等离子体浸没离子注入与沉积合成碳化钛薄膜的摩擦磨损性能研究

合集下载

单晶硅表面等离子体基离子注入碳纳米薄膜的摩擦学特性

单晶硅表面等离子体基离子注入碳纳米薄膜的摩擦学特性

单晶硅表面等离子体基离子注入碳纳米薄膜的摩擦学特性IntroductionSingle-crystal silicon is a widely used material in various technological applications due to its desirable mechanical properties. However, its poor tribological behavior under sliding friction hinders its widespread use. Surface modification techniques such as ion implantation have been applied to enhance its tribological behavior. In this study, we investigated the frictional characteristics of carbon nanofilm implanted on a single-crystal silicon surface by plasma-based ion implantation.Experimental MethodsThe experiments were conducted using a plasma-based ion implantation system. The single-crystal silicon samples were cleaned and then implanted with carbon ions with varying energies and doses. The surface morphology and chemical composition of the implanted samples were characterized using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The tribological properties of the implanted samples were evaluated by performing friction and wear tests using a ball-on-disk tribometer under dry sliding conditions.Results and DiscussionThe SEM images showed that the implanted samples exhibited a rougher surface compared to the unimplanted ones. The XPS analysis confirmed the presence of carbon on the implanted samples. The friction and wear tests revealed that the implantedsamples exhibited reduced friction coefficients and wear rates compared to the unimplanted samples. The reduced friction was attributed to the formation of a carbon-rich layer on the surface of the implanted samples, which acted as a solid lubricant during sliding. The reduced wear rate was attributed to the increased surface hardness of the implanted samples due to carbon ion implantation.ConclusionThe plasma-based ion implantation technique was successfully used to implant carbon ions on the single-crystal silicon surface. The implanted samples exhibited enhanced tribological behavior, including reduced friction coefficients and wear rates, compared to the unimplanted ones. The improved tribological behavior was attributed to the formation of a carbon-rich layer on the surface and the increased surface hardness due to ion implantation. We conclude that plasma-based ion implantation is an effective surface modification technique for improving the tribological behavior of single-crystal silicon.Furthermore, the specific implantation parameters used in this study, i.e., energy and dose, can be optimized to achieve even better tribological properties. For example, increasing the energy of the implanted ions can result in a deeper implantation and hence a thicker carbon-rich layer on the surface. Similarly, increasing the dose can result in a higher concentration of carbon atoms on the surface, which can lead to further reduction in friction and wear.The use of ion implantation for surface modification has several advantages over other traditional techniques such as coating orsurface texturing. Unlike coatings, ion implantation does not introduce a separate layer on the surface, which can delaminate or wear off over time. In contrast, implanted atoms become part of the substrate material, resulting in a more durable modification. Additionally, the surface texturing technique relies on creating grooves or patterns on the surface, which may not be applicable or effective for all materials or applications.In conclusion, the plasma-based ion implantation technique has been shown to be a promising surface modification technique for enhancing the tribological behavior of single-crystal silicon. This technique has the potential to be applied to other materials and can be optimized for specific applications. Future work can focus on optimizing the implantation parameters, investigating the long-term durability of the implanted surfaces, and exploring the applications of this technique in different technological fields.In addition to silicon, plasma-based ion implantation has been applied to a wide range of materials such as metals, polymers, ceramics, and semiconductors to modify their surface properties for various applications. For example, ion implantation has been used to improve the wear resistance and corrosion resistance of stainless steel, increase the hardness and scratch resistance of polymeric materials, and enhance the adhesion and surface energy of ceramics.Moreover, ion implantation can also be used to tailor the surface properties of materials for specific applications in microelectronics, optoelectronics, and biomedicine. In microelectronics, ion implantation is commonly used to modify the electrical properties of semiconductors such as silicon and gallium arsenide for devicefabrication. In optoelectronics, ion implantation can be used to create waveguides or modify the refractive index of optical materials for photonic devices. In biomedicine, ion implantation can be employed to modify the surface chemistry and topography of implant materials to enhance their biocompatibility and reduce the risk of rejection.In conclusion, plasma-based ion implantation provides a versatile and effective surface modification technique for various materials and applications. Its benefits include improving wear resistance, corrosion resistance, hardness, scratch resistance, adhesion, surface energy, and biocompatibility, among others. The technique can be optimized for specific applications and has potential in a wide range of technological fields. Future research should focus on further understanding the fundamental mechanisms of ion implantation and developing new implantation techniques to address emerging needs in different industries.One area where plasma-based ion implantation has shown potential is in the development of new types of functional coatings. Functional coatings are thin layers of material applied to surfaces in order to impart specific properties such as increased durability, improved friction, or enhanced thermal insulation. Plasma-based ion implantation can be used to create such coatings through a process known as ion beam assisted deposition.Ion beam assisted deposition involves bombarding a surface with high-energy ions while simultaneously depositing a thin film of material onto it. This bombardment modifies the surface properties of the material, allowing the deposited film to adhere more strongly and exhibit improved functional properties.One example of a functional coating that can be created through ion beam assisted deposition is a superhydrophobic coating. Superhydrophobic coatings are highly water-repellent, and can be used in applications such as self-cleaning surfaces, anti-fogging coatings, and water-resistant textiles. By using plasma-based ion implantation to modify the surface properties of a material, it is possible to create a highly rough surface with a variety of different structures that can prevent water from adhering to it.Another area where plasma-based ion implantation has shown promise is in the development of advanced energy materials. By modifying the surface properties of materials such as silicon, lithium, and aluminum, it is possible to create materials with improved energy storage properties. For example, by using ion implantation to create a highly porous silicon surface, researchers have been able to create silicon anodes for lithium-ion batteries with significantly improved performance.In conclusion, plasma-based ion implantation is a versatile technique with promising applications in a variety of fields. By modifying the surface properties of materials, it is possible to create coatings with improved functional properties and advanced energy materials with improved performance. Continued research in this area has the potential to lead to the development of new materials and technologies with a wide range of practical applications.In addition to functional coatings and energy materials, plasma-based ion implantation has also shown potential for use in the biomedical field. By modifying the surface properties of medical implants, it may be possible to improve biocompatibilityand reduce the risk of rejection or infection. For example, an ion-implanted titanium surface could have improved osseointegration and reduce implant failure rates.Furthermore, plasma-based ion implantation can also be used in the field of microelectronics to improve device performance. By modifying the surface properties of electronic components, it is possible to improve their conductivity and reduce power consumption. This can lead to smaller, more efficient devices that have better battery life and can be used in a wider range of applications.Finally, plasma-based ion implantation has potential in the field of environmental science. By modifying the surface properties of materials such as membranes and filters, it is possible to create materials with improved filtration properties. This can lead to more efficient water and air filtration systems that have a smaller environmental footprint.Overall, plasma-based ion implantation is a promising technology that has the potential to unlock new innovations in a wide range of fields. Continued research and development will be needed to fully understand its capabilities and limitations, but the potential benefits make it an exciting area to watch in the coming years.。

钛合金摩擦磨损及改善技术的研究进展

钛合金摩擦磨损及改善技术的研究进展

钛合金摩擦磨损及改善技术的研究进展作者:余成君来源:《现代盐化工》2020年第03期摘要:从钛合金摩擦磨损的外部影响因素以及摩擦过程产物出发,综述了有关钛合金摩擦磨损性能与机理的研究认识,总结了当下较为常用的4类表面处理方法,即表面改性技术、表面涂镀技术、表面合金化技术以及表面复合处理技术。

最后指出了当前改善技术存在的不足,并对钛合金摩擦磨损性能的研究方向作出了展望。

关键词:钛合金;摩擦磨损机理;表面处理技术钛合金自20世纪50年代实现工业生产之后,由于其具备生物相容性、超导、储氢、形状记忆等独特功能,而被广泛应用在医疗器械、化工、航天航空、舰船等领域[1],成为一种不可或缺的材料。

一直以来,由于钛合金的低摩擦学属性,在实际工业应用中,钛合金的表面很容易发生摩擦磨损[2],钛合金的摩擦磨损性能较差可认为有以下几个原因:(1)加工硬化率及塑性剪切抗力低。

(2)摩擦过程闪温致使氧化膜脆弱易脱落。

(3)表面硬度较差。

钛合金应用越广泛,所产生的磨损问题越多、越复杂[3]。

因此,理解并掌握钛合金在不同使用环境中的摩擦磨损机理是改善钛合金摩擦磨损性能的重要研究步骤,但是在当前关于钛合金摩擦磨损机理的有限研究中,许多解释还存在不统一的状况。

因此,本研究对当前的研究状况进行了综述,并根据影响因素总结了一些常用的表面处理技术。

1 钛合金的摩擦磨损钛合金因其优异的性能而在诸多领域得到了广泛的应用,然而,每种材料都有其优缺点。

钛合金因表面硬度较低、摩擦磨损性能较差,在很多情况下并不能满足实际生产要求。

针对钛合金摩擦磨损性能不足这一缺点,研究者做了大量研究,主要是为掌握钛合金摩擦磨损的机理,从而为改善钛合金的低摩擦学性能提供理论依据,钛合金的摩擦磨损形式主要有:冲蚀磨损、腐蚀磨损、粘着磨损、疲劳磨损以及微动磨损等[4],在通常情况下,这几种形式的磨损是同时发生的,工况条件不同,磨损形式的主次也不同。

2 钛合金摩擦磨损的影响因素2.1 外部条件的影响因钛合金的塑性剪切抗力及加工硬化率较低,实际服役过程中,影响钛合金摩擦磨损性能的因素主要有载荷、位移幅值、温度、环境介质、对磨材料等。

脉冲直流等离子体增强化学气相沉积Ti―Si―N纳米薄膜的摩擦磨损特性

脉冲直流等离子体增强化学气相沉积Ti―Si―N纳米薄膜的摩擦磨损特性

脉冲直流等离子体增强化学气相沉积Ti―Si―N纳米薄膜的摩
擦磨损特性
脉冲直流等离子体增强化学气相沉积Ti―Si―N 纳米薄膜的摩擦磨损特性最近受到了广泛关注。

为了探究这种纳米薄膜的摩擦磨损特性,我们采用脉冲直流等离子体增强化学气相沉积法制备Ti―Si―N纳米薄膜样品。

该样品的表面形貌、组成及
结构等表征结果显示:纳米样品表面具有扁平程度较高的特点,表面没有明显的氧化反应,样品的结晶性和晶格参数也得到了检验。

此外,我们利用超声阻尼模式来研究纳米薄膜在摩擦
磨损中的性能,研究结果显示,当相对运动速度Vr为0.2m/s 时,Ti―Si―N纳米薄膜的摩擦系数κ比基底材料要大。

同时,研究表明Ti―Si―N 纳米薄膜的摩擦磨损量比基底材料要小。

此外,磨损量还与加载重量(W)呈正比关系、相对运动速度(Vr)呈负比关系,而且还发现在低摩擦系数状态下,样品
的摩擦磨损量会增大。

综上所述,Ti―Si―N纳米薄膜具有良
好的摩擦磨损特性,它的摩擦系数要大于基底材料,而且摩擦磨损量要小于基底材料,同时在摩擦特性方面,薄膜的性能随摩擦力和相对运动速度的变化而变化。

离子束增强沉积Ni、Ti纳米金属薄膜的表面形貌与摩擦特性研究

离子束增强沉积Ni、Ti纳米金属薄膜的表面形貌与摩擦特性研究

离子束增强沉积Ni、Ti纳米金属薄膜的表面形貌与摩擦特性研究夏冬生;张会臣;孙昌国;高玉周;严立【期刊名称】《润滑与密封》【年(卷),期】2007(032)004【摘要】在原子力显微镜上对采用离子束增强沉积方法制备的Ni、Ti纳米金属薄膜的形貌进行了观察,应用分形理论分析了薄膜表面的分形特征,并且对金属薄膜的纳米摩擦特性进行了研究,分析了载荷和表面力对金属薄膜摩擦特性的影响.结果表明,Ti薄膜晶粒细小,表面平整,而Ni薄膜表面粗糙.Ni、Ti沉积薄膜表面具有显著分形特征,各向同性.Ni、Ti纳米薄膜的摩擦力均随载荷的增大而增大,并且都存在一个临界载荷值,超过这个值,摩擦力急剧增加.将分形理论和接触力学JKR模型结合,对纳米金属薄膜摩擦的临界载荷进行的预测与实验结果具有相同的趋势.【总页数】5页(P97-101)【作者】夏冬生;张会臣;孙昌国;高玉周;严立【作者单位】大连海事大学机电与材料工程学院,辽宁大连,116026;大连海事大学机电与材料工程学院,辽宁大连,116026;大连海事大学机电与材料工程学院,辽宁大连,116026;大连海事大学机电与材料工程学院,辽宁大连,116026;大连海事大学机电与材料工程学院,辽宁大连,116026【正文语种】中文【中图分类】TG115【相关文献】1.Si表面离子束辅助沉积Ti纳米膜的研究 [J], 白彬;陆雷;严东旭;张厚亮;梁红伟2.离子束增强沉积纳米金属薄膜的摩擦特性 [J], 张会臣;高玉周;孙昌国;刘莎;严立3.离子束溅射沉积Ti-Ni薄膜及其电化学性能的研究 [J], 崔岩;牟宗信;邹学平;李国卿4.离子束混合增强陶瓷基体上金属薄膜附着力的研究 [J], 王齐祖;陈玉峰5.离子束增强沉积制备碳化硼及C—B—Ti化合物薄膜的结构与力学性能… [J], 王宇;尤大纬因版权原因,仅展示原文概要,查看原文内容请购买。

碳化钛掺杂的铁基复合涂层的制备及其耐磨性能研究

碳化钛掺杂的铁基复合涂层的制备及其耐磨性能研究

碳化钛掺杂的铁基复合涂层的制备及其耐磨性能研究
陈悦;刘海生;肖猛
【期刊名称】《热喷涂技术》
【年(卷),期】2022(14)3
【摘要】采用“喷雾造粒+等离子球化”复合工艺,成功制备了环境友好且价格低
廉的TiC/316L复合粉末,并采用超音速火焰喷涂工艺沉积了复合涂层。

利用扫描电镜、维氏硬度计、往复式摩擦磨损仪表征了该复合粉末及涂层的微观结构、力学性能及耐磨性能。

结果表明,新工艺制备的TiC/316L金属陶瓷复合粉末具有高球形度、高致密及陶瓷相分布均匀的特点,可直接应用于热喷涂。

TiC/316L复合涂层的孔隙率为0.75%,硬度为860HV_(0.3),磨损率为5×10^(-5)mm^(3)N^(-1)m^(-1);相
比于316 L不锈钢涂层,上述指标均大幅提升。

其原因在于:(1) TiC掺杂改善了铁基粉末的熔化程度,大幅提升粉末的扁平化率;(2) TiC陶瓷相沉积时表现出喷丸效应,
进一步致密化涂层;(3) TiC掺杂抑制了复合涂层的层状剥落。

【总页数】9页(P30-37)
【作者】陈悦;刘海生;肖猛
【作者单位】广东省科学院工业分析检测中心;松山湖材料实验室;华南理工大学【正文语种】中文
【中图分类】TG174.4
【相关文献】
1.真空熔烧钴基合金--碳化钨复合涂层材料的耐磨性能研究
2.钴基合金—碳化钨复合涂层材料耐磨性能的研究
3.激光熔覆碳化钛增强钛基复合涂层研究进展
4.激光原位制备复合碳化物颗粒增强铁基复合涂层及其耐磨性的研究
5.我国专门矫治教育中的权力行使与权利保护之维
因版权原因,仅展示原文概要,查看原文内容请购买。

等离子体浸没离子注入与沉积合成TiN薄膜的滚动接触疲劳寿命和机械性能

等离子体浸没离子注入与沉积合成TiN薄膜的滚动接触疲劳寿命和机械性能

等离子体浸没离子注入与沉积合成TiN薄膜的滚动接触疲劳寿命和机械性能刘洪喜;蒋业华;周荣;周荣锋;金青林;汤宝寅【期刊名称】《金属学报》【年(卷),期】2008(44)3【摘要】采用等离子体浸没离子注入与沉积(PIII&D)技术在AISI 52100轴承钢表面合成了高硬耐磨的TiN薄膜.膜层元素分布、化学组成和表面形貌分别用XRD,XPS表征.合成薄膜前后试样的滚动接触疲劳寿命和摩擦磨损性能分别由球棒疲劳磨损试验机和球-盘磨损试验机测定;疲劳破坏后的微观形貌通过SEM观察;薄膜力学性能经纳米压痕和纳米划痕实验评价.结果表明,TiN膜中还含有少量的TiO_2和Ti,N,O的化台物.在优化条件下,TiN膜层致密均匀,与基体结合良好,纳米硬度和弹性模量分别达到25和350 GPa;最低摩擦系数由基体的0.92下降到0.2.被处理薄膜试件在90%置信区间下的最大L_(10),L_(50),L_a和(?)寿命较基体分别提高了约4.5,1.8,1.3和1.2倍,疲劳寿命的分散性得到了显著改善.【总页数】6页(P325-330)【关键词】等离子体浸没离子注入与沉积;TiN薄膜;机械性能;滚动接触疲劳寿命;轴承钢【作者】刘洪喜;蒋业华;周荣;周荣锋;金青林;汤宝寅【作者单位】昆明理工大学机电工程学院,昆明650093;哈尔滨工业大学现代焊接生产技术国家重点实验室,哈尔滨150001【正文语种】中文【中图分类】TG172.444【相关文献】1.等离子浸没离子注入沉积纳米TiN薄膜的机械性能研究 [J], 万国江;黄楠;冷永祥;杨萍;陈俊英2.等离子体浸没离子注入和沉积技术制备TiN薄膜研究 [J], 冷永祥;孙鸿;徐禄祥;裘叶军;陈俊英;黄楠3.等离子体浸没离子注入与沉积合成碳化钛薄膜的摩擦磨损性能研究 [J], 刘洪喜;汤宝寅;王小峰;王浪平;于永泊告;王宇航;孙韬4.氮等离子体浸没离子注入技术改善轴承钢滚动接触疲劳寿命和机械性能的研究[J], 刘洪喜;李小棒;李琪军5.金属等离子体浸没离子注入与沉积技术合成类金刚石薄膜研究 [J], 刘洪喜;汤宝寅;王浪平;王小峰;于永澔;孙韬因版权原因,仅展示原文概要,查看原文内容请购买。

浅谈等离子体浸没离子注入技术及其应用

浅谈等离子体浸没离子注入技术及其应用

摘要:等离子浸没离子注入技术是一种新型的离子注入技术,有着自己独特的优点,目前已成为热点研究领域,其主要应用于对材料表面处理以提高其磨损性能。

本文简要阐述了等离子体浸没离子注入技术,并就其在表面改性领域中的广泛应用进行了分析与探究。

关键词:等离子体浸没与注入应用技术1等离子体浸没离子注入技术等离子体俗称物质存在的第四态,是指在一定强度的电场作用下,气体中的原子受到激发,内部带点粒子发生加速运动相互碰撞后进行能量传递,最后电离放电而形成的一种物质。

等离子体在常规条件下是不可能产生的,必须在特殊条件下才能形成。

而等离子体注入,就是等离子体的一种应用领域,也是目前运用比较多的一种表面改性处理技术,是通过向基体注入外来离子而改变基体材料表面组成成分以及结构,达到改变基体材料各种性能的目的。

等离子体浸没离子注入英文简称为PIII,其设备由等离子体源、脉冲电源、真空室以及真空泵四大部门组成。

将样品置入实验真空室内,并安装在特定需要的位置,当真空抽至所需要求时,将工作气体通入真空室内,通过射频耦合等多种方式将通入的气体电离成等离子体。

由于等离子体在真空室内处于弥漫状态,因此可以达到样品完全浸没气体的目的。

向样品表面施加负脉冲偏压,等离子体在负偏压的电场作用下,电子向真空室壁运动,正离子向样品表面停留,便形成了一层厚度较厚的正离子鞘层。

此时,正离子在电场作用下获得能力,垂直入射到样品表面,达到了样品表面注入离子的目的。

与传统的离子注入技术相比,PIII有着独特的优点。

在实验过程中不需要旋转样品,因为在真空室内形成的等离子是属于弥漫型,能达到360°浸没与注入的效果;可以加工形状复杂的样品;所加偏压高,足以满足正离子注入样品表面,与原有粒子发生结合形成新的金相组织结构,既能保持样品材料原有性能、表面光洁度和尺寸,又能以改变这种材料表面的物理,化学及机械性能。

2等离子体浸没离子注入技术的应用1987年,rad教授在美国提出了PIII技术,运用至今,已有多年历史,并是当前表面改性的热点,以其设备简单、效率高、成本低的特点广泛应用于各种领域。

钛合金摩擦磨损性能及减磨方法研究进展

钛合金摩擦磨损性能及减磨方法研究进展

钛合金摩擦磨损性能及减磨方法研究进展
刘雨薇;吴霞;陈纪云;靳爽;李淳;孙园植
【期刊名称】《表面技术》
【年(卷),期】2024(53)12
【摘要】钛合金具有比强度高、抗腐蚀性强、耐高温以及生物相容性好等优点,在汽车制造、生物医疗等众多领域具有重要应用。

但钛合金的摩擦磨损性能较差,会影响机械系统的使用寿命和可靠性。

首先论述了摩擦磨损过程中摩擦层的形成过程以及摩擦层对钛合金磨损机理的作用,分析了润滑条件、环境温度、滑动速度、载荷等工况条件对钛合金摩擦磨损性能的影响规律。

其次,对比总结了钛合金减磨的常见工艺方法及优缺点,指出了当前钛合金磨损机理研究和性能改善方面存在的问题。

最后,对今后的研究工作进行了展望:将实验与仿真相结合,阐明钛合金摩擦层和磨损机理的动态变化规律;考虑各种环境因素对钛合金磨损机理的影响,完善钛合金磨损机制图;通过对多种技术协同配合时的工艺参数进行优化,促进钛合金表面强化复合技术的发展,从而提升钛合金的耐磨减摩性能。

【总页数】21页(P1-21)
【作者】刘雨薇;吴霞;陈纪云;靳爽;李淳;孙园植
【作者单位】中国矿业大学(北京)机电与信息工程学院;北京理工大学机械与车辆学院
【正文语种】中文
【中图分类】TB34
【相关文献】
1.半金属摩擦材料的摩擦磨损性能及磨屑形貌
2.植保喷头材料磨损性能及减磨方法研究
3.钛合金的摩擦磨损性能及其改善方法
4.深冷处理对钛合金力学性能及摩擦磨损性能的影响
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第24卷 第6期摩擦学学报V o l24, N o6 2004年11月TR I BOLO GY N ov,2004等离子体浸没离子注入与沉积合成碳化钛薄膜的摩擦磨损性能研究刘洪喜,汤宝寅,王小峰,王浪平,于永泊告,王宇航,孙 韬(哈尔滨工业大学现代焊接生产技术国家重点实验室,黑龙江哈尔滨 150001)摘要:将等离子体浸没离子注入与沉积及射频辉光放电技术相结合,在GC r15轴承钢基体表面制备了碳化钛薄膜,考察了注入脉冲宽度和工作气体压力对薄膜性能和化学组成的影响;利用X射线衍射仪(XRD)、维氏硬度计、多功能摩擦磨损试验机和电化学腐蚀试验装置表征了薄膜试样的相组成、显微硬度、摩擦磨损性能和抗腐蚀性能.结果表明,注入脉冲宽度和工作气体压力对薄膜性能及其组成具有显著影响;GC r15钢经改性处理后抗磨性能和抗腐蚀性能显著改善.这是由于基体表面形成了硬质且致密的T i C薄膜改性层所致.关键词:轴承钢;等离子体浸没离子注入与沉积;碳化钛薄膜;摩擦磨损性能中图分类号:T G172.44;TH117.3文献标识码:A文章编号:100420595(2004)0620493205 碳化钛(T i C)具有硬度和熔点高、抗磨和抗腐蚀性能优良、低摩擦、导热性优良、化学稳定性优异等性能特点,在机械、摩擦学及半导体领域得到了越来越广泛的应用[1~3].研究表明,采用低温脉冲激光沉积[4]、化学气相沉积[5]、离子束辅助沉积[6]、离子注入等[7,8]技术在轴承钢基体表面形成T i C薄膜,可以显著提高其表面硬度及耐磨性能.遗憾的是,采用上述方法制备的T i C薄膜与基体在结构和性能方面存在较大差异,故改性效果不理想.近10多年来,等离子体浸没离子注入(P III)技术因克服了束线离子注入的直射性限制而在表面工程领域得到了普遍关注[9~14],但早期的P III技术主要局限于氮离子注入且注入层较浅.为了克服上述缺点,人们以P III技术为基础开发了金属等离子浸没离子注入与沉积(M eP III D)技术[15].利用该技术,在离子注入的同时还可以在试样表面沉积薄膜,从而得到较厚的改性层,显著提高改性效果.本文作者将阴极弧金属离子源离子注入技术同射频辉光放电技术相结合,在GC r15(A IS I52100)轴承钢基体表面制备了T i C薄膜,并考察了薄膜的摩擦磨损性能.1 实验部分1.1 试样制备将经过淬火和回火处理的GC r15轴承钢基体材料切割成<12mm×3mm的试盘,表面研磨至R a≤0.04Λm,然后在丙酮中超声清洗20m in待用.在自制的多功能等离子体浸没离子注入装置上进行离子注入处理[16].该装置配备射频(R F)辉光放电、热灯丝点燃真空气体放电和阴极弧金属等离子体等多种等离子体源,可连续进行金属和不同气体等离子体浸没离子注入处理.以钛棒(99.99%)作为阴极产生阴极真空弧,以C2H2(99.5%)作为工作气体.薄膜制备工艺见表1.M eP III D技术参数:注入电压25kV,本底真空度5.0×10-3Pa,金属源主弧脉宽900Λs,金属源主弧电流120A,试样距磁导管口140mm,基体温度<100℃,注入与沉积时间3h.1.2 薄膜试样表面分析及摩擦磨损性能评价采用荷兰Ph ili p s公司生产的X’pert型X射线衍射仪(XRD)对薄膜试样进行物相分析.Cu的单色KΑ波长为1.5406nm,管压40kV,管流100mA,衍射角范围25°~85°.用HX21000型显微硬度计测定薄膜试样的显微硬度,载荷0.25N,加载时间20s,对每种试样进行10次重复测试,取平均值.采用CJS III A型多功能摩擦磨损试验机评价薄膜试样的摩擦磨损性能(球2盘摩擦副),偶件为<4mm的Si C 陶瓷球;试验条件为:载荷0.3N,旋转半径3mm,转速300r m in;以改性层完全磨穿时的转数来评价薄膜的耐磨寿命.采用美国EGVA公司M odel2273型基金项目:国防预研基金资助项目(7001028).收稿日期:2003212230;修回日期:2004203215 联系人刘洪喜,e2m ail:vi p liuhx@.作者简介:刘洪喜,男,1972年生,博士研究生,目前主要从事材料表面工程方面的研究.表1 GCr 15钢基体表面Ti C 薄膜制备工艺参数Table 1 The param eters to syn thesize Ti C th i n f il m s on GCr 15bear i ng steelSamp le N o.W o rk ing gas p ressure PaI mp lantati on pulse w idth ΛsG 130G 21.5×10-260G 390G 48.0×10-360G 56.0×10-260电化学综合测试系统测定薄膜试样的抗腐蚀性能,参比电极为饱和甘汞溶液,辅助电极为P t 片,以3.5%的饱和N aC l 溶液作为电解液,腐蚀面积为1c m 2,扫描速度为0.01V s ,扫描范围-1.0~0.0V .采用O lym pu s 公司生产的PM G 23型金相显微镜观察薄膜试样腐蚀表面形貌.2 结果与讨论2.1 相组成图1示出了采用不同工艺条件制备的T i C薄膜F ig 1 XRD pattern s of T i C th in fil m s p repared on A IS I 52100steel at vari ou s i m p lan tati onp u lse w idth s and w o rk ing gas p ressu res图1 不同注入脉宽和工作气体压力下GC r 15轴承钢表面T i C 薄膜的XRD 图谱试样的XRD 图谱.可以看出,当工作气压一定,注入脉宽分别为30Λs 和60Λs 时,相应的薄膜试样G 1和G 2的XRD 图谱均出现了T i C 特征衍射峰,但其在不同晶面上的丰度有所不同[见图1(a )].随着注入脉宽的增加,等离子体气氛中T i +和C +结合生成T i C 的几率增大,因而薄膜中T i C 的含量增加.但当注入脉宽增加至90Λs 时,相应的试样G 3的T i C 特征衍射峰几乎消失.这是由于T i +注入能量过高时T i C 薄膜在较强的离子轰击作用下难以同基体紧密结合所致.当注入脉宽一定而工作气压分别为1.5×10-2Pa 和6.0×10-2Pa 时,所合成的薄膜试样同样含有T i C 相,但同标准T i C 谱峰相比,试样G 5的T i C 特征衍射峰向高衍射角方向移动[见图1(b )].这说明在不同工作气压下合成的T i C 的晶格常数有所不同,其相组成和结构亦存在差异.晶格参数发生畸变的根本原因在于合成薄膜中存在sp 2杂化碳.与此同时,可以断定薄膜试样G 5不是由单一的T i C 组成,而是由几种混合相组成,可以表示为T i x C y ,其具体相组成有待于进一步研究.就G 4试样而言,由于工作气压太低,C 2H 2气体在本文试验条件下难以电离产生足够的C +,故XRD 分析难以检测出T i C .2.2 摩擦磨损性能图2示出了T i C 薄膜试样同GC r 15钢对摩时的摩擦系数随转数变化的关系曲线.可以看出,在固定工作气压条件下,所合成的薄膜试样的摩擦系数同基体试样相比明显较低[见图2(a )].当转动次数达到500次时,基体试样(G 0)相应的摩擦系数达到0.8以上,而薄膜试样相应的摩擦系数均低于0.1,且随着注入脉宽的增加,摩擦系数有所降低.与此同时,在固定注入脉宽而改变工作气压条件下制备的薄膜试样的减摩抗磨性能亦明显优于基体试样[见图2(b )];其中薄膜试样G 4的减摩抗磨性能不佳,其原因在于494摩 擦 学 学 报第24卷F ig 2 Com p arison of fricti on coefficien ts and an ti w ear lives of the T i C th in fil m s p repared on A IS I 52100steel at vari ou s i m p lan tati on p u lse w idth s and w o rk ing gas p ressu re图2 不同注入脉宽和气体压力下GC r 15钢表面T i C 薄膜的摩擦磨损性能对比工作气压较低时难以形成T i C 薄膜,这同相应的XRD 分析结果一致.据此可知,在其它工艺参数一定的条件下,注入脉宽和工作气体压力对所制备的T i C 薄膜试样的摩擦磨损性能具有显著影响.2.3 显微硬度表2列出了GC r 15钢表面T i C 薄膜改性层的显 表2 GCr 15钢表面Ti C 薄膜的硬度测定结果Table 2 M icro -hardness of the Ti C f il m s on GCr 15bear i ng steel substrateSamp le N o .M icrohardness M PaG 0710G 1860G 21081G 3974G4830G 5933微硬度测试结果.可见,薄膜试样的显微硬度明显比基体试样的(710M Pa )高,最高达1081M Pa .文献报道的T i C 薄膜的显微硬度值约为26~31GPa [3],明显高于本文测得的硬度值.其原因在于,GC r 15钢经离子注入与沉积表面改性后,注入与沉积硬化层较薄,在硬度测试中,即使在较小的载荷下压头压入深度也超出了离子注入与沉积硬化层深度,因此所测得的显微硬度值实际上是衬底和薄膜硬度的综合反映[17].2.4 耐蚀性能图3示出了经M eP III D 处理后部分试样的塔菲尔(T afel )曲线.可以看出,同基体试样相比,经改性处理后试样的腐蚀电位明显增大,腐蚀电流则明显降低,其中薄膜试样的腐蚀极化曲线向左上方移动.为了更加形象地说明薄膜试样的耐腐蚀行为,图4对比示出了试样G 0和G 5在不同放大倍数下的腐蚀表面 F ig 3 T he relati on betw een co rro si on po tential andco rro si on current density fo r treated samp les图3 处理后试样腐蚀电位与腐蚀电流密度之间的关系曲线形貌金相显微照片.可以看出,未经处理的基体试样腐蚀表面存在大量腐蚀坑.而在相同腐蚀试验条件下,即使放大倍数高达500倍,T i C 薄膜试样腐蚀表面依然完整、光滑,仅呈现极少量的点蚀坑.这说明GC r 15钢经表面改性处理形成T i C 薄膜后,其耐腐蚀性能显著改善.3 结论a . 经等离子体浸没离子注入与沉积处理后,GC r 15轴承钢表面形成了硬质T i C 相,因而其硬度和抗磨性能显著提高.b . 注入脉冲宽度和工作气体压力等参数对GC r 15轴承钢表面T i C 薄膜改性层的形成及薄膜的性质具有显著影响;通过合理选择相应的改性工艺可以得到致密、抗腐蚀性能优良的表面改性层.594第6期刘洪喜等: 等离子体浸没离子注入与沉积合成碳化钛薄膜的摩擦磨损性能研究F ig 4 Op tical m icrograp h s of co rroded steel sub strate and T i C th in fil m thereon图4 GC r 15钢基体及T i C 薄膜试样腐蚀表面形貌金相显微照片参考文献:[1]L opez J M ,Go rdillo 2V azquez F J ,Fernandez M ,et a l .Investigati on of T i C th in fil m s synthesized by low energy I BAD from electron evapo rati on of T i C pow der [J ].A pp l Surf Sci ,2001,172:1102?[2]R aw at R S ,L ee P ,W h ite T ,et a l .Room temperaturedepo siti on of titanium carbide th in fil m s using dense p las m a focus device [J ].Surface and Coatings T echno logy ,2001,138:159?[3] Santerre F ,KhakanilM A E l ,Chaker M ,et a l .P roperties ofT i C th in fil m s grow n by pulsed laser depo siti on [J ].A pp l Surf Sci ,1999,148:24225.[4] R adhak rishnan G ,A dam s P M ,Speckm an D M .L ow temper 2ature pulsed laser depo siti on of titanium carbide on bearing steels [J ].T h in So lid F il m s ,2000,358:1312138.[5] Cao L X,Feng Z C,L iang Y,et a l .L aser chem ical vapourdepo siti on of T i N and T i C fil m s[J ].T h in So lid F il m s,1995,257(1):7214.[6]Yoko ta K ,N akam ura K ,Kasuya T ,et a l .Compo siti onal structure of dual T i N O layers depo sited on SU S 304by an I BAD technique [J ].Surface and Coatings T echno logy ,2002,1582159:5682572.[7]Dodd A ,K inder J ,To rp B ,et a l .T he effect of i oni m p lantati on on the fatigue life and co rro si on resistance of M 50steel bearings [J ].Surface and Coatings T echno logy ,1995,74275(2):7542759.[8] Zeng Z M ,Zhang T ,T ang B Y ,et a l .I mp rovem ent oftribo logical p roperties of 9C r 18bearing steel using m etal and nitrogen p las m a 2i m m ersi on i on i m p lantati on [J ].Surface and Coatings T echno logy ,1999,115:2342238.[9] 张通和,吴瑜光.离子注入表面强化技术[M ].北京:冶金工业出版社,1993.[10] 汤宝寅,张更伟,王小峰,等.氮、氧及金属离子注入铝合金表面改性层摩擦磨损性能研究[J ].摩擦学学报,2003,23(4):2872291.T ang B Y,Zhang G W ,W ang X F,et a l .F ricti on and w ear behavi o r of alum inum alloys i on 2i m p lanted w ith nitrogen ,oxygen ,and m etal [J ].T ribo logy ,2003,23(4):2872291.[11] 廖家轩,夏立芳,孙明仁,等.铝合金表面等离子体基离子注入碳层的摩擦学性能[J ].摩擦学学报,2003,23(4):2822286.L iao J X ,X ia L F ,Sun M R ,et a l .T ribo logical p roperties of p las m a source i on i m p lanted DL C fil m on 2024alum inum alloy [J ].T ribo logy ,2003,23(4):2822286.[12] Conrad J R .P las m a source i on i m p lantati on :a new app roachto i on beam modificati on of m aterials [J ].M ater Sci Eng ,1989,A 116:2012205.[13] 陈英才,吴知飞.等离子源离子注入[J ].物理,1991,20:7372740.Chen Y C ,W u Z F .P las m a source i on i m p lantati on [J ].Physics ,1991,20:7372740.[14]Conrad J R ,R adtke J L .P las m a source i on 2i m p lantati ontechnique fo r surface modificati on of m aterial [J ].J A pp l Phys ,1987,62(11):459124596.[15]A nders A .M etal p las m a i m m ersi on i on i m p lantati on and depo siti on :A review [J ].Surface and Coatings T echno logy ,1997,93:1582167.[16] 王松雁,汤宝寅,孙剑飞.用于材料表面改性的多功能等离子体浸没离子注入装置[J ].物理,1997,26(6):3622365.W ang S Y ,T ang B Y ,Sun J F .M ulti 2functi onal apparatus of P III using in m aterial surface modificati on [J ].Physics ,1997,26(6):3622365.[17] Puch i 2Cabrera E S ,Berri o s J A ,T eer D G ,et a l .O n thecomputati on of the abso lute hardness of th in so lid fil m s [J ].Surface and Coatings T echno logy ,2002,157:1852196.694摩 擦 学 学 报第24卷Fr iction and W ear Behav ior of Titan iu m Carbide Th i n F il mPrepared on Bear i ng Steel Surface by P III DL I U Hong 2x i ,TAN G B ao 2yin ,W AN G X iao 2feng ,W AN G L ang 2p ing ,YU Yong 2hao ,W AN G Yu 2hang ,SUN T ao(S tate K ey L aboratory of A d vanced W eld ing P rod uction T echnology ,H arbin Institu te of T echnology ,H arbin 150001,Ch ina )Abstract :T itan ium carb ide fil m s w ere p rep ared on A IS I 52100steel sub strate m ak ing u se of m etal p las m ai m m ersi on i on i m p lan tati on and depo siti on (M eP III D )and radi o 2frequency glow discharge techn ique ,u sing acetylene (C 2H 2)as the w o rk ing gas and p u re titan ium cathodic vacuum arc as the m etal p las m as sou rce .T hu s the T i C th in fil m s w ere depo sited in the in tervals betw een the h igh vo ltage b ias pu lses and the i m p lan tati on w as p erfo r m ed du ring the pu lses .T he effect of the i m p lan tati on pu lse w idth and w o rk ing gas p ressu re on com po siti on s and p rop erties of the resu lting T i C fil m s as the m odified layers w ere exam ined ,based on the exam inati on of the chem ical com po siti on s and m icro structu res of the T i C fil m s by m ean s of X 2ray diffracti on .T he fricti on and w ear behavi o rs of the fil m s w ere evaluated on a p in 2on 2disc test rig ,w h ile the co rro si on resistance of the fil m s w as investigated u sing an electrochem ical co rro si on m ethod .It w as found that the su rface m icrohardness of the steel sub strate w as sign ifican tly increased after the m odificati on at p roper param eters .T herefo re ,the T i C fil m s as the m odified layers had m uch better fricti on 2reducing and an ti w ear ab ilities than the steel sub strate .M o reover ,the T i C fil m also had m uch better co rro si on resistance than the steel sub strate .T he com po siti on s and m icro structu res of the T i C fil m s w ere clo sely related to the p aram eters such as the i m p lan tati on pu lse w idth and w o rk ing gas p ressu re .T hu s it w as i m perative to realize the best su rface 2m odificati on effect of the steel by p roperly selecting the param eters fo r the M eP III D .Key words :bearing steel ;m etal p las m a i m m ersi on i on i m p lan tati on and depo siti on ;titan ium carb ide fil m s ;fricti on and w ear behavi o rAuthor :L I U Hong 2x i ,m ale ,bo rn in 1972,Ph .D .candidate ,e 2m ail :vi p liuhx @yahoo .com .cn794第6期刘洪喜等: 等离子体浸没离子注入与沉积合成碳化钛薄膜的摩擦磨损性能研究。

相关文档
最新文档