△NEH 都是等腰直角三角形.
设M (x 1,y 1),N (x 2,y 2),直线MN 的解析式为y =-x +b .
∵⎩
⎪⎨⎪⎧y =-x +b ,y =-x 2+2x +3, ∴x 2-3x +(b -3)=0.
∴NF 2=|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=21-4b .
∵△MNF 为等腰直角三角形,
∴MN 2=2NF 2=42-8b .
∵直线MN 与y 轴交点(0,b )到点C (0,3)的距离为|b -3|,
∴NH 2=(b -3)2,
∵NE =22
NH , ∴NE 2=12
(b -3)2. 如果四边形MNED 为正方形,
∴NE 2=MN 2, ∴42-8b =12
(b 2-6b +9). ∴b 2+10b -75=0,
∴b 1=-15,b 2=5.
∵正方形边长为MN =42-8b ,
∴MN =92或2,
∴正方形MNED 的边长为92或 2.。

相关文档
最新文档